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TRANSFORMATION DE MELLIN
ET DÉVELOPPEMENTS ASYMPTOTIQUES

par Pierre Jeanquartier

1. Introduction

La transformée de Mellin d'une fonction /dntégrable à support compact

sur R+ ] 0, oo [ est la fonction entière 2R/ définie par

(1.1)

Lorsqu'on se propose d'étendre la définition (1.1) au cas dune fonction

localement intégrable ou plus généralement d'une distribution / sur R+,

des conditions de croissance au voisinage de 0 et de oo doivent être imposées

à /. Comme la transformation 11-> t'1 échange des voisinages de 0 et de

l'infini, on ne restreint pas la généralité en ne considérant que des

distributions nulles au voisinage de l'infini. En fait, on définira la transformation

de Mellin 9K dans l'espace ê'+ des distributions sur R+ qui sont restriction

de distributions à support compact sur R. 9K est alors un isomorphisms de

ê+9 considéré comme algèbre de convolution, sur une algèbre multiplicative
de fonctions holomorphes dans des demi-plans Rez > r, satisfaisant

à une condition de croissance. Deux théorèmes du type de Paley-Wiener

permettent de caractériser par leur transformée de Mellin les distributions
à support compact et les fonctions de carré intégrable par rapport à la

mesure t'1 dt. Comme application, on définit des sous-espaces êsr de S+,
analogues aux espaces de Sobolev, conduisant à une classification des

distributions en fonction de leur régularité et de leur ordre de grandeur au voisinage

de l'origine. Ces espaces permettent de définir des développements

asymptotiques en un sens généralisé au voisinage de l'origine, et de

caractériser, par des propriétés de méromorphie et de croissance, les transformées

de Mellin de distributions admettant de tels développements. A titre
d'exemple, on reprend les résultats d'Atiyah [1] sur la méromorphie de

l'application zi-^A + ~1, A étant une fonction analytique réelle sur une
variété. Cette application, qui est la transformée de Mellin de l'application



— 286 —

t (-> St (A), 8t (A) étant l'image réciproque par A de la mesure de Dirac
au point t, vérifie les conditions pour que ce soit la transformée d'une
application admettant un développement asymptotique; on retrouve ainsi le
résultat de [4] sur l'existence d'un développement asymptotique pour
8t (A) lorsque t tend vers zéro.

Il est à peine nécessaire de signaler que le présent travail ne contient
rien de vraiment original puisque la plupart des résultats qu'il présente
figurent, sous des formes plus ou moins équivalentes, dans l'abondante
littérature consacrée aux transformations intégrales, notamment aux
transformations de Laplace et de Mellin (voir par exemple [6], [2], [7], [8], [3]
et [9]). Toutefois, sa publication n'a pas paru inutile vu que le mode d'exposition

choisi est bien adapté à la transformation de Mellin et à son application
à l'étude du comportement d'une distribution au voisinage de l'origine.
C'est d'ailleurs l'emploi fructueux que [5] fait de cette transformation qui a

motivé la rédaction de ce texte, et l'auteur tient à préciser qu'il s'est
particulièrement inspiré du travail de diplôme de H.-M. Maire (non publié)
et de [5].

Notations. On désigne par R+ la demi-droite ouverte ]0, oo[. Sur R,
la fonction t\ (z e C) est nulle pour t < 0 et égale à iz pour t > 0. Pour

me N (ensemble des entiers > 0), C+ est l'espace des fonctions de classe

Cm sur R+, à support borné, qui sont prolongeâmes en fonctions Cm

sur R.
Si U est un ouvert de R", 2 (U) est l'espace des fonctions C00 à support

compact dans U; son dual &' (U) est l'espace des distributions dans U.

La valeur de Te Siï' (U) pour cp e Sf (U) est notée < T, cp >.
à

On utilisera souvent l'opérateur D t — invariant par les homothéties
dt

de R+. La démonstration du lemme suivant est immédiate: •

Lemme 1.1. Pour tout entier m > 1, il existe des constantes a > 0

et b1 <y < m, avec a% bZ 15 telles que

m

(1.2) Dmf X aj tj fU),
j=1

m

(1.3) tm/(m) X b7DJ f >

J 1

pour toute distribution f sur R.
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Lemme 1.2.SoitfeC+,peCet N. Kep + k>0, avec

k e N, il existe geC% unique tel que, dans 2' (R+), tp f(m) g('n+k).

Démonstration. Cas m0: Le résultat est évident si 0. Si >0,
il suffit de prendre

t>0.

Supposons le résultat vrai pour m remplacé par m - 1. On a

tP y (m) _ ^p y(m-l)y — p tV~1 / (m_1>

Par hypothèse

^p y (m— 1 __ g^(m+k— 1) ^p—ly(m—1) __ g^(m + k)
^

avec gu g2eC?. On a donc tp /(m) 0(m+fc) avec

L'unicité de g résulte de ce que son support est borné.

Lemme 1.3. So/7 /e C+ et m>l entier. Il existe des fonctions

do>dm et uniques dans C% telles que, dans 2>' (R+),

(1.4) f=D(t~1g0),
(1.5) rmf D(rmgJ

(1.6) Dm(t1~mf) tDm(t~mhm)

Démonstration. Pour (1.4) et (1.5), il suffit de prendre

0o(0 * J» / (h)u-1 du,gm(t)Jol / s_m_1

Pour prouver (1.6), on utilise la formule de Leibniz:

fm\
Dm(t1~m f)=tDm(rmf)+ E tD]\rmf).

j=0 \j I
D'après (1.5), il existe f e C° telle que
On a donc (1.6) avec

L'unicité provient de ce que les fonctions cherchées sont à support borné.
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Lemme 1.4. Etant donné fe C+ et m e N, il existe g eC%

tel que, dans 2h' (R+), /(m) Dm(t~mg).

