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5. Exemples et commentaires

A. La première mention du fait que H1 (Xœ3 Z) n'est pas nécessairement

somme directe de ZT-modules cycliques se trouve (à ma connaissance)

dans une note de l'article de J. Milnor [6], Voici une façon très

simple de construire de tels nœuds.

Affirmation : Soit K c S3 un nœud dont le polynôme d'Alexander est
A

irréductible (sur Q) et pour lequel H1 (X2, Z) n'est pas un groupe cyclique.
Alors H1 (Xœ, Z) n'est pas somme de modules cycliques.

En effet, l'irréductibilité du polynôme d'Alexander entraîne que, si

H1 (J^, Z) était somme de modules cycliques, il serait en fait cyclique.
A

Comme une présentation du groupe H1 (X2 ; Z) est obtenue en remplaçant
t par -1 dans une présentation du module H± (Xœ ; Z) (appliquer le
§ 3, (ii), pour m 2 et le fait que (1 -1) est un isomorphisme), on déduirait

A
que H1 (X2, Z) serait cyclique. Contradiction.

Bien sûr, l'argument est susceptible de multiples généralisations. Mais
il a l'avantage de permettre l'usage des tables! C'est ainsi qu'on découvre

que le nœud 935 satisfait les conditions de l'affirmation (cf. livre de Reide-

meister).
En fait, il est facile de voir que 935 est le nœud de pretzel (3, 3, 3). En

appliquant la méthode classique pour obtenir une matrice de Seifert des

nœuds de pretzel (cf., par exemple, H. Trotter [9]) on obtient la matrice
de présentation suivante pour le module H1 (XZ):

/ 3(1-0 2t - 1 \
V t-2 3(1-0

D'où le polynôme d'Alexander A lt2 - 13^ + 7 (irréductible sur R)

et Ht (X2, Z) Z/3 © Z/9.
Naturellement, on peut construire d'autres nœuds de pretzel sur le

même principe.

B. L'argument basé sur la suite Ker-Coker (et a fortiori la formule de

Fox) montrent que le choix de la décomposition en somme de modules
A

cycliques sur QT n'intervient pas pour calculer l'ordre de H1 (Xm; Z)
lorsqu'il est fini.
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Il est bien connu que, en revanche, le groupe lui-même dépend de la

décomposition. L'exemple classique consiste en les nœuds 61 et 946

(et m 2).

C. Il faut prendre garde au fait que la formule de Fox ne donne pas
A

l'ordre de la Z-torsion de H1 (Xm; Z) lorsque ce groupe n'est pas fini,

contrairement à ce que la formulation utilisée par L. P. Neuwirth [7]

laisse croire. En fait, comme nous l'avons vu, Rés (1 ~tm, A) est nul dans
A

le cas où Hl (Xm;Z) n'est pas fini.
L'exemple suivant montre que la détermination de l'ordre de la torsion

A
de H1 (Xm; Z), lorsque ce groupe n'est pas fini est une question plus difficile.

Soient P (t)1 — t + t2,Q(t)6 — 11 + 6, A2 Z j
© Z T j / P(t)

/ 0(0
Â2 ZT /

/
D'après les résultats classiques de H. Seifert, A2 et peuvent être réalisés

comme Hx (XVJ, Z) de nœuds dans S3.

Il n'est pas très difficile de voir que

Ai I « Z © Z © un 5-groupe de rang 2,

/(I -ifAi

A.2 ~ Zi 0 z.
/tt-t6)A2

La raison essentielle de ces comportements est que P (t) Q(t) sur
le corps F5.
Cet exemple montre, en particulier, que cette fois-ci, le choix de la décomposition

sur QT n'est pas innocent.
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