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2. Integral representation theorems for linear functionals

Let A be a commutative Banach algebra over C and let A denote the
locally compact space of regular maximal ideals of A. For each we

A A
use % to denote the Gelfand-transform; i.e., x is the continuous mapping
from A to C defined by the relations:

A
x (m) m (x) for meA.

By C0 (.A) we shall denote the algebra of all complex-valued continuous
functions on A which vanish at infinity. For any subset sé c A we shall

A A A
use the notation sé to denote the set { x : x e sé }. As usual || x denotes
the supremum norm.

Theorem L Let / be a linear form on the complex commutative
Banach algebra A and let sé be a linear subspace of A. The following two
statements are equivalent:

(1) There exists a constant M such that

A
I / (x) I < M || x ||

oo for every x e sé

(2) There exists a bounded complex Radon measure \i on A such that

A

/ (x) J x (m) dfi (m) for every xei.
Proof. The implication (2) => (1) is clear with M \\[i ||. We shall

A
' '

prove (1) => (2). Define a mapping L : sé -> C by

L(x) / (x)

It follows from (1) that L is well-defined, and that

A A A A
I L (x) I < MI x ||

a, for every xej/
and so L is continuous with \\L || < M. Using the Hahn-Banach Theorem

we can extend L to a bounded linear form L0 on C0 (A) and by the Riesz

Representation Theorem we obtain the existence of a bounded complex
Radon measure ^ on A such that
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Ml I if 1 Lof and

L0 (<p) j\A(P (m) dn (m) for every çeC0 (A)

In particular

f (x) L(x) L0(x) x (m) (m) for every xei.
A

Remark : Suppose that ^4 has an identity and that A is closed under
A

complex conjugation, then since A contains constants and separates the
A

points of A, the Stone-Weierstraß Theorem implies that A is dense in
C (A), the algebra of all complex-valued continuous functions on the

compact Hausdorff space A. If we impose these additional conditions on
A and if we take sé A in Theorem 1, we can conclude that in this case

the representing measure p is uniquely determined.

If the algebra A has a continuous involution, one can use Theorem 1

to derive an extended version of a theorem due to Raikov [10]. We proceed

to describe the situation.
Let A be a complex commutative Banach algebra with an isometric

involution * and a bounded approximate identity { ux} XeA i.e., a net

satisfying the following conditions:

|| ux I < 1 for each AeA,
|| uxx — x I -> 0 for each xeA.

A continuous positive functional on A is an element / e Ä such that

/ (x*x) > 0 for every x e A. If/ is a continuous positive functional on A
then the Cauchy-Schwarz inequality is valid (Dixmier [8, p. 23]) and this
implies the following facts:

/("a) - II / II

I / (x) \2 < 1 / || / (x*x) for every xeA.

x
If the involution is symmetric, which means (x*)A x for every xeA

or, equivalently, that every me A is a positive linear functional, then by
modifying a classical method of Gelfand-Raikov-Silov [10; p. 62] one can
prove that

1 / (*) I < 1 / D 1*11» for every xeA.
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As a corollary to Theorem 1 and the above discussion we obtain the

following extended theorem of Raikov [10 ; p. 64], see also Bucy-Maltese [4]) :

Theorem 2. Let A be a commutative Banach algebra with an
isometric involution which is symmetric. Suppose that A has a bounded

approximate identity and let / e A' be a continuous positive functional.
Then there exists a unique positive Radon measure p, on A such that || ji ||

|| / || and
A

/ (x) Iax (m) dp (m) for every xeA.

Proof. From the above remarks we know that

I/(*) I <Il f11IIxIU for evefy xgA-

By Theorem 1 there exists a complex Radon measure p on A such that
Il bt II < II / II and

A

/ 00 \a x (m) dp (m) f°r every xeA.

This formula implies

A

I/(je) I <11*11« Ml <HI Mlfor every

so that || f||< || p||and hence || / || || ju ||.

A
Since Ais a self-adjoint subalgebra of C0 (A) which separates points

A A
and for each me Acontains a function x such that x (m) # 0 (in factx)

A

there exists an element uß of the approximate identity such that uß (m) ^ 0),

the Stone-Weierstraß Theorem implies the uniqueness of the measure jx.
A

The positivity of ju also follows from the fact that A is dense in C0 (A).

In fact ifp is a non-negative function in C0 01), then p | q |2 for some

qeC0 (A). Choose a sequence { xn } in A such that

A
-> q -

x) If me A, then || m || #0 and by the assumption of symmetry m is a positive
functional. Therefore, as mentioned above, || m jj lim m (ua) so that there must exist

a

some uß of the approximate identity such that m (uß) ^ 0.
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Since (x*)A= xn it follows that (xw)A-* 5 an^ hence

(xnx*n)*-* U I2 P-

This implies

JJju(m) lim JjCvO (m) (m)
«

lim / (x*x„) > 0,
n

so that pis a positive measure and this completes the proof.

If A has an identity, as is the case in Raikov's original version, the above

proof can be somewhat simplified.

Theorem 3 (Raikov). Let Abe a complex commutative Banach

algebra with an identity e and with an isometric involution which is

symmetric. If / is a continuous positive functional on A, then there exists a

unique positive Radon measure pon Asuch that |0 || || / || and

A

f(x) jjx(m)dp(m) for every xeA

Proof. As above we know that

l/wI <11/Il IMU for every xeA-

From Theorem 1 there exists a complex Radon measure on such

that |0 || < || / || and

A

/ 0) fd X (m) dp (m) for every xeA.

Hence || p||< || / || / (e) p(1)< \\p||so that /t(l)=JO||
which is enough to imply that p is positive. The uniqueness of p follows

as in the Remark to Theorem 1.

3. Applications of the integral representation theorems

Application 1 (Bochner's Theorem). Let G be a locally compact abelian
A

group and let G denote the (locally compact) character group. Denote

L'Enseignement mathém., t. XXV, fasc. 3-4. 19


	2. Integral representation theorems for linear functionals