Démonstration. Le résultat est vrai pour m 0. Si m > 0, on a

/ (m) £_1D/(m_1) où l'on peut supposer, par récurrence, que / (m_1)

D-1 (*~m+1 A), avec heC+. D'après le lemme 1.3 on a donc /(m)
£_1 Z>m (t~m + 1 h) Dm(t~mg), avec #eC£. # est unique puisque

nulle au voisinage de l'infini.

Espace $'+. S + est le sous-espace de <&' (R+) formé des distributions

qui sont prolongeâmes en distributions à support compact sur R.

Proposition 1.5. Soit Te& (R+). Les propriétés suivantes sont

équivalentes :

1) TeS'+.

2) Il existe me N et fe C° tels que T /(w).

3) Il existe m, q e N et g e C+ tels que T Dm (t ~q g).

Démonstration. 1) et 2) sont équivalents: Si Te <?+, il existe une fonction

/ continue sur R et m e N tels que f[m) soit un prolongement de T
([7], théorème 26, page 91). En ajoutant un polynôme de degré < m à /19
on peut supposer que cette fonction est nulle au voisinage de + oo. Alors

T /(m) où/g C+ est la restriction dQ f± à R+. Inversement, si T — /(m)
avec f e Cl, Test la restriction de f[m) où f1 est un prolongement continu
à support compact de /, donc T e S+.

2) entraîne 3) d'après le lemme 1.4.

3) entraîne 1) car si fe Cl, t~q f eê'+ en vertu du lemme 1.2 et par
conséquent Dm (t ~q f) e ê+.

Lemme 1.6. Soit F(z) une fonction holomorphe dans la bande a < Rez

< b et telle que J | F(x + iy) \
2 dy < M2 pour a < x < b. Alors, si

r > 0, | F{z) | < M(nr)~1/2 pour a + r<Rçz<b-r.
Démonstration. (Voir aussi [6], théorème 3, page 5). Prenons z x + iy

tel que a + r < x < b — r. On a
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8 (s) étant le rectangle x + r — is, x + r +is, x — r + is, x — r — is, où s > | y |.

Si y est un des côtés du rectangle parallèle à l'axe imaginaire, l'inégalité de

Cauchy-Schwarz donne

r fO) dw < M2
C —^—

Jy w - z J r2 + (v-}>)2

Soit I(s) - --- - z/w, <7 (s) étant le segment x-z* + z's, x+/* + «.
J«r(S)W-Z

Par l'inégalité de Cau,chy-Schwarz

r+r, „ r+r <*«

x + r

< n\| F (u + zs) |2 dn
J jc —r

en supposant | s | > | y | + L Par conséquent

J
M + i (11 I2 +1~s) !2) ds < 27ir M2 '

Il existe donc une suite (sj) convergeant vers + oo et telle que 11(sj) \2

+ | I (-sj) \2 tende vers 0 lorsque j -> co. On a donc 2n F(z) |

< 2 M {njr)112 + 11 (sj) | + 11 (-sj) | pour tout j, d'où le résultat lorsque

j -> oo

2. La transformation de Mellin et son inverse

Transformation de Mellin. Si Te$'+, soit Tt une distribution
à support compact sur R qui prolonge T. Il existe un entier m > 0 tel que

T1 soit d'ordre fini <m (cf. [7] théorème 24, page 88). Par conséquent,

la fonction de z donnée par F(z) < Tu /+_1 > est définie et holomorphe

pour Re z > m + 1 et elle ne dépend pas du prolongement T1 de T choisi.

En effet, d'une part l'application z \-+ t +"1 définit une fonction holomorphe

pour Rez > m + 1, à valeurs dans l'espace des fonctions de classe Cm

sur R; d'autre part, si T2 est un autre prolongement de T, pour Re z assez

grand, / +_1 est nul sur le support de T1 — T2 ainsi que ses dérivées d'ordre
inférieur ou égal à l'ordre de Tx — T2 (cf. [7] théorème 28, page 93). La
fonction F est appelée transformée de Mellin de T et notée F 9KT.
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Proposition 2.1. Si TeS'+, on a DTe £+ et pour tout
p e C. De plus

Démonstration. Si Te ê'+, il est clair que DTe Le lemme 1.2
et la proposition 1.5 montrent que tvTe $si C.

Soit T! une distribution à support compact, d'ordre < m, qui prolonge
T. Pour Re z > m+ 2, on a z9Jtr(z) < Tu zt2'1 > - < + >

— < DTx,t\ 1
> — 9R (DF) (z), puisque DTl est un prolongement

de DT.
Soit maintenant kun entier > 0 tel que R Alors tp++k

est de classe Cm et tp++kTx est un prolongement de tp+k T; on a donc,
pour Re z > m+ 1, 9JIS (z) < tp++kT}, > <

W.T(z+p+k). En outre, S — tk tpde sorte que si 72 est un
prolongement de tpT,tkT2est un prolongement de S; par suite, pour Rez
assez grand, ms (z) < tkT2,t2'1 > < t++k~l > 9R (t"T) (z + k).
Finalement, 9J1 (tpT) (z) 3RS(z-k) W.T(z + p), c.q.f.d.

Algèbre SSi Set Tappartiennent à on définit la convolution
S* Tde Set Tcomme la distribution sur R+ donnée par

(2.3) < S* r, Ç) > < S (s) ® T (0 Ç> (sf) > <pe@(R+)

C'est la convolution associée à la structure de groupe multiplicatif de R+.
On a S * T e $+\ en effet, si 5*| et 7) sont des prolongements respectifs
de Set T, S*Test la restriction de S1 *Tt définie sur R par une formule
analogue à (2.3). Muni de la convolution, + est une algèbre' commutative
sur le corps C.

Algèbre +. Nous considérerons des fonctions holomorphes définies
dans des domaines du plan C contenant des demi-plans du type Re z
> r(r e R). Deux telles fonctions seront identifiées si elles coïncident dans
un tel demi-plan. Nous désignerons par l'espace des (classes de) fonctions

F du type précédent vérifiant une inégalité

(2.1)

(2.2)

9W(DT)(z) - z9WT(z),

9R(fpT)(z) 9JIT (z

(2.4) | F (z) | < C(1 + |z|)maRe z Re z > r,



— 291 —

où les constantes C > 0, m e Z, a > 0 et r e R dépendent de F. + est

une algèbre pour le produit FG : z -> F(z) G (z), F, G e 34?+.

