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u v. This corresponds to the well-known cone x\ + x\ x\ + xl,
which has indeed mean curvature 0. The other possibility for a geodesic
is to end on the u-axis, those ending on the v-axis being obtained by a
symmetrical reflection. Up to a homothetic transformation there is only one
such geodesic. We introduce the new homothetically invariant parameters

v vr
(p artg - 0 artg —

u u

<t — 6 — 3cp + — xl/ 6 + <p — —
2 2

and rewrite the equation for geodesies as

3 7
(J — - sin o — - sin xl/

2 2 *

1 3
w - sin a — - sin 11/

2 2 \
We are interested in the unique characteristic C which at time t - oo

starts at the saddle point (n, 0) and at time t oo ends at the origin (0, 0).
Since the diagonal u v goes in the line a xj/ in the (cr, \j/)-plane, if we
follow C from t - oo to a time for which a ^r, going back to the
0, v) plane we get a geodesic starting on the axis v 0 and ending on
w v; clearly by applying a suitable homothety we may get a geodesic

ending at u v — and a solution to our problem. It follows that
y2

our result will be proved if we show that the characteristic C crosses the
line a \J/ infinitely many times. This in fact is obvious, because C ends
at (0, 0) and it is easily checked that (0, Ö) is a focal singular point, or
vortex, of the differential system for <r, \j/.

It may be noted that the same construction gives other*examples, like

for the boundary S2 x S2 (^7^)' with almost exacHy the same

result.

V. Recent progress on regularity problems

The regularity theory of minimal currents and varifolds is fundamental
if we want to obtain classical solutions to variational problems. Here the
theory proceeds in two main directions : one is to prove stronger and better
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regularity theorems, the other is to produce more examples of singular

minimal varieties to narrow the gap.

It is a classical result that a minimal surface is real analytic at every

regular point. Let FcC" R2w be a complex analytic subvariety of C";

by Wirtinger's inequality, V is also an absolutely minimizing surface in
R2w, hence V may carry singularities and the singular set can have co-

dimension 2. If T is a minimal hypersurface in R", singularities are harder

to find : Simons' cone

x\ + + x\ X5 + + Xg

is the first and simplest example of a singular absolutely minimal hypersurface

in R8. All these examples are real analytic sets and one could ask whether

this is always the case. However there are topological obstructions for a

singularity to be real analytic, as the following construction by Milani shows.

We can find an embedding of P2 (C), the complex projective plane,

in R9 so that P2 (C) will be on the sphere S8 given by x\ + + x\ 1.

By the general theory, there is a 5-dimensional current T with boundary
P2 (C) which is absolutely minimizing and, by results of Allard on boundary

regularity, one can show that spt (T) is a manifold in a neighborhood
of its boundary. We conclude that the singular set of T is a compact subset

of spt (T) \ spt (OT). Now assume that spt (T) is a real analytic set 1.

By Hironaka's theorem on resolution of singularities, together with a very
important refinement obtained by Tognoli, there is a real analytic manifold

I' and a proper f:I' -* Z which is an isomorphism outside /_1
(sing I). Thus I' is a real manifold with boundary P2 (C). This contradicts
Thorn's theorem that P2 (C) is a generator of infinite order of the co-
bordism ring, and the conclusion is that spt (T) is not a real analytic set.

Another beautiful example has been obtained by Lawson and Osser-

man [L-O] in their work on the Dirichlet problem on the minimal surface

system in non-parametric form, in higher codimension. If r\ \ S3 -» S2 is
the Hopf map

n(zl,z2) (\zl\2-
where (zuz2)e C x C R4 and rj is considered as rj(zu z2) e R x C

£ R3, they found that the Lipschitz function /: R4 -> R3 defined by

f(x) ^ I X I r\forx ^ 0

is a solution of the minimal surface system. This gives the first example of a
non-parametric minimal Lipschitz cone, of dimension 4 in R7.
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General regularity theorems for absolutely minimal currents have
proved to be very difficult to obtain. The codimension 1 ease has been
treated with success; after previous work by Reifenberg, De Giorgi,
Almgren, Miranda, Simons, finally Federer [FH 2] proved the sharp result
that absolutely minimal hypersurfaces are non-singular in codimension
less than 7. In particular, minimal hypersurfaces of dimension ^ 6 are
analytic manifolds. Also, in the codimension one non-parametric case Bom-
bieri, De Giorgi and Miranda proved regularity in any dimension, a result
to be contrasted with the Lipschitz singular cone of Lawson and Osserman.

In general codimensions, the only result was that the set of regular points
is dense (Reifenberg, Morrey, Almgren) and only recently Almgren announced
[AF 3] that minimal surfaces are regular almost everywhere. It seems likely that
Almgren's new methods will in fact show that minimal surfaces are regular in
codimension 2 ; in view of the examples provided by complex analytic varieties,
this result would be sharp.
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