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TRANSFORMATION DE MELLIN
ET DEVELOPPEMENTS ASYMPTOTIQUES

par Pierre JEANQUARTIER

1. INTRODUCTION

La transformée de Mellin d’une fonction f intégrable a support compact
sur R, =10, oo [ est la fonction entiére N définie par

(1.1) Mf(z) = [T f@OF adt.

Lorsqu’on se propose d’étendre la définition (I.1) au cas d’une fonction
localement intégrable ou plus généralement d’une distribution f sur R,,
des conditions de croissance au voisinage de 0 et de co doivent €tre imposées
a f. Comme la transformation # > ¢~ 1 ¢échange des voisinages de O et de
I’infini, on ne restreint pas la généralité en ne considérant que des distri-
butions nulles au voisinage de I'infini. En fait, on définira la transformation
de Mellin 9t dans ’espace & + des distributions sur R, qui sont restriction
de distributions & support compact sur R. 3t est alors un isomorphisme de
& ., considéré comme algébre de convolution, sur une algébre multiplicative
# , de fonctions holomorphes dans des demi-plans Re z > r, satisfaisant
3 une condition de croissance. Deux théorémes du type de Paley-Wiener
permettent de caractériser par leur transformée de Mellin les distributions
3 support compact et les fonctions de carré intégrable par rapport a la
mesure ¢~ ! dt. Comme application, on définit des sous-espaces &, de & s
analogues aux espaces de Sobolev, conduisant & une classification des distri-
butions en fonction de leur régularité et de leur ordre de grandeur au voisi-
nage de lorigine. Ces espaces permettent de définir des développements
asymptotiques en un sens généralisé au voisinage de 'origine, et de carac-
tériser, par des propriétés de méromorphie et de croissance, les transformees
de Mellin de distributions admettant de tels développements. A titre
d’exemple, on reprend les résultats d’Atiyah [1] sur la méromorphie de
Papplication z+> A5~ !, A étant une fonction analytique réelle sur une
variété. Cette application, qui est la transformée de Mellin de ’application
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t 3, (4), 5, (4) étant I'image réciproque par 4 de la mesure de Dirac
au point ¢, vérifie les conditions pour que ce soit la transformée d’une appli-
cation admettant un développement asymptotique; on retrouve ainsi le
résultat de [4] sur D’existence d’un développement asymptotique pour
3, (A) lorsque ¢ tend vers zéro.

Il est a peine nécessaire de signaler que le présent travail ne contient
rien de vraiment original puisque la plupart des résultats qu’il présente
figurent, sous des formes plus ou moins équivalentes, dans 1’abondante
littérature consacrée aux transformations intégrales, notamment aux trans-
formations de Laplace et de Mellin (voir par exemple [6], [2], [7], [8], [3]
et [9]). Toutefois, sa publication n’a pas paru inutile vu que le mode d’expo-
sition choisi est bien adapté 4 la transformation de Mellin et & son application
a I’étude du comportement d’une distribution au voisinage de I’origine.
C’est d’ailleurs 'emploi fructueux que [5] fait de cette transformation qui a
motivé la rédaction de ce texte, et I’auteur tient & préciser qu’il s’est par-
ticuliérement inspiré du travail de dipldme de H.-M. Maire (non publié)
et de [5].

NOTATIONS. On désigne par R, la demi-droite ouverte 10, co[. Sur R,
la fonction ¢2 (z e C) est nulle pour ¢ < 0 et égale & #* pour ¢ > 0. Pour
m e N (ensemble des entiers > 0), C} est ’espace des fonctions de classe
C™ sur R,, a support borné, qui sont prolongeables en fonctions C™ §
sur R. ‘

Si U est un ouvert de R*, & (U) est ’espace des fonctions C* & support
compact dans U; son dual 2’ (U) est I’espace des distributions dans U.
La valeur de Te 2’ (U) pour ¢ € @ (U) est notée { T, ¢ >.

On utilisera souvent opérateur D = t—di invariant par les homothéties |

de R,. La démonstration du lemme suivant est immédiate: -

LEMME 1.1. Pour tout entier m >1, il existe des constantes a’j > 0
et b7, 1<j<m, avec a, = b, =1, telles que '

(1.2) D"f = Y afd fO,
. i=1
(1.3) =y b;-"Dj f,
j=1

pour toute distribution f sur R.
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LemMe 1.2. Soit feC+,peC et meN. Si Rep+k>0 avec
keN, il existe g e CY unique tel que, dans 2' (R,), tP fm = g("'“‘)

Démonstration. Cas m = 0: Le résultat est évident si & = 0. Si k > O,
il suffit de prendre

g(t) _ jt (t— )

o e 1)'f(u) u?du, t>0.

Supposons le résultat vrai pour m remplacé par m — 1. On a
¢P f(m) — (t" f(m-l))' — pt”"l f(m—l) .
Par hypothése

- - - = k
tP f(m 1) — gl(m+k 1), ¢P lf(m 1) _— gz(m+ ),

avec g1, g, € C2. On a donc 17 f™ = g™*M avec g = g, — pg, e Cy.
L’unicité de g résulte de ce que son support est borné.

LemMe 1.3. Soit feCY et m>1 entier. Il existe des fonctions
Jdo» 9m €t h, uniques dans C2 telles que, dans 2' (R,),

(1.9 f =D(""g0),
(1.5) t™"f =D(@E " gm>
(1.6) D@ f) = (D" hy).

Démonstration. Pour (1.4) et (1.5), il suffit de prendre
go(®) =t [o f@u™du, @) = Jo f(t)s™" " ds.

Pour prouver (1.6), on utilise la formule de Leibniz:
m—1 m
D"(tt™™ f) =tD"(t™"f) + ), (J) tDI(™™ f).
ji=0

D’aprés (1.5), il existe fjeC?L telle que D'(¢t™™ f) = D" (t™™ 1)

On a donc (1.6) avec
m—1 m
T ( ) f
i=0 \J

L’unicité provient de ce que les fonctions cherchées sont & support borné.
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LEMME 1.4. Etant donné fe CL et meN, il existe g€ C2  unique
tel que, dans 2’ (R,), f™ = D™ (t™™g).