Par exemple, si Te S+, la transformée de Mellin F SOITde Tappartient

à +. En effet, si le support de T est contenu dans ]0, a], il existe f e C+

nulle pour t et weN tels que T — /(m) (proposition 1.5); par suite

931T (z) (-l)m(z-l)(z-2)...(z-m) (0 f~m~l dt

vérifie (2.4) avec r > m.

On vérifie sans peine que SOI est un homomorphisme de l'algèbre S +

dans l'algèbre 3tf+.

Transformation de Mellin inverse. Soit F e 3tf + vérifiant (2.4).

Si j est un entier > 0 tel que j > m + 1, posons pour t > 0

(2.5) KjF (t) -^\ t~zF(z)z-Jdz,
27U J y(S)

où y (s) désigne la droite Re z s orientée dans le sens Im z croissant,

avec s > r (on peut supposer r > 0). Il est clair que KjF est une fonction

continue .sur R+ ne dépendant pas de s > r. D'autre part, si x: > r,

r* + oo

2n txKjF(0V e~iyIog' + + iy)~J dy
J — 00

où l'intégrale tend vers 0 lorsque t-»•+ 0, d'après le lemme de Riemann-

Lebesgue. Il s'ensuit que txKjF est continue sur R+ si x > r. Enfin, d'après

(2.4), | Kj(t) | < M (a/t)x pour x assez grand, où M est une constante

positive; par conséquent, en faisant tendre x vers l'infini, on obtient que

KjF(t) est nul pour t > a et KjF e C+.
On définit donc un élément SftF de $+ en posant, pour j > m+1,

(2.6) 31F —D)J KjF
ï

et 31F ne dépend pas de j puisque, en vertu de (2.5), — DKj+1F KjF.
La distribution 9LF est appelée transformée de Mellin inverse de F et 5R

définit une application linéaire de + dans $'+.

D'après (2.5), KjF(t) est limite uniforme sur tout compact de R+ des

fonctions
r»s + iA

11-> \ t~zF(z)z~jdz
2ni Js-iA
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lorsque A tend vers l'infini, avec s > r. Il en résulte que SftF est limite dans

(R+) des fonctions continues

(2.7) —\ (z)
2?n Js_m

lorsque A tend vers l'infini, s > r.

Proposition 2.2. Si Fe les fonctions z\->zF(z) et zi->
F(z + p), avec pe C, appartiennent à +. Déplus

(2.8) $l[zF(zy] -DSR[F(z)],

(2.9) H[F(z+p)] *'»[F(z)], peC.
Démonstration. Il est clair que ^f+ est invariant par multiplication

par z et par translation dans C. Pour j assez grand, on a d'après (2.5)

3t \zF(zj\ Kj+1 \z(z)](-/>)>+1 [F(z)]

- Z>3t [F

Pour k et j assez grands, on a de même

31 [F(z)] (~D)kKk[F(z)](-Df(-\_{z+p)^F{zj\
(-K + pyZotCz + ^^FCz)],

et par suite

3t[F(z + />)] (-2) + ^yJ5:0[(z +^F(z+ /i)],

d'où, en faisant le changement de variable z + p h>- z dans l'intégrale (2.5)

donnant K0,
3 l[F(z+p]= (-D + Py(t>Kj[F(z)])'

t"(-Dy Kj [. F(z)] > 31 (z)]
c.q.f.d.

Théorème 2.3. La transformation de Mellin 931 est un isomorphisme

de l'algèbre SJ'+ sur l'algèbre 2/F + d'inverse 31.

Démonstration. On sait déjà que 331 : ê'+ -* + est un homomor-

phisme.
Montrons que 31931 est l'identité sur Si on a (-

(it~4 /) avec m et geN et / e C° (proposition 1.5). Par suite (propo-



— 293 —

sition 2.1), 931F (z) zm931/ (z-q)et (proposition 2.2) SOTT (.~D)m

(t~« 91931/). Il suffit donc de vérifier que 91931/ =/pour/e C°. Mais

alors 931/ satisfait à l'inégalité (2.4) avec 0 et 91931/ D2K2Mf,
c'est-à-dire, avec x > 0,

C +00 931/
2 n91931/D \ r*"" ; 2 dy

J_0O (^+îy)2
+oo /»oo f—x — iy „x + iy— 1

-"•LH-ÖTm*-'«*-
intégrales absolument convergentes. En intégrant d'abord par rapport à y
on obtient

1 f +co
J.. dy f 0 si <

\ (sltY y—— <

2nj-® (x + iy)2 1 log (s/0 si s>t.
r» oo

On a donc 91931/ D2\log (s/t) f (s) s"1 ds f-

Montrons que 93191 est l'identité sur +. Si e +, on a (z) zmG(z)

où G est holomorphe pour Re z > r et

| G(z)\<C(l + |z|)-2aRez, Re z > r,

C, a et r > 0, me N. Il s'ensuit que 91F - D)m 91G et 93Î9ÎF zm 93191G

1

(propositions 2.2 et 2.1), d'où le résultat si 93191(7 — G. Or 91G (t) — ——72ni

jy(u) t~z G (z) dz, y (m) droite Rez avec Par suite, 91(7 (/)
t~" g (t) avec 2ng (t)J (~iv G (u + iv)dv.Ona g e C+, supp g

c ]0, a] d'où

93l91G(z) ^ f-"-1 g(t)dt.

