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= 9. This corresponds to the well-known cone x2 + xﬁ = x3 + x3,

‘which has indeed mean curvature 0. The other possibility for a geodesic |
is to end on the u-axis, those ending on the v-axis being obtained by a sym- !
metrical reflection. Up to a homothetic transformation there is only one '

such geodesic. We introduce the new homothetically invariant parameters
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and rewrite the equation for geodesics as
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We are interested in the unique characteristic C which at time t = — o0 _

starts at the saddle point (z, 0) and at time # = oo ends at the origin (0, 0).
Since the diagonal u = v goes in the line ¢ = y in the (o, Y)-plane, if we

follow C from ¢ = — oo to a time ¢, for which ¢ = , going back to the

(4, v) plane we get a geodesic starting on the axis v = 0 and ending on
u = v; clearly by applying a suitable homothety we may get a geodesic

ending at u = v = 5 and a solution to our problem. It follows that

our result will be proved if we show that the characteristic C crosses the
line ¢ = ¥ infinitely many times. This in fact is obvious, because C ends
at (0,0) and it is easily checked that (0, 0) is a focal singular point, or
vortex, of the differential system for o, .

It may be noted that the same construction gives other’examples, like

1 1
for the boundary S2 < \/2> S2 ( \/§>, with almost exactly the same

result.

V. RECENT PROGRESS ON REGULARITY PROBLEMS -

The regularity thec;ry of minimal currents and varifolds is fundamental

if we want to obtain classical solutions to variational problems. Here the
theory proceeds in two main directions: one is to prove stronger and better
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regularity theorems, the other is to produce more examples of singular
minimal varieties to narrow the gap.

It is a classical result that a minimal surface is real analytic at every
regular point. Let ¥ < C" = R*" be a complex analytic subvariety of C";
by Wirtinger’s inequality, ¥ is also an absolutely minimizing surface in
R2" hence V may carry singularities and the singular set can have co-
dimension 2. If T is a minimal hypersurface in R”, singularities are harder

to find : Simons’ cone
24+t xE =X+ L+ X

is the first and simplest example of a singular absolutely minimal hypersur-
face in R®. All these examples are real analytic sets and one could ask whether
this is always the case. However there are topological obstructions for a sin-
gularity to be real analytic, as the following construction by Milani shows.

We can find an embedding of P? (C), the complex projective plane,
in R® so that P2 (C) will be on the sphere S® given by x} + ... + x5 = 1.
By the general theory, there is a 5-dimensional current T with boundary
P? (C) which is absolutely minimizing and, by results of Allard on bound-
ary regularity, one can show that spt (7) is a manifold in a neighborhood
of its boundary. We conclude that the singular set of T is a compact sub-
set of spt (T') \ spt (0T). Now assume that spt (7') is a real analytic set 2.
By Hironaka’s theorem on resolution of singularities, together with a very
important refinement obtained by Tognoli, there is a real analytic mani-
fold X’ and a proper f: X' — X which is an isomorphism outside f 1
(sing 2). Thus X’ is a real manifold with boundary P? (C). This contradicts
Thom’s theorem that P2 (C) is a generator of infinite order of the co-
bordism ring, and the conclusion is that spt (7') is not a real analytic set.

Another beautiful example has been obtained by Lawson and Osser-
man [L-O] in their work on the Dirichlet problem on the minimal surface
system in non-parametric form, in higher codimension. If : S® —» S2 is
the Hopf map

n(zy,2z;) = (|Z1|2_ I?zlz, 22122)

where (z4,2,)eC x C = R* and # is considered as 7 (zy,z.)eR X C
~ R>, they found that the Lipschitz function f:R* — R3® defined by

X

f(x) =\—/;|x|n<~> forx # 0,

[~

is a solution of the minimal surface system. This gives the first example of a
non-parametric minimal Lipschitz cone, of dimension 4 in R”.
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General regularity theorems for absolutely minimal currents have
proved to be very difficult to obtain. The codimension 1 case has been
treated with success; after previous work by Reifenberg, De Giorgi,
Almgren, Miranda, Simons, finally Federer [FH 2] proved the sharp result

that absolutely minimal hypersurfaces are non-singular in codimension
less than 7. In particular, minimal hypersurfaces of dimension <6 are

analytic manifolds. Also, in the codimension one non-parametric case Bom-
bieri, De Giorgi and Miranda proved regularity in any dimension, a result
to be contrasted with the Lipschitz singular cone of Lawson and Osserman.

In general codimensions, the only result was that the set of regular points
isdense (Reifenberg, Morrey, Almgren) and only recently Almgren announced
[AF 3] that minimal surfaces are regular almost everywhere. It seems likely that
Almgren’s new methods will in fact show that minimal surfaces are regular in
codimension 2; in view of the examples prov1ded by complex analytlc varieties,
this result would be sharp.
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