Démonstration. Le résultat est vrai pour m = 0. Si m > 0, on a
£ = ¢=1pfm=1 o} Pon peut supposer, par récurrence, que f ™1
= D"~ 1 (t~™*1p), avec he C2. D’aprés le lemme 1.3 on a donc f¢™
=t 1pm@E~mtlp) = D"(t™™g), avec ge CJ. g est unique puisque
nulle au voisinage de I'infini.

ESPACE &.. &, estle sous-espace de 2’ (R,) formé des distributions
qui sont prolongeables en distributions & support compact sur R.

ProrosITiIoN 1.5. Soit Te 2’ (R,). Les propriétés suivantes sont
équivalentes :

D) Teé,.
2) Il existe meN et feC) telsque T = f™.
3) Il existe m,qeN et ge CS tels que T = D™ (t™1¢).

Démonstration. 1) et 2) sont équivalents: Si T e & ., il existe une fonc-
tion f; continue sur R et m € N tels que f (™) soit un prolongement de T
([7], théoréme 26, page 91). En ajoutant un polynéme de degré < ma f 4,
on peut supposer que cette fonction est nulle au voisinage de + co. Alors
T = £ ou fe CY est la restriction de f; & R,. Inversement, si T = ™
avec f € C2, T est la restriction de f{™ olif, est un prolongement continu
4 support compact de f, donc Te & .

2) entraine 3) d’apres le lemme 1.4.

3) entraine 1) car si fe C?,¢t7% f € &, en vertu du lemme 1.2 et par
conséquent D™ (t7 % f)eé..

LEMME 1.6. Soit F(z) une fonction holomorphe dans la bande a < Re z
<b et telle que [|F(x+iy)|?dy <M? pour a<x<b. Alors, si
r>0,|F(@)| <M@r) > pour a+r <Rez<b-r.

Démonstration. (Voir aussi [6], théoréme 3, page 5). Prenons z = x+iy
tel.que atr <x < b—r.Ona

F(z) =

18 Fw

277:i 3(s) w — Z
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S () étant le rectangle x+r —is, x+r +is, x—r +is, x—r —1s, ous>|y|
Si vy est un des cotés du rectangle paralléle a ’axe imaginaire, I'inégalité de
Cauchy-Schwarz donne

S F(w)

w —Z

dw

F(w)

o (s) w —2

dw, o (s) étant le segment x—r +is, x+r+is.

Soit I(s) = S
Par I’inégalité de Cauchy-Schwarz

x+r F ‘ 2d x4+ r du
[NF@ris] ”Sx_,<u—x>2+(s—y>2

1) 2 < S

X —

x+r
<7z;S |F (u+is)|* du ,

o
en supposant | s| >|»| + 1. Par conséquent

T (I P+]I(=9)])ds < 2mr M? .
Il existe donc une suite (s;) convergeant vers + oo et telle que |I (s7) |2
+ | I(—s;)|* tende vers O lorsque j— co. On a donc 2z | F(2) |
<2M (@r)*2 + | 1(sp) | + | 1(—s;) | pour tout j, d’olt le résultat lorsque
J— o

2. LA TRANSFORMATION DE MELLIN ET SON INVERSE

TRANSFORMATION DE MELLIN. Si Te&., soit T; une distribution
a support compact sur R qui prolonge 7. Il existe un entier m > 0 tel que
T, soit d’ordre fini <<m (cf. [7] théoréme 24, page 88). Par conséquent,
la fonction de z donnée par F(z) = { Ty, t3~ ' est définie et holomorphe
pour Re z > m + 1 et elle ne dépend pas du prolongement T'; de T choisi.
En effet, d’une part application z +> %~ ! définit une fonction holomorphe
pour Rez > m + 1, a valeurs dans ’espace des fonctions de classe C™
sur R; d’autre part, si T, est un autre prolongement de 7, pour Re z assez
grand, %! est nul sur le support de T; — T, ainsi que ses dérivées d’ordre
inférieur ou égal & I'ordre de T, — T, (cf. [7] théoréme 28, page 93). La
fonction F est appelée transformée de Mellin de T et notée F = INT.

e
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PROPOSITIQN 21. Si Teé&,, ona DTeé&., et t’Te &L pour tout
peC. De plus \
(2.1) MDT)(z) = — zMT (2),
(2.2 | MAPT)(z) = MT (z+p).
Démonstration. Si Te &, il est clair que DTeé,. Le lemme 1.2

et la proposition 1.5 montrent que t?Te & si p e C.
Soit T'; une distribution 4 support compact, d’ordre < m, qui prolonge

T. Pour Rez>m+ 2, on a zMT(z) = {Ty,zt5 1> = — (T, %>
= — (DT, 1>y = —-Mm (DT) (2), puisque DT, est un prolongement
de DT.

Soit maintenant k& un entier >0 tel que Rep + k > m. Alors ¢2+*
est de classe C™ et t57* T, est un prolongement de S = P t* T ; on a donc,
pour Rez >m + 1, MS(2) = {577,571y = (T, 5Pty
= IMMT (z+p+k). En outre, S = t*¢? T, de sorte que si T, est un pro-
- longement de #” T, ¢* T, est un prolongement de S; par suite, pour Rez
assez grand, MS (2) = (t*T,, 151> = (T, 15771y = M (PT) (z +k).
Finalement, M (¢°T) (z) = MS (z—k) = MT (z+ p), c.q.f.d.

ALGEBRE &,. Si S et T appartiennent 3 & +, on définit la convolution -
S * T de S et T comme la distribution sur R, donnée par

(23)  (S*T,0) =<{S(EOQT®, ¢(s1)>, @ecPR,).