Pour x > u > r on a donc

9319ÎG(x-H» jj g (t)

^ ça /» + 00

— \ dt\ tx+iy-u1 (U+ÎV) dv
Jo J-«,

1 p + 0° ßX + iy — u — iv

\ G (u + iv) dv
j-oo x + iy — u — iv
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résidu au point z de la fonction w ^ w - z
G (x + iy)

Remarques. 1) Il résulte de ce qui précède que si TeS+ et F 3DIT

e + le support de T est contenu dans ]0, c] si et seulement si F vérifie
une inégalité (2.4) avec a c.

2) Si T est la restriction à R+ d'une distribution d'ordre < w sur R,
F vérifie (2.4) avec m n. Inversement si F vérifie (2.4), T (- D)m + 2

Km+2F est d'ordre <m + 2. Des résultats plus précis seront obtenus au
paragraphe suivant.

Etant donné une distribution T sur R+, on désigne par Ta l'homothé-
tique de T dans le rapport a > 0; avec la notation fonctionnelle, on a

Ta(t) T(a~xt). De même Ta est la distribution définie par T\t) T(ta).
On démontre sans difficulté la proposition suivante:

Proposition 2.4. Soit a > 0. Si Fe + les fonctions az F (z),

et F' {z) appartiennent aussi à +. Si Te +, les distributions

Ta, Ta et (log t) T appartiennent aussi à et l'on a

(z) azmT(z) WIT" (z) ~
a \aj

9K[(log0T](z) =^-3KT(z).

Exemples. 1) La mesure de Dirac au point 1 est l'unité de l'algèbre
$+ 301^! 1 est l'unité de l'algèbre +.

2) Dans +, la multiplication par -z est un opérateur inversible dont
l'inverse est la multiplication par - z"1. On en déduit que l'opérateur
différentiel D dans ê+ admet un inverse D-1 qui est la convolution par

(-z'1) - 6, avec 6 (t) 1 si 0 < t < 1 et 0 si 1. En fait
D"1 / est la primitive de t~1fk support borné.

3) Plus généralement, P (z) c (z-zff1... (z-zk)nk étant un polynôme
de degré m nt + +/2fc>là zéros z1?..., zk distincts, la multiplication

par P {-z) dans + est un opérateur d'inverse P (-z)"1. Par
transformation de Mellin inverse, on en déduit que l'opérateur différentiel
P (D) est inversible dans S + : P (D) ~1 est la convolution par



— c
^ 0 * * 0

V L) L uz\,ni ••• zk>nk '

où 0wn (-1)"-1 *w(log 0n_1 0/(« — 1) est la transformée de Mellin
inverse de la fonction z (z +w)~n.

3. Théorèmes du type de Paley-Wiener

Théorème 3.1.. Soit Fe 34?+.

1 F est la transformée de Mellin d'une distribution à support dans

[a~a] (a > 1) si et seulement si F est entière et vérifie une inégalité

(3.1) \F(z)\<C(l+ |z|)"a'R"l, zeC,

avec me N et C > 0.

2) F est la transformée de Mellin d'une fonction C°° à support dans

[fl~1,fl](«>l) si et seulement si F est entière et, pour tout me N, il existe
Cm> 0 tel que

(3.2) \F(z)\<Cm(l+ |z|)-malRezl, zeC.

Démonstration. (Voir aussi [6], pages 3 à 13, [7], théorème 16, page 272
et [3], théorème 1.7.7, page 21).

1) Soit T une distribution sur R à support dans [a~ a]. Il existe m
e N tel que T soit d'ordre < met

m

(3.3) [<T,<p>|<M £ sup | (pu) (t) I

j=0 t

pour tout cpeCm (R+), avec M>0. Soit (R+) égale à 1 au voisinage
de [a-1, a]. On a F(z)< T, Zz_1/ > et est entière. Soit e C00 (R)
nulle pour t > 3 et égale à 1 pourt<2. Posons

<PZ(0 X(0«A(i|z| a"|2|)i/r(t~|z| a~|z|)f_1.

On açi.e C00 (R), et comme 1

au voisinage du support de T,
F(z) T, <pz D'après (3.3), en majorant les dérivées de on obtient
(3.1).

Soit F entière vérifiant (3.1). On a WT avec T 9tF
(-D)m+2 öf±, où
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g±(t) t
2TZ l j y(s)

y (s) étant la droite Re z s orientée dans le sens Im z croissant, avec

+ s > 0; cela résulte de la définition de 31 si s > 0, et provient du fait que

g + — g _ est un polynôme en log t de degré < m + 1 si s < 0. L'inégalité

(3.1) entraîne

|<7±(0| <Aa^rs
lorsque | s|> 1, Aconstante > 0. En faisant tendre s vers + oo ou - oo

on obtient g+ t)0 pour t > aet g_0 pour t < a'1, de sorte

que le support de T est contenu dans [ \ a}.

2) Soit cpeS) (R+) une fonction à support dans [a~ \ a]. Il est clair

que F W(p est une fonction entière et que, pour tout entier > 0,

zkF{z)I Dk (p (t) f 1 dt <4ka|Re*1,

Ak constante positive, d'où l'inégalité (3.2).

Inversement, si F entière vérifie (3.2) pour tout N, on a fflcp,

où (p (t) —. \ t~zF(z)dz est une fonction C00, à support dans
27t i Jy(s)

[a-1, a] d'après 1), c.q.f.d.

Espaces S et Jf. Dans la suite, nous désignerons par ê le sous-

espace de L2(R+,t'1 dt) formé des fonctions à support borné, muni de la

norme
/ (* °o \ !/2

\\f\U=^o \f(t)\2rkdtj,fet.

Il est clair que S C ^+nl' (R+) n L2 (R+).

Par exemple, si / est une fonction de carré intégrable à support borné

telle que | / (0 - f(0)| < C t"lorsque -* + 0, avec et oc > 0, on

a / e S si et seulement si / (0) 0.