C’est la convolution associée a la structure de groupe multiplicatif de R,. |§
Ona S#*Teé,; en effet, si S, et T, sont des prolongements respectifs J
de S et T, ST est la restriction de S, * T'; définie sur R par une formule
analogue a (2.3). Muni de la convolution, & est une algébre commutative
sur le corps C. ‘

ALGEBRE #,. Nous considérerons des fonctions holomorphes définies
dans des domaines du plan C contenant des demi-plans du type Re z
> r (r € R). Deux telles fonctions seront identifiées si elles coincident dans
un tel demi-plan. Nous désignerons par 5, ’espace des (classes de) fonc-
tions F du type précédent vérifiant une inégalité

(2.4) |F(z)| < C+|z)"a®*, Re z > r,
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ol les constantes C > 0, me Z, a > 0 et re R dépendent de F. ", est
une algébre pour le prodult FG:2—- F(z2)G(2), F, Ge A ,. |

Par exemple, si T' € & ., la transformée de Mellin F MTde T appartlent

4 # .. En effet, si le support de T est contenu dans 10, al, il existe f € C;

nulle pour t >a et meN tels que T = f (m) (proposmon 1.5); par suite

MT (z) = (=1)"(z—1)(z=2) ... (z—m) Sof ® £ Ldi

vérifie (2.4) avec r > m.
On vérifie sans peine que M est un homomorphisme de I’algébre é"+
dans I’algebre # ..

TRANSFORMATION DE MELLIN INVERSE. Soit Fe ., vérifiant (2.4).
Si j est un entier >0 tel que j > m + 1, posons pour ¢ > 0

1 :
(2.5) K,F(t) = —; S t7?F(z)z 'dz,
21 ys)

ol v (s) désigne la droite Rez = s orientée dans le sens Im z croissant,
avec s > r (on peut supposer r > 0). Il est clair que K;F est une fonction
continue sur R, ne dépendant pas de s > r. D’autre part, si x > r,

+ o0
2nt* K;F (t) = S e_iy1°?’F(x+iy) (x+iy)~dy,
ou I'intégrale tend vers O lorsque ¢ — + 0, d’aprés le lemme de Riemann-
Lebesgue. I s’ensuit que #*KF est continue sur R, si x > r. Enfin, d’aprés
(2.4), lKj F (z‘)] < M (a/t)* pour x assez grand, ou M est une constante
positive; par conséquent, en faisant tendre x vers I'infini, on obtient que
K;F (t) est nul pour ¢t > a et K;Fe C?.
On définit donc un élément NF de & .. en posant, pour j > m+1,

(2.6) MF = (—D) K,F,
)
et MF ne dépend pas de j puisque, en vertu de (2.5), — DK;,F = K;F.

La distribution NF est appelée transformée de Mellin inverse de F et N
définit une application linéaire de ., dans &..

D’aprés (2.5), K;F (t) est limite uniforme sur tout compact de R, des
fonctions

stid
> —S t7*F(2)z /dz
27” s—id
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lorsque A tend vers I’infini, avec s > r. Il en résulte que NF est limite dans
2' (R,) des fonctions continues

1 s+id
2.7 t> — S t7*F(z)dz,
| 271 Js-ia

lorsque A tend vers linfini, s > 7.

PrROPOSITION 2.2. Si Fes# ., les fonctions zw>zF(z) et 2z
F(z+p), avec peC, appartiennent a # .. De plus

(2.8) N[zF(z2)] = —DR[F(2)],
(2.9 N[F(z+p)] = t* R[F(2)], peC.

Démonstration. 1l est clair que 5, est invariant par multiplication
par z et par translation dans C. Pour j assez grand, on a d’aprés (2.5)

N[zF(2)] = (DY K14 [2F (2)] = (—DY "' K; [F (2)]
= — DR[F(2)].

Pour k et j assez grands, on a de méme

N[F@)] = (- D)k, [F (2)] = (D) (—D+p) K, [(z+p)'F (2)]
= (=D+py K, [(z+p) ' F(2)],
et par suite

N[F(@z+p)] = (—D+p)Y K, [z+p)7 Fz+p)],

d’ol, en faisant le changement de variable z + p > z dans l'intégrale (2.5)
donnant K,
| CN[F(@E+p] = (—D+py (t*K;[F(2)])
= t?(=DyK;[F(2)] = t*R[F(2)],
c.q.f.d.

THEOREME 2.3. La transformation de Mellin IR est un isomorphisme
de l'algébre & sur l’algébre # . d’inverse N.

Démonstration. On sait déja que MM : &, — #, est un homomor-

phisme. ,
Montrons que NI est I'identité sur &,. Si Te &y, ona T = (—D)"
(t7 f) avec met geN et f € C? (proposition 1.5). Par suite (propo-
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sition 2.1), MT (z) = z" M S (z—q) et (proposition 2.2) RIMT = (— D)™
(1 NWf). 11 suffit donc de vérifier que MM f = f pour fe CY. Mais
alors I f satisfait & I'inégalité (2. 4) avec m = 0 et M f D*K,M f,
c’est-a-dire, avec x > 0,

+® MSf (x+iy)
= D? tTx Y d
2 R S B iy
5 » +o0 o) 7:—x—iy Sx+iy—1
=D d ds,
Vo, e 7O

intégrales absolument convergentes. En intégrant d’abord par rapport a y
on obtient

__1— + oo ( / )x+1y dy _ 0 Si S < t,
2 ) o (x+iy)? log(s/t) si s>t.

On a donc NMf = D? S log (s/t) f(s)s tds = f.
t
Montrons que M est 'identité sur # . Si Fe # ., ona F(z) = z"G (2)
ou G est holomorphe pour Rez > r et

|G| < CA+]|z)7?a™**, Rez>r,
C,aetr > 0,meN. Il s’ensuit que NF = (— D)™ NG et MNF = z" MNRG

(propositions 2.2 et 2.1), d’ou le résultat si MNG = G. Or NG (¢) =

2mi
[y %G (2)dz, y(u) droite Rez = u avec u > r. Par suite, NG (¢)
=1t7%g(t) avec 2ng(t) = [t " G(u+iv)dy. On a geC3, suppg
= 10, a] d’o

a

MNG (z) = S =4l g () dt.

0
Pour x > u > r on a donc

a

MNG (x +iy) = S T g (1) di

0
1 » »+ 00

= —\ dtS (*r-u==l G (y +iv) dv
2n o

ax+iy—u—iv

+ o0
= ——§ : — G (u+iv)dv
J—o X +1y —u —1v
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GWw)a*~"

w—2z

= résidu au point z de la fonction w
= G (x+iy).

Remarques. 1) 11 résulte de ce qui précéde que si Te &, et F = MT
€ # ., le support de T est contenu dans ]0, c] si et seulement si F vérifie
une inégalité (2.4) avec a = c.

2) Si T est la restriction & R, d’une distribution d’ordre <7 sur R,
F vérifie (2.4) avec m = n. Inversement si F vérifie (2.4), T = (- D)"*?
Ky o F est d’ordre <<m+2. Des résultats plus précis seront obtenus au
paragraphe suivant. ‘

Etant donné une distribution T sur R, on désigne par T, 'homothé-
tique de T dans le rapport a > 0; avec la notation fonctionnelle, on a J
T(t) = T(a"'t). De méme T* est la distribution définie par 7%(¢) = T . B
On démontre sans difficulté la proposition suivante:

PROPOSITION 2.4. Soit a > 0. Si Fei#, les fonctions a*F(2), |
z , ‘

F (—) et F'(z) appartiennent aussi @ # .. Si Teé., les distributions
a ¥

T, T* et (logt) T appartiennent aussid &, etl’ona
1
MT,(z) = a* MT (2), MT*(2) = — smT(f>,
a a
d
M[(og ) T](2) = — SIRT ().

Exemples. 1) La mesure de Dirac 3, au point 1 est I'unité de I’algébre §
&y . M3, = 1 est I'unité de I'algébre # . |

2) Dans 4, la multiplication par —z est un opérateur inversible dont
I'inverse est la multiplication par — z~!. On en déduit que I’opérateur
différentiel D dans &, admet un inverse D~ ! qui est la convolution par §
N(—z7)=—0,avec 0(t) =1si0<zt<1let =0siz>1 En fait
D™ fest la primitive de z~! f & support borné. )

3) Plus généralement, P (z) = ¢ (z—z,)" ... (z—z,)"* étant un polynéme
de degré m = n, + ... + n, >1 & zéros Z15 «.s Z) distincts, la multiplica-
tion par P (—z) dans 9? . est un opérateur d’inverse P (—z)~ 1. Par trans-
formation de Mellin inverse, on en déduit que 1’opérateur différentiel
P (D) est inversible dans & : P (D)™ ! est la convolution par
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(=D"c “1021,,1 oo ® 0, s

ot 0,,= (="'t (ogs) ! 0/(n D! estla transformee de Mellin
inverse de la fonction z — (z+w)™".

3. THEOREMES DU TYPE DE PALEY-WIENER

THEOREME 3.1.. Soit Fe #,.

1) Fest la transformée de Mellin d’une distribution & support dans
[a™',al (@ > 1) sietseulement si F est entiére et vérifie une inégalité

3.1) IF(2)| < C(+|zhma®?l, zecC,

avec meN et C > 0.

2) F est la transformée de Mellin d’une fonction C® a support dans
[a™ ', a] (a>1) siet seulement si F est entiére et, pour tout me N, il existe
C,, > 0 tel que

(3.2 |F(2)| < C(1+|z])"™al®?l,  zecC.

Démonstration. (Voir aussi [6], pages 3 a 13, [7], théoréme 16, page 272
et [3], théoréme 1.7.7, page 21).

1) Soit T une distribution sur R & support dans [a™ 1, q]. Il existe m
e N tel que T soit d’ordre < m et

(3.3) KT,oy|<M X sup FRIoN

pour tout p € C™ (R,), avec M > 0. Soit y € Z (R, égale a 1 au voisinage
de [a7,a]. On a F(z) = {(T,1° 'y ) et F est entiére. Soit Y € C* (R)
nulle pour ¢ > 3 et égale a 1 pour ¢ < 2. Posons

0. (1) = 1 (Y A a=llyy 1=l g lzly o=t

On a ¢ € C” (R), et comme y, (1) = #*~ ! au voisinage du support de 7,

F(z) = {T, ¢, ). D’aprés (3.3), en majorant les dérivées de ¢_, on obtient

(3.1). | -
Soit F entiére vérifiant (3.1). On a F = MT avec T = NF
( D)m+2 g:b ou
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1
9. () = ———S - F (2) =D dz,
2n 7(s)

v (s) étant la droite Rez = s orientée dans le sens Im z croissant, avec
+ s > 0; cela résulte de la définition de 9 si s > 0, et provient du fait que
g. — g_ est un polyndme en log ¢ de degré <m + 1si s < 0. L’inégalité
(3.1) entraine

92 ()] < A1~

lorsque |s| > 1, A constante > 0. En faisant tendre s vers + o0 ou — o0
on obtient g, () = 0 pour ¢ > a et g_ (1) = 0 pour # < a” ', de sorte

que le support de T est contenu dans [a~ 1 4l
2) Soit ¢ € 2 (R,) une fonction & support dans [a~ 1 a). 1l est clair §
que F = Me. est une fonction entiére et que, pour tout entier k >0,
| Z*F (2) l =

S Do) 1dt| < Agal®el,
-1

a

A, constante positive, d’oui I'inégalité (3.2).
Inversement, si F entiére vérifie (3.2) pour tout me N, on a F = Mo,

2 i

1
ou ¢ (t) = — S t~? F(2) dz est une fonction C®, a support dans
, y(s)
[a~ !, a] daprés 1), c.q.f.d.

EspaCES € ET #. Dans la suite, nous désignerons par & le sous-
espace de L2 (R, ¢t~ ! dt) formé des fonctions & support borné, muni de la
norme

ufng=(Sjlf<t>|2t-1dt)”2, fee.