Le théorème suivant caractérise l'espace :// ÏM :

Théorème 3.2. Pour qu 'une fonction F soit la transformée de Mellin

d'une fonction feé" à support dans ]0, a] 0), il faut et il suffit que les

conditions suivantes soient satisfaites :
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1) F estholomorphe dans le demi-plan Re 0,

2) la fonction Fx F(x +iy)appartientà L2 (R) pour tout >0
et il existe une constante C>0telle que

Il FxI< C a*, pour tout >0.
LHR)

Siles conditions précédentes sont vérifiées, Fx tend vers une limite F0

dans L2 R)lorsque x->+ 0 et

(3.4) I FxIJin I txf!g pour tout > 0.
L2(R)

Démonstration. (Voir aussi [6], théorème 5, page 8). Soit S à

support contenu dans ]0, a], a>0.Pour x Re >0, Im z, on a
r* oo f* +00

F (z) 33t/ (z) \ / (0 tz~l dt \ avec
JO J -oo

/ (<?s) esx g0(s)esx, g0eL2 (R), g0 nulle au voisinage de + oo,

Il gx I I txf I x > 0. Autrement dit, la fonction est la transis^)

o

formée de Fourier de gxeL1 (R) nL2 (R) pour x > 0, et la formule de

Plancherel donne (3.4) pour x > 0. Comme gx -> g0 dans L2 (R) lorsque

x -* + 0, Fx tend vers une limite F0 dans 2 (R), F0 étant la transformée de

Fourier de g0; de plus, la formule (3.4) reste valable pour x 0. Enfin

1) et 2) sont vérifiés, l'inégalité de 2) avec C y/2n \f\^ résultant de

(3.4).
Soit F une fonction vérifiant 1) et 2). En vertu du lemme 1.6, pour tout

r> 0, on a | F(z)|< C(r)aRez, pour Re z > donc Soit

/ HF eS+.Si<p e Q (R : comme 3iF est limite dans Si' (R+) des

fonctions (2.7), on a

2n{f,(p}= lim C dt
J 0

Le théorème de Fubini donne, avec ^ 9Jl(p,

2n<f,(py=$<t>1„x(-y)Fx(y)dy,

d'où, par l'inégalité de Cauchy-Schwarz,

2T | < /, > | <|| &1-XIIII -f* Il

L2(R) l2(R)

Finalement, compte tenu de (3.4) valable quel que soit xe R pour/remplacé
par cp eSj (R+),
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I <f,(pyI< MI tx~x(p\gax

avec M > 0. En posant xj/ tll2~x (p il vient

\{tx-ll2f,il/y\<Max\\il,\\ x>0,
£2(R+)

pour tout (R+). Le théorème de représentation de Riesz entraîne
alors que tx~1/2 f eL2 (R+) et que

r* oo

\ (tla)2x | / (0 |2 t'1 dt < M2

pour tout x > 0. Lorsque x oo, cette inégalité implique que le support
de / est contenu dans ]0, a]; si x - +0, elle donne quefe S, c.q.f.d.

Comme application du théorème précédent, nous allons introduire
des espaces qui permettront de classer les éléments de en fonction de

leur régularité et de leur ordre de grandeur au voisinage de l'origine.

Espaces et êsr. Etant donné deux nombres réels r et s, nous
désignerons par Jf; l'ensemble des fonctions FeJ^+ telles que
(z + r + l)sF(z) G(z + r), avec G e 34? ; en particulier 34?q

34?. Ainsi, si Fe 34?sr9 F(z) est holomorphe pour Re z > — r et l'application

j; h» (x + iy +r + l)s F (x + iy)

est dans L 2 (R) pour x > — r.
On a 34?sr c ?> si et seulement si r' < r et s' < s.

Nous poserons Ssr 3Î 34?sr la transformée de Mellin inverse de 3tf&r\

en particulier Sq ê.
Dans le cas où s est un entier, on peut caractériser êsr directement:

Proposition 3.3. Soit m un entier >0 et soit TeS+.

a) Les conditions suivantes sont équivalentes :

(a.l) TgC-
(a.2) t~r Dj Te ê pour 0 < / < m.

(a.3) tj~r TU) e ê pour 0 <y < m.

b) Les conditions suivantes sont équivalentes :

(b.l) TeS;m.
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(b.2) T tr Yj fjavecfje S.
j=o

m

(b.3) r= X tr+jh(jJ) avec hjeê.
j=o

Démonstration. Compte tenu de la formule de Leibniz et de l'égalité
êsr tr Ssq, on peut supposer que r — 0. Les équivalences de (a.2) et(a.3)
ainsi que de (b.2) et (b.3) découlent du lemme 1.1.

Soit F 9JIT. On a Te £% o (z + l)m F(z) G (z) avec

o zj Fe y? pour 0 <7 < m o DJ Te S pour 0 <7 < m.
Si Teêom on a F(z) (z+l)mG(z) avec Gey?. La formule du

(m\J 91G.

m

Si T vérifie (b.2) avec r 0, on a F(z) (-z)7' SDt/y (z)
j=o

m

(1 + z)m G (z) avec G(z) £ (-z)J'(1+z)_m 2R/; (z) donc GeJf
i=o

et Tey?ôm, c.q.f.d.

L'appartenance à la réunion des espaces reR, caractérise
la régularité d'une distribution. On vérifie en effet que localement, les

éléments de sont dans l'espace de Sobolev Hs (R) formé des distri-
/v A

butions Ssur R telles que (1 + |x|2)s/2 S (x) soit de carré intégrable,
étant la transformée de Fourier de S.Nous démontrerons le résultat suivant:

Proposition 3.4. Soit s > m+ 1/2 avec N, et reR. Si f
e<C on a / e Cm (R+) et

f0)(t)o(tr~J)lorsque-» + 0

pour 0 <y < m.