Il est clair que & € €+ nL* (Ry) nL>(Ry). |
Par exemple, si f est une fonction de carré intégrable a support borné §
telle que | f@ - f (O)I < Ct* lorsque ¢t —» + 0, avec C et « > 0, on
a f €& si et seulement si f (0) = 0.
Le théoréme suivant caractérise I’espace # = IMN&:

THEOREME 3.2. Pour qu’une fonction F soit la transformée de Mellin
d’une fonction fe & a support dans 10, a] (a>0), il faut et il suffit que les
conditions suivantes soient satisfaites :
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1) F est holomorphe dans le demi-plan Re z > 0,

2) la fonction F, :yv> F(x+iy) appartient a L?(R) pour tout x >0
et il existe une constante C > 0 telle que

| F.| < Ca*, pourtout x > 0.
L2(R)
* Si les conditions précédentes sont vérifiées, F, tend vers une limite F
dans L? (R) lorsque x — + 0 et

(3.4 | F. ” \/27E |*f e pour tout x > 0.

Démonstration. (Voir aussi [6], théoréme 5, page 8). Soit feé a

support contenu dans 10, a], a > 0. Pour x = Rez >0, y = Imz, on a
) + o0

F(2)=Mf (2) = Swf ) t*"tdt = S g, (s) €’ ds, avec g, (s)
0 |

= f (%) e = g, (s) e, goe L* (R), g, nulle au voisinage de + oo,
” 9x “ H , x > 0. Autrement dit, la fonction F, est la trans-

formee de Fourier de g.€L'(R) nL?(R) pour x > 0, et la formule de
Plancherel donne (3.4) pour x > 0. Comme g, — g, dans L? (R) lorsque
x — + 0, F, tend vers une limite F, dans L? (R), F, étant la transformée de
Fourier de g,; de plus, la formule (3.4) reste valable pour x = 0. Enfin

1) et 2) sont vérifiés, I'inégalité de 2) avec C = / 2 || £ P résultant de
(3.4). .
Soit F une fonction vérifiant 1) et 2). En vertu du lemme 1.6, pour tout
r>0,ona|F(z)|<C()a*? pour Rez >r, donc Fe#,. Soit
f = NFeé.. Si pe2 R,), comme NF est limite dans 2’ (R,) des
fonctions (2.7), on a

o0 ¢+A/ )
2wl frpd = limS dt\ 0 ()1, () dy .
0 J_4A

A=

Le théoréme de Fubini donne, avec & = Mo,

2 f,0> = [Py, (=»)F.(y)dy,

d’ou, par I'inégalité¢ de Cauchy-Schwarz,
S R A L B
L2

Finalement, compte tenu de (3.4) valable quel que soit x € R pour fremplacé
par ¢ € 2 (R),
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|[<foo>| < M| t*™*¢p]sa”

avec M > 0. En posant § = ¢'/27% ¢ il vient

ey <My L x>0,
L2R )
pour tout Y € 2 (R,). Le théoréme de représentation de Rlesz entraine
alors que t*~1/2 f eL? (R,) et que

S oy | f@ Pt tdr < M?

pour tout x > 0. Lorsque x — oo, cette inégalité implique que le support
de f est contenu dans 10, a]; si x - + 0, elle donne que fe &, c.q.f.d.

Comme application du théoréme précédent, nous allons introduire |
des espaces qui permettront de classer les éléments de & en fonction de
leur régularité et de leur ordre de grandeur au voisinage de 1’origine.

EsPACES #, ET &,. FEtant donné deux nombres réels r et s, nous
désignerons par o, l’ensemble des fonctions Fe #, telles que
(z+r+1)°F(z) = G(z+r), avec Ges = ME; en particulier H#g
= H. Ainsi, si Fe #;, F(z) est holomorphe pour Re z > — r et ’appli- -
cation

' ye(x+iy+r+1)°F(x +iy)
est dans L? (R) pour x > — r.

On a #: C # si et seulement si r’ <r et s <s.

Nous poserons &S = N A; la transformée de Mellin inverse de H#;;

en particulier &g = &.
Dans le cas ou s est un entier, on peut caracterlser &, directement:

PROPOSITION 3.3. Soit m un entier >0 et soit Teé,.

a) Les conditions suivantes sont équivalentes :
(a.l) Teé&,.
@2 t"D'Teé& pour 0<j<m.
@3) I "TVeé. pour 0<j<m.

b) Les conditions suivantes sont équivalentes :
(b.1) Teé& ™
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b2 T =1t ZODj f; avec f;€é.
=

(b3) T= Zo "t B avec hjeé.
=

Démonstration. Compte tenu de la formule de Leibniz et de ’égalité
&, = t' &5, on peut supposer que r = 0. Les équivalences de (a.2) et (a.3)
~ ainsi que de (b.2) et (b.3) découlent du lemme 1.1.

Soit F=IMT. On a Teég < (z+D)"F(z) = G(z) avec GeH
<z Fes pour 0 <j<m< D'Te& pour 0 <j<m.

Si Teé&y™ on a F(z) = (z+1)" G (z) avec Ge #. La formule du

binéme donne (b.2) avec f; = (—1)! <m> NG.
j
Si T vérifie (b.2) avec r =0, on a F(z) = ), (—z) MSf;(2)
j=0

= (1+2)"G(z) avec G(z) = Y, (—z) (1+2)™"Mf;(z) donc Ge H#
i=o
et Te #,", c.q.f.d.

I’appartenance & la réunion &% des espaces &°, reR, caractérise
la régularité d’une distribution. On vérifie en effet que localement, les
éléments de &2 sont dans I’espace de Sobolev H® (R) formé des distri-

A A
butions S sur R telles que (1+|x|?)*/? S (x) soit de carré intégrable, S
étant la transformée de Fourier de S. Nous démontrerons le résultat suivant:

ProroSITION 3.4. Soit s >m + 1/2 avec meN, et reR. Si f
€é,, ona feC"(R,) et

fOW =09 lorsque t— +0
pour 0 <j<m.