Démonstration. On a (z+r+ 1)S9JÎ/ (z) G{z+r) avec G elf?.
Par suite, pour x > - r,

_ p*+*oo
/O)0) \ t~z~Jz(z + l) l)_s dz

l J jc-ïoo

fonction continue sur R+ pour 0 <j < m, donc f e Cm (R+). Comme
Gx :ye> G (x+iy)convergevers G0 dans L2 (R) lorsque x -> + 0, on
a aussi
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fO)f0 Ci C c-^,(r-Mr-iy-l)...{r-iy-J + l) Go 00° 271 _ (1 +iyy

où l'intégrale tend vers 0 lorsque t -> + 0, d'après le lemme de Riemann-

Lebesgue. Par conséquent, fU) (t) o (tr~j) lorsque t -> + 0, c.q.f.d.

Remarque 1. Si s < m + 1/2, êsr n'est pas contenu dans Cm(R+).
Soit en effet / g $'+ tel que (— D)m f soit la fonction égale à 1 sur ]0, 1[
et nulle sur [1, oo[. Il est clair que tr + 1 f n'appartient pas à Cm(R+)
bien que 3DÎ (*r+1/) (z) (z + r + l)~m_1 appartienne à pour s

< m + 1/2.

Remarque 2. Si / g Cm (R+), m > 0, et si fU) (t) O (tr~J) lorsque
t -> + 0 pour 0 <7 < m, il est clair que / g S, pour tout r' < r, puisque

fU) fr'~j hj avec hjeS (proposition 3.3). En général, on ne peut pas

remplacer r' par r: une fonction / g C00 (R+) qui est égale à | log t |~1/2

au voisinage de 0 vérifie o(t~J) lorsque t -> + 0 pour 0 <y
<m. Cependant, quel que soit .s-gR, / n'appartient pas à en effet,

9JIf (z) - Cz~1/2 (C constante ^ 0) est entière.

La proposition suivante donne des conditions pour qu'une fonction
de classe Cw_1 soit dans ê.

Proposition 3.5. Soit m un entier > 1, r g R et f e Cm 1 (R+)
à support borné telle que tm~r /(m) g g S.

a) Si r < 0, on a f e S.
b) Si r > m - 1, on a f e S si et seulement si fu) (t) -> 0 lorsque

t -» + 0 pour 0 <7 < m — 1.

c) Si 0 < r < m - 1, on a f e ê si et seulement si fU) (t) - 0

lorsque t -> + 0 pour 0 <j < r et f{r)e$ si r entier.

Démonstration. Soit F SCR / et G 2% g Jf. Par hypothèse

9Jt(/(m))(z) (-l)m (z-1) (z-2)... (z-m) F(z-m) G (z + r-m). On

a / g si et seulement si

— l)m (z + l)m G (z)
G0 (z) (z + l)m F (z — r) ^ — -(z —r) (z —r + 1) (z — r + m — 1)

est une fonction de

a) Si r < 0, il est clair que G0 g donc / g S.
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b) Si r > m- 1, G0e Jf si et seulement si - 0 pour 0

<; < m- 1. Puisque /(m) tr~m g, on a pour 0 <y < 1

f (t-u)"-'-1 w/ (0 \ 7 :—-—ur mg(u)du
JooOn-J-1)!

m — j— 1
__

1 \m~k — j — 1

y i tk \ ur~k~j~1 g{u)du.
k=0 k\(m-k-j-1)! Joo

Mais, si « > 0, • u"-1 g (u) du - G (a) + o En effet, par l'inéga-
J 00

lité de Cauchy-Schwarz, lorsque t-*+ 0,

C u"-1 g(m) du<(m2"-1 du[(u) |2 m-1

Jo Jo Jo

Par suite

(3.5) fU)(0/ (r -j) + o (1),
(m —j — 1)

et G (r— j) 0 si et seulement si /(j) (t) o (1).

c) Si 0 <r <m — 1, G0 e si et seulement si G (r- j) 0 pour
0 <_/ < r et z~ *(? e dans le cas où est entier. Comme précédemment

l'égalité (3.5) est valable pour 0 <j < r. On a donc 0 si et

seulement si f(j> (r) o(1), avec 0 <j < r.

Dans le cas où rest entier, feêentraîne f(r> e S. Inversement, si

/(r) h eêetsi fU)t)o (1) pour 0 <J < avec > 1,

C' (t—uY"1f0)\ "7 77T
h ^ du h°

Jo (r - 1)!

i r1
où h0(t) — \ (l-s)r 1

(r — 1) ' J o

appartient à S. Il s'ensuit que F(z—r)i'i//0 (z) est dans Y(' donc aussi

G0, c.q.f.d.

Proposition 3.6. 1) L'intersection des espaces S\, r, s e R, est égale
à l'ensemble Co des fonctions C00 sur [0, oo[, à support borné, plates
en 0.
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2) S + est égal à la réunion des espaces $sr, r, s e R.

Démonstration. 1) Si fe S"2+1 avec me N, la proposition 3.4 montre
que / est de classe Cm sur [0, oo[ et que fU) (0) 0 pour 0 <7 < m;
il suffit de prendre m arbitrairement grand pour obtenir / e Cq.

Si / e Cq la proposition 3.5 montre que f e S1? quels que soient
m e N et r e R.

2) Si Te$'+, la proposition 1.5 entraîne que T= Dm(t~qg) avec
m, qeN et g eC%. Or / tge Set + appartient à

en raison de la proposition 3.3 et de la formule de Leibniz.

4. Comportement asymptotique au voisinage de l'origine

Soit Sr 00 la réunion des espaces Ssr, ^eR. On peut considérer que
l'appartenance à S'~co caractérise l'ordre de grandeur d'une distribution
au voisinage de l'origine. En effet, le théorème 3.1 montre que cette
appartenance est une propriété du germe à l'origine; d'autre part, l'égalité

tr <f0
00 qui résulte de (2.9) et les propositions 3.4 et 3.5 montrent que

la propriété est voisine des propriétés T - o (C) ou T O (tr)
lorsque t -» + 0.