Démonstration. On a (+r+1)’Mf (z2) = G(z+r) avec Ge #.
Par suite, pour x > — r,

(__ 1)] AX+ic0
2mi

FO0 = t75 7 z(z41) ... (z+j - 1) G+ (z+r+1) "% dz

x—ioo
fonction continue sur R, pour 0 <j <<m, donc f eC™(R,). Comme

G, :y+ G (x+iy) converge vers G, dans L? (R) lorsque x - + 0, on
a aussi
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f(.i) (t) —

t""S+°°e-,ylogt(""’”(’"“’y Do r=iy=j+D G® |
— (1 +iy)*

ou I'intégrale tend vers O lorsque ¢t - + 0, d’aprés le lemme de Riemann-
Lebesgue. Par conséquent, f9 (1) = o (¢"¥ lorsque ¢ - + 0, c.q.f.d.

Remarque 1. Si s <m + 1/2, &, n’est pas contenu dans C™(R.).
Soit en effet f € & tel que (— D)™ f soit la fonction égale & 1 sur 0, 1]
et nulle sur [1, co[. Il est clair que #"*! f n’appartient pas & C™ (R,)
bien que M@ ! f) () = (z+r+1)"™ 1 appartienne & #5 pour s
<m+ 1/2.

Remarque 2. Si feC™R,),m >0,etsi f9 () = O (¢t"77) lorsque
t - + 0 pour 0 <j <m, il est clair que f € &,  pour tout ' < r, puisque
f9 = ¢t""I h; avec h;e & (proposition 3.3). En général, on ne peut pas
remplacer ' par r: une fonction f € C® (R,) qui est égale & |logz |~1/2
au voisinage de 0 vérifie fY () = o(¢7) lorsque ¢t » + 0 pour 0 <j
< m. Cependant, quel que soit se R, f n’appartient pas a &; en effet,
Mf (z) — Cz~ 12 (C constante # 0) est entiére.

La proposition suivante donne des conditions pour qu’une fonction
de classe C™ ! soit dans &}

PROPOSITION 3.5. Soit m un entier >1,reR e feCm ! (R+)
a support borné telle que t™ " f™ = ge é"
a) Si r<0, ona feé).

b) Sir>m—1, ona fe& sietseulement si P (t)—>0 lorsque
t— + 0 pour O<]<m—1 , '

Q) Si 0<r<m-—1, ona f e@@m si et seulement sii ) (t) ~0
lorsque t — -+ O pour 0<j<r et fMe& sir entier. '

Démonstration. Soit F = Mf et G = Mges#. Par hypothese
MF™) () =(—D)"E-1)(z—-2)...(z—m) F(z—m) = G(z+r—m). On
a f €&, sietseulement si
) -D"(z+1D)"G(z
Go(2) = (241" F(z—r) = — D EHDIOE)

(z=r)(z—-r+1)...(z—r+m—1)

est une fonction de 7.

a) Si r < 0, il est clair que G, € # donc f €&,
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b)Sir>m—1, GoeH si et seulement si G(r—j) = 0 pour 0
<j<m — 1. Puisque f™ =1¢"""g, on apour 0 <j<m—1

e SR G S A
100 =\ e

m—j—1 (_1)m—k-j—1 tk St

; |
= kIl g () du.
2 Tim—k—j—D!

[o0]

t
Mais, si « > 0, S Wl g W) du = — G (@) + o(t). En effet, par I'incga-

lité de Cauchy-Schwarz, lorsque ¢ —» + 0,

»1

| S u*~1 g (u)du

: <S u?*~1 du S g |Pu""du = o (1*%).

0
Par suite
j _ (_1) al e §
(3.5) ff%ﬂ—(m_j_D!G( PN +o),

et G(r—j) = O si et seulement si /P (t) = o (D).

) Si0<r<m-—1, Goe# si et seulement si G(r—j) = 0 pour
0 <j<retz 'Ge# dans le cas ol r est entier. Comme précédemment
I’égalité (3.5) est valable pour 0 <j < r. On a donc G(r—j) = O si et
seulement si £ (t) = o (1), avec 0 <j < r.

Dans le cas ol r est entier, f € & entraine " € é&. Inversement, si
fM =pegetsi fP@F) = o0(1)pour 0 <j < ravecr>1,

_ t (t_u)r—l e
10 =\ SO W = 1)
\ 1 ' -
ol hq (%) =(r—-1)! So(l—s) h(st)ds

appartient a &. Il s’ensuit que F(z—r) = Emho (z) est dans s# donc aussi
G, c.q.f.d.

PropoSITION 3.6. 1) L’intersection des espaces &3, r, sS€R, est égale

a l’ensemble C§ des fonctions C% sur [0, o[, a support borné, plates
en 0.
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2) &, est égal a la réunion des espaces &, r, s € R.

Démonstration. 1) Si fe&m*! avec me N, la proposition 3.4 montre
que f est de classe C™ sur [0, oo et que £ (0) = 0 pour 0 <j < m;
il suffit de prendre m arbitrairement grand pour obtenir f e CS" . |

Si f € Cg, la proposition 3.5 montre que f € &" quels que soient
meN et reR.

2) Si Teé,, la proposition 1.5 entraine que T = D™ (¢t %g) avec
m, qeNetgeC,. Or f =tge& et T = D" (t~@+D f) appartient 2
&_{z+1) en raison de la proposition 3.3 et de la formule de Leibniz.

4. COMPORTEMENT ASYMPTOTIQUE AU VOISINAGE DE L’ORIGINE

Soit &, la réunion des espaces &;, seR. On peut considérer que |
Iappartenance & &, ° caractérise /’ordre de grandeur d’une distribution
au voisinage de I'origine. En effet, le théoréme 3.1 montre que cette appar-
tenance est une propriété¢ du germe a I’origine; d’autre part, I’égalité &,
= 1" &, qui résulte de (2.9) et les propositions 3.4 et 3.5 montrent que
la propriété Te & ® est voisine des propriétés T'=o(t") ou T = O (¢t")
lorsque ¢ —» + 0.

Exemples. Soit y e C* (R;) une fonction & support borné égale a 1
au voisinage de 0. Posons X = My. On a X(2) = z 1 P (2), o § =
— M (Dy) est la transformée de Mellin d’une fonction de 2 (R.) (voir le
théoréme 3.1 pour les propriétés de &) et & (0) = 1. Pour peC et keN .
posons

(4.1) Ko @) = 7 (log ) 1 (1) .