Exemples. Soit x e C°° (R+) une fonction à support borné égale à 1

au voisinage de 0. Posons X On a X(z) z'1 $ (z), où #
- (Dx) est la transformée de Mellin d'une fonction de (R+) (voir le
théorème 3.1 pour les propriétés de $) et ^ (0) 1. Pour p e C et ke N
posons

(4-0 XP,k (0 tp (log t)k % (0

On a Xp k(z) 9JlxPjfc(z) Xw(z + p), fonction méromorphe de z
avec un pôle d'ordre k + 1 en — p, de partie principale (— l)k k
(z + p)~(k + 1\ De plus, si le support de x est contenu dans ]0, a], quel que
soit m e N,

(4.2) (1 + |z|)m (z + p)k +1 XPik (z) a~RQ 2 est borné pour Re z > -m

Etant donné s réel, on a g ^rs si et seulement si RQp > r.
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Développements asymptotiques. Donnons-nous une suite (pj) de

nombres complexes distincts telle que Re pj -> + °o lorsque j -> oo et

une suite {mfi de N.
Pour tout r e R, soit J (r) — { (j, k) e N2; Repj < r, 0 < k < rrij} et

soit J la réunion des J (r).
Considérons la famille 3F des fonctions xPj-,k, (y, k)eJ, avec (4.1).

Définitions. 1) On dit que /e$+ admet un développement asympto-

tique généralisé à l'ordre r (reR), par rapport à s'il existe des nombres

ajfke C, (y, k)e J (r) tels que la différence

(4.3) f r — f ^ aj,k,Xpj,k
(M)eJ(r)

appartienne à 00.

Les nombres ajtk sont alors déterminés de manière unique; en effet,

pour qu'une combinaison linéaire des Xp .>k, j ,k)eJ (r), appartienne à un

espace il faut que ses coefficients soient tous nuls.

2) On dit que / e admet un développement asymptotique généralisé

illimité, par rapport à si/ admet un développement asymptotique généralisé

à l'ordre r pour tout reR.
3) Soit se R. On dit que / e S+ admet un développement asymptotique

de type à l'ordre r (r e R), par rapport à s'il existe des aj)k, (j, k)

e/(r), tels que/re<f* avec (4.3).

4) On dit que / e admet un développement asymptotique de type
Ss illimité, par rapport à 3F

9
si / satisfait à la définition 3 pour tout reR.

5) On dit que / e admet un développement asymptotique illimité,
indéfiniment dérivable, par rapport à si / satisfait à la définition 4 pour
tout s e N.

Les propositions suivantes montrent que, sous des hypothèses
convenables, les développements asymptotiques généralisés sont en fait des

développements asymptotiques usuels, et réciproquement. La proposition

4.1 est une conséquence immédiate de la proposition 3.4 et de la
remarque 2 qui suit cette proposition:

Proposition 4.1. Soit me N et f e$'+.

1) Si f admet un développement asymptotique généralisé de type é>m + 1,

à l'ordre r, par rapport à 3F, alors fe Cm (R+) et il existe des nombres

complexes ajk tels que
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(4-4) / (0 X ai,k tFj (log if + fr (t),
j,k)eJ (r)

avec /<y,(f) o(tr~j) lorsque t ^> + 05 pour 0 <y <ra.

2) Sz / vérifie (4.4) avec /r g Cm (R+) ef f(rJ)(t) O (tr~J) lorsque
t -> + 0, pour 0 <y <m, alors f admet un développement asymptotique
généralisé de type à l'ordre r' pour tout r' < r.

La proposition suivante découle facilement de la proposition 4.1.

Proposition 4.2. Pour que f eS+ admette un développement asymptotique

illimité indéfiniment dérivable, par rapport à il faut et il suffit
que f e C00 (R+) et que

(4.5) / (0 - Y aj,k tPj (log tf
(MeJ

lorsque t -> + 0, développement asymptotique au sens usuel\ indéfiniment
dérivable terme à terme.

L'existence d'un développement asymptotique pour une distribution /de S + est équivalente à des propriétés de méromorphie et de croissance

pour la transformée de Mellin de /. Un exemple est fourni par la proposition

4.3; (voir aussi [5], proposition 1.1, page 397, où il est montré que,
pour des topologies naturelles, la transformation de Mellin est un isomor-
phisme vectoriel topologique de l'espace des fonctions admettant un
développement asymptotique sur l'espace de leurs transformées de Mellin).

Proposition 4.3. Soit fe#'+9 F 9K/. Pour que f admette un
développement asymptotique illimité indéfiniment dérivable, par rapport à

ilfaut et il suffit que les conditions suivantes soient vérifiées :

a) F est méromorphe dans C avec pôle d'ordre < mf+ 1 au point
— pj pour tout je N.

b) Il existe a > 0 tel que, pour tout me N, (1 + |z|)m.F(z) a"Re z soit
borné en dehors d'un compact du demi-plan Rez> — m.

Démonstration. Les conditions a) et b) sont nécessaires: Soit a > 0

tel que les supports de / et / soient dans ]0, a], où % est la fonction qui
intervient dans (4.1). Quel que soit raeN, en prenant r m + 1, et en
définissant fr par (4.3), on peut supposer que freêmY, donc que Fr{z)

3Dlfr(z) (z + r + \)~m Gr{z + r) est holomorphe pour Rez > - r,
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avec GreM. La caractérisation de 9M au théorème 3.2 et le lemme

1.6 montrent que (1 + \z\)mFr(z)a"Re z est borné pour Re z > - m.

Comme F (z) £ a,,* X k (z) + F„ (z), F est méromorphe
(j,k)eJ(r)

dans Re z > — r et ses pôles sont ceux des aj>k Xpj}k, d'où a) et b) compte

tenu de (4.2).
Les conditions a) et b) sont suffisantes: Soit

mj

k — 0

la partie principale de F au pôle — pj. Etant donné r g R, posons

Fr(z) F (z) - X aj)k Xp .k (z)
U,k)eJ(r)

Si « g N, d'après b) pour m > max (n, r), on a que i7 g ". Par

transformation de Mellin inverse, il s'ensuit que/r donnée par (4.3) appartient
à ênr, c.q.f.d.