On a X,,(2) =My, (2= X®(z+p), fonction méromorphe de z §§
avec un podle d’ordre £k + 1 en — p, de partie principale (—1)* k!
(z+p)~%** Y, De plus, si le support de x est contenu dans 10, a], quel que
soit m € N,

(42) (A+|z)" @+ p)**' X, (2) a R = est. borné pour Rez > —m .

Etant donné s réel, on a y, ; € &, si et seulement si Re p > r.
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DEVELOPPEMENTS ASYMPTOTIQUES. Donnons-nous une suite (p;) de
nombres complexes distincts telle que Rep; — + oo lorsque j— oo et
une suite (m;) de N.

Pour tout r e R, soit J (r) = {(j, k) eN?; Rep; <r, 0 <k <mj;} et
soit J la réunion des J (r). |

Considérons la famille & des fonctions Xpj s (j, k) e J, avec (4.1).

DErNiTions. 1) On dit que fe &, admet un développement asympto-
tique généralisé al’ordre r (reR), par rapport & &, s’il existe des nombres
a; €C, (J, k) e J(r) tels que la différence

(43) fr = f - Z djk ij,k
(k) e J(r)
appartienne a &, *.

Les nombres a; , sont alors déterminés de manicre unique; en effet,
pour qu'une combinaison linéaire des X, pjoko (j, k) eJ(r), appartienne a un
espace A5, il faut que ses coefficients soient tous nuls.

2) On dit que f e &, admet un développement asymptotique généralisé
illimité, par rapport & %, si f admet un développement asymptotique géne-
ralisé a I’ordre r pour tout r € R.

3) Soit s € R. On dit que f € &, admet un développement asymptotique
de type &5, a lordre r(r € R), par rapport a &, s’il existe des a; 4, (j, k)
e J (r), tels que f, € &, avec (4.3).

4) On dit que f € &, admet un développement asymptotique de type
&° illimité, par rapport a &, si f satisfait a la définition 3 pour tout r € R.

5) On dit que f € &, admet un développement asymptotique illimité,
indéfiniment dérivable, par rapport & &, si f satisfait a la définition 4 pour
tout s € N.

Les propositions suivantes montrent que, sous des hypothéses conve-
nables, les développements asymptotiques généralisés sont en fait des
développements asymptotiques usuels, et réciproquement. La proposi-
tion 4.1 est une conséquence immeédiate de la proposition 3.4 et de la
remarque 2 qui suit cette proposition:

PROPOSITION 4.1. Soit meN et feé..

1) Si f admet un développement asymptotique généralisé de type &™*1,

a l’ordre r, par rapport a &, alors fe C™(R,) et il existe des nombres
complexes a; , tels que
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(4.4) SO = Y aptilogh +1,(),

(j,k)EJ(r)
avec fO () = o(t"Y) lorsque t > + 0, pour 0 <j<m.

D) Si f vérifie (4.4) avec f,e C"(Ry) et f1P (1) = O (")) lorsque |
t— + 0, pour 0 <j<m, alors f admet un développement asymptotique
généralisé de type &™, @ l’ordre r' pour tout r' < r.

La proposition suivante découle facilement de la proposition 4.1.

PROPOSITION 4.2. Pour que f € &, admette un développement asympto-
tique illimité indéfiniment dérivable, par rapport & %, il faut et il suffit
que feC”(R,) et que
(4.5) f@®~ 3 ajx t*7 (log 1)*

(jk)ed
lorsque t — + 0, développement asymptotique au sens usuel, indéfiniment
dérivable terme a terme.

L’existence d’un développement asymptotique pour une distribution f
de &. est équivalente & des propriétés de méromorphie et de croissance
pour la transformée de Mellin de /. Un exemple est fourni par la propo-
sition 4.3; (voir aussi [5], proposition 1.1, page 397, ou il est montré que,
pour des topologies naturelles, la transformation de Mellin est un isomor-
phisme vectoriel topologique de I’espace des fonctions admettant un déve-
loppement asymptotique sur ’espace de leurs transformées de Mellin).

ProOPOSITION 4.3. Soit fe&,, F=If. Pour que f admette un
développement asymptotique illimité indéfiniment dérivable, par rapport a |
F, il faut et il suffit que les conditions suivantes soient vérifiées :

a) Fest méromorphe dans C avec pole d’ordre < mj;+ 1 au point
— p; pour tout jeN.

b) 1l existe a > 0 tel que, pour tout meN, (1+|z))"F (z) a™®** soit
borné en dehors d’un compact du demi-plan Re z > — m.

Démonstration. Les conditions a) et b) sont nécessaires: Soit a > 0

" tel que les supports de f et x soient dans ]0, a], ou y est la fonction qui

intervient dans (4.1). Quel que soit me N, en prenant r = m + 1, et en
définissant /. par (4.3), on peut supposer que f,e &, donc que F, (2)
=Mf,(z) = (z+r+1)""G.(z+r) est holomorphe pour Rez > —r,
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avec G, € #. La caractérisation de # = MS au théoréme 3.2 et le lemme

1.6 montrent que (1+|z))"F, (z) a~ReZ est borné pour Rez > — m.
Comme F(z2) = Y ;X @ T F (2, F est méromorphe
‘ (J.k) e J(r)

dans Re z > — r et ses pdles sont ceux des a; X pj ko d’ou a) et b) compte
tenu de (4.2).
Les conditions a) et b) sont suffisantes: Soit
™
Y aj(=DFk!(z+p)

k=0

la partie principale de F au pdle — p;. Etant donné r € R, posons

Fr(z) = F(Z) - Z aj,kXPj,k (Z) .

(Jk)eJ(r)

Si neN, d’aprés b) pour m > max (n,r), on a que F, e i, Par trans-
formation de Mellin inverse, il s’ensuit que f, donnée par (4.3) appartient
aé,, cqfd

Application. Nous allons appliquer les résultats précédents a la fonction

(4.6) F(z) = <A™ 0) = [, (A®)IT 2(),

ou A est une fonction analytique réelle, non constante, sur une variété
analytique réelle ¥ connexe, paracompacte, de dimension z, et ¢ appartient
a l'espace @ (V) des n-formes différentielles impaires, de classe C*, a
support compact dans V. Il est clair que F est holomorphe pour Rez
> 1, puisque ’application (x, z) +> (4 (0 1 est continue, et holomorphe
par rapport 4 z, pour x € V et Rez > 1. Dans [1], en utilisant une version
du théoréme de résolution des singularités de Hironaka, Atiyah montre
que F admet un prolongement analytique méromorphe dans C. En reprenant
sa méthode, nous allons préciser le résultat.

Soit U un ouvert relativement compact de V, dans lequel 4 n’ait pas
d’autre valeur critique que la valeur 0. L’application lin€aire continue
A* 1 C* (R) » C* (U) telle que 4* § (x) = ¢ (4 (x)), donne par trans-
position une application linéaire continue 4, de & (U) dans .#, (R) I’espace
des mesures a support compact sur R, définie par { 4, P, > = { D, A% >
= [y ¥ (4 (%) ® (x), pour PP (U) et YyeC”(R). Comme dA4 # 0
dans U* = {xeU; A(x) #0}, il existe dans U* une (n—1)-forme
impaire Q de classe C® telle que @ = d4 A Qet’on a, pour ¥ € D (R*),
CAe D, YD) = [ f @OV (@) dt avec [ (1) = [ 4-1,Q (x), Uinjection de
A™1(t) n U* dans U* étant convenablement orientée. Ainsi, dans R*
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= R\ {0}, 4,9 coincide avec la fonction f de classe C* et A4, induit une
application linéaire continue de 2 (U*) dans 2 (R*). Par dualité on obtient
donc une application linéaire continue de 2’ (R*) dans 2’ (U*) I’espace
des distributions dans U*, définie par ( 4*S,® ) = (S, 4,9 > pour
Se P (R¥) et e (U¥); A*S est I'image réciproque de S par 4. Soit
3, (A) = A*3, 'image réciproque par 4 de la mesure de Dirac 3, au point
t #0.0na

(4.7) J @ =<6,(4),P) = 4, 2(D).

ProrosiTiON 4.4. Soit U wun ouvert relativement compact de V,
dans lequel A n’ait pas d’autre valeur critique que 0. Il existe un
entier q = q(U) >1 tel que, pour toute ®e€ P (U), la fonction F -
définie par (4.6) vérifie les conditions a) et b) de la proposition 4.3, avec
p;i=—1+({+D/g et mj<n—1(jeN, n=dmV). F est la
transformée de Mellin de la fonction f donnée par (4.7); f est intégrable
et de classe C* sur R,.; lorsque t— + 0, f admet un développement
asymptotique

(4.8) f® ~ Y apt™ U DA (log 1)
(/,keN,0 <k <n — 1), indéfiniment dérivable terme a terme.

Démonstration. (Voir aussi [4]). En suivant la démarche de [1], par.
désingularisation et localisation, on se ramene au cas ou V' = R" et

F(z) = [o (2 ... x") 1o (x)dx,

avec peZR"), Q = {xeR"; x, >0,1 <k <n}, et ou les g, sont
des entiers > 0 non tous nuls.

Nous dirons qu’une fonction Fj (x4, ..., X;; z) a la propriété P, (0 <k
< n, P, est a interpréter de maniére évidente) si

1) F,e C* (R*x (C\S))), S, étant une partie fermée discréte, bornée "
supérieurement, de R.

2) Pour tout ze C\S,, x'+— F, (x'; z) est une fonction appartenant |
a C* (RY), a support dans un compact fixe de R".

3) Pour tout x'eR*, z+> F,(x';z) est méromorphe dans C avec
poles d’ordre <{n — k aux points de S,. |

4) Si k<n—1, il existe a, > 0 tel que, quels que soient oe NF,
meN, on ait | 8% F, (x';2) | < Cp (1+]|2)) ™™ ag®* pour x'eR", Rez
> — m, distance (z, S}) > 1, avec C,, > 0.
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F, = ¢ ala propriété P,, et les propriétés a) et b) de la proposition 4.3

pour F, équivalent a la propriété P, pour F, = F, avec

={1-(j+1)g;jeN},

g entier > 0. Il suffit donc de prouver que si F,,; a la propriété P, ,
alors

/® Q0
F (x';2) = S k1D F L (x5 2) dt
0

a la propriété P,;. Or, avec les notations du début du paragraphe, la formule

de Taylor donne
n

1. . ,
Froy(x',t;2) = ) — Oke1 Fray (5,05 2) 8 x (1) + t"*1 R, (x',t; 2)

j=0

R,(x',t;2) =t~ "D (1 —x () Fry1 (X', 15 2)

1l

—S)”
+ x(t)s (—T OET Frpy (X' ts;2)ds.
0 .

On a donc, avec X = My,

u

1 .
Fp(x';z) = Z J— a}’c+1Fk+1(x,a 0;2) X (2qx41 —Q+1 +J +1)

j=0

/® 00

—i—S tlk+1(z-Dutl R,(x',t;z)dt.
0

En prenant p arbitrairement grand, on montre facilement que F, a la
propri€té¢ P, avec S;, = Sp., v {1 — (j +1)/qr+1;7€N}

Puisque F a les propriétés a) et b) de la proposition 4.3, on a F = Mg
oll ge &, est de classe C* sur R, et admet, lorsque - + 0, un déve-
loppement asymptotique du type (4.8) indéfiniment dérivable terme 3 terme;
en particulier, g (f) = o (r "' */29) Jorsque £ — + 0 et g est intégrable sur
R;. Par ailleurs, on a vu que 4,9 était une mesure 3 support compact

sur R prolongeant la fonction f con51deree sur R, ; par suite, /' € &, et pour
Rez>1,

Mf(2) = (AP, 1571 ) = [, (AX)I™ P (x) = F2) = Mg (2).
On en déduit f = g.
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