Application. Nous allons appliquer les résultats précédents à la fonction

(4.6) F(z)

où A est une fonction analytique réelle, non constante, sur une variété

analytique réelle V connexe, paracompacte, de dimension n, et # appartient
à l'espace 2t (V) des «-formes différentielles impaires, de classe C00, à

support compact dans V. Il est clair que F est holomorphe pour Re z

> 1, puisque l'application (x, z) (A (x))+-1 est continue, et holomorphe

par rapport à z, pour x g V et Re z > 1. Dans [1], en utilisant une version

du théorème de résolution des singularités de Hironaka, Atiyah montre

que F admet un prolongement analytique méromorphe dans C. En reprenant
sa méthode, nous allons préciser le résultat.

Soit U un ouvert relativement compact de F, dans lequel A n'ait pas
d'autre valeur critique que la valeur 0. L'application linéaire continue
A* : C00 (R) -» C00 (U) telle que A* xj/ (x) xj/ (A (x)), donne par
transposition une applicatipn linéaire continue A% de Of (U) dans Mc (R) l'espace
des mesures à support compact sur R, définie par < A*<!>, x// < #, A*xj/

jut (A (x)) # (x), pour # g Q) (U) et xj/ g C00 (R). Comme dA ^ 0

dans U* { x g U ; A (x) ^ 0 }, il existe dans C/* une («~l)-forme
impaire Q de classe C00 telle que <P dA a Q et l'on a, pour x/j e Q) (R*),
(Az<P,\l/) J / (0 "A (0 dt avec / (0 J^-i(f)0 (x), l'injection de

y4_1(t)n F* dans U*étant convenablement orientée. Ainsi, dans R*
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R \ { 0 }, A*<P coïncide avec la fonction/de classe C00 et A# induit une
application linéaire continue de 2f (C/*) dans Sf (R*). Par dualité on obtient
donc une application linéaire continue de 9) '(R*) dans 9' (U*) l'espace
des distributions dans C/*, définie par < A*S, > < S, A%$ pour
Se 9' (R*) et <Pe9(U*); A*S est l'image réciproque de S par A. Soit
8t (A) A*8t l'image réciproque par A de la mesure de Dirac 8t au point
t # 0. On a

(4.7) f(t)

Proposition 4.4. Soit U un ouvert relativement compact de V,

dans lequel A n'ait pas d'autre valeur critique que 0. Il existe un

entier q q (U) > 1 tel que, pour toute e 9 (U), la fonction F
définie par (4.6) vérifie les conditions a) et b) de la proposition 4.3, avec

Pj — 1 + (j +1 )/q et mj < n — 1 (j e N, n dim V). F est la

transformée de Mellin de la fonction f donnée par (4.7); f est intégrable
et de classe C00 sur R+ ; lorsque t -> +0,/ admet un développement

asymptotique

(4.8) / (0 ~ I r1 + 0'+1)/« (log 0*

a*eN,0 < k < n — 1), indéfiniment dérivable terme à terme.

Démonstration. (Voir aussi [4]). En suivant la démarche de [1], par
désingularisation et localisation, on se ramène au cas où V Rn et

F00Jq or • • •
1

<p O)dx >

avec (p e 9 (Rw), Q { x g Rn ; xk > 0, 1 < k < « }, et où les sont
des entiers > 0 non tous nuls.

Nous dirons qu'une fonction Fk (xu xk; z) a la propriété (0 < k

< n, P0 est ^ interpréter de manière évidente) si

1) Fke C°° (Rk x (C\Sk)), Sk étant une partie fermée discrète, bornée

supérieurement, de R.

2) Pour tout zeC\Sk, x' i-> Fk{x'\ z) est une fonction appartenant
à C00 (Rfc), à support dans un compact fixe de Rk.

3) Pour tout x'eRk, z\-^Fk(x';z) est méromorphe dans C avec

pôles d'ordre < n - k aux points de Sk.

4) Si k < n - 1, il existe > 0 tel que, quels que soient aeNfe,

meN, on ait | d*x, Fk (x'; z) \ < Cam (1 + \z\)~m af&z pour x'eRfc, Re z

> - m, distance (z, Sk) > 1, avec Caw > 0.
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Fn <p a la propriété Pn, et les propriétés a) et b) de la proposition 4.3

pour F, équivalent à la propriété P0 pour F0 F, avec

{i-u + m-,jeN
q entier > 0. Il suffit donc de prouver que si Fk+1 a la propriété Pk+1
alors

s* oo

Fk(x'; z)V (X'; z) dt

a la propriété Pk. Or, avec les notations du début du paragraphe, la formule
de Taylor donne

Fk+i(x>t;z) £ — dk+1 Fk+1 (xf, 0; z) tJ % (t) + tß+1 Rß (x\ t; z)
j=o J •

avec

t;z)rC+1>(l-Z(0

,AC1(1-S)%"+1 ^ wJo—9?—
On a donc, avec X 9ftx,

ß 1 •

^(x'z) X 77 ^+1 z)^(Z(Ik+i ~~Qk+i +J +1)
j=oJ-

r» oo

+ \ i«*+i(z-1) + * + l ^(x',f;z)Jf.

En prenant p. arbitrairement grand, on montre facilement que a la
propriété Pkavec Sk Sk+t u { 1 - (j +1 ; N}.

Puisque F a les propriétés a) et b) de la proposition 4.3, on a 'jfflg
où g eê+ est de classe C00 sur R+ et admet, lorsque t —> 4 0, un
développement asymptotique du type (4.8) indéfiniment dérivable terme à terme;
en particulier, 9 ~ o (t1 + ' '2q) lorsque t —> + 0 et g est intégrable sur
R+. Par ailleurs, on a vu que A%<P était une mesure à support compact
sur R prolongeant la fonction/considérée sur R+ ; par suite,/ e S', et pour
Re z > 1

'

Wlf (z) < A^, tl'1> (A (xi)r1 4> (x) (z).

On en déduit f g.
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