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Considérons K et S3 comme orientés. Alors, via des conventions fixées

une fois pour toutes, on obtient un générateur t du groupe de Galois du
revêtement -> X.

Les « groupes » d'homologie H1 (J^, R), H1 (Xm, R) et H1 (Xm9 R)
sont alors munis d'une structure de RT-modules, t agissant via Galois.

Les faits suivants sont bien connus. Pour une démonstration, voir [4].

(i) H1 (Xœ, Z) est un ZF-module de type fini. (C'est essentiellement une
conséquence du fait que ZT est nœthérien.)

(ii) H, (Xm; R) « Coker { 1 - tm : H± (Xœ, R) -* H± (Xw9 R) }
(C'est une conséquence de la « suite exacte de Milnor »).
Si l'on fait m 1 dans la dernière égalité et si l'on utilise le fait que
RT est nœthérien, on obtient que 1 — t :H1 (Xœ, R) -» H1(Xo0; R)
est un isomorphisme pour tout R nœthérien.

(iii) H1 (X^, Q) est un espace vectoriel de dimension finie sur Q.
(Conséquence facile du dernier argument par R Q.)
Le résultat suivant est dû à R. H. Crowell [1].

(iv) Soit A un ZF-module admettant une présentation carrée (c'est-à-dire:
nombre de générateurs égal au nombre de relations). Soit A e ZT
le déterminant de cette présentation. (A est le générateur du premier
idéal élémentaire de A.) Alors A est sans Z-torsion si et seulement si A

est « primitif » (c'est-à-dire si ses coefficients sont premiers entre eux).

Il est classique que H1 (Xœ ; Z) satisfait les hypothèses du théorème
de Crowell.
Le dernier fait dont nous aurons besoin est dû à M. Kervaire [5] :

(v) Soit A un Zr-module de type fini et tel que la multiplication par
(1~0 soit un isomorphisme, alors le sous-groupe de Z-torsion de A
est fini.

4. La formule de R. H. Fox

Conformément à nos conventions du paragraphe précédent, désignons
A

par Xm le revêtement cyclique à m feuilles de S3, ramifié sur nœud de

polynôme d'Alexander A. La formule de Fox s'énonce ainsi:
A

LTi (Xm; Z) est fini si et seulement si Rés (1 -tm, A) ^ 0. En ce cas l'ordre
A

du groupe H1 (Xm; Z) est égal à | Rés (1 — tm, A) |.
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L'essentiel du paragraphe sera consacré à la démonstration de cette

formule.
Pour abréger, désignons par A un Zr-module de type fini, sans Z-

torsion, et de rang fini sur Q. Nous commençons par appliquer à un

argument dû à D. W. Sumners [8]. Comme A est sans Z-torsion, on a une

injection naturelle:
A "=- A®Q

A ® Q est un QT-module. Comme Q est principal, on peut choisir un

isomorphisme (de QT-modules) :

^4 ® Q - © QT/•

/ (Ai)

Comme A est de rang fini sur Q, les polynômes 2; sont différents de zéro.

Sans restreindre la généralité, on peut les choisir à coefficients entiers,

primitifs et satisfaisant la condition (*) du § 2.

Par Crowell, Z T/est sans Z-torsion et l'on a donc une injection

/ (Ai)

de zr-modules:
© ZT / QTj-> ®

/(Ai) /(Ai)

Dans A ® Q se trouvent ainsi deux ZL-modules de type fini, qui engendrent

A® Q sur Q. Il s'agit de Aet de B© ZT /
/(Ai)

Affirmation 1 : Dans ces conditions, il existe un entier ^ 0 tel que

b. B<= A. (Preuve évidente utilisant des systèmes finis de générateurs

pour A et pour B.)
On obtient alors une suite exacte de ZT-modules :

.b
0 B ^ A A j ->0

b .B

Affirmation 2 : Le quotient A j est un groupe abélien de torsion,

/ b.B
d'exposant fini.

En effet, en inversant le rôle de Aet dans l'affirmation 1, il existe

un entier a^0 tel que aAcB.Ilest clair que a b annule A /
b.B
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Avertissement : Si X et ji sont deux éléments non nuls de ZT, sans
facteurs communs, on a

QT / ©QTj *QT /
/(X) /(PL) /(2/i)

Comme ZT n'est pas principal, on n'a: en général pas

Z T j ®ZT / «zr /
/ a) / (fi) /m

Ceci indique que le choix d'une décomposition de A 0 Q en somme de

modules cycliques n'est pas innocent. Nous reviendrons sur ce point au § 5.

Proposition. Soit A un ZT-module de type fini, sans Z-torsion et de
r

rang fini sur Q. Supposons qu'on a une injection ©
/ M

A telle que A / soit un groupe fini. Alors A / est fini si

/B r /(l-r)A
et seulement si Rés(l — ]^[ /.,) # 0 et dans ce cas l'ordre de A /

i=1 /(l-tm)A
r

est égal à | Rés (1 -tm, |.
i= 1

Remarques. 1) ne dépend que de A, puisqu'il s'agit d'un
générateur primitif du premier idéal élémentaire de A ® Q, normalisé, suivant
nos conventions, pour que ce soit un « vrai » polynôme de terme constant
non nul. (Seul son signe est encore libre.)

2) Si A H\ (Xœ, Z), nous savons déjà que A satisfait les hypothèses
de la proposition. De plus, la multiplication par (1 — t) est un isomor-
phisme de A. Comme ZT est nœthérien, ceci reste vrai pour n'importe
quel module quotient de A. Ainsi A j satisfait les hypothèses du théorème
de Kervaire. j B

Comme il est de Z-torsion par l'affirmation 2, il est fini. Toutes les

hypothèses de la proposition sont donc satisfaites, ce qui démontre la
formule de Fox, puisque Y[^i

3) Nous laissons au lecteur le soin de faire la liste des conditions qui
rendent la formule valable pour les nœuds de dimension supérieure.

Preuve de la proposition. Par exactitude à droite du produit tensoriel,
on a:
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Al ® Q x A <S> Q /
/{l-tm)A / (l-r)04<g>Q).

Donc: A / est de Z-torsion si et seulement si 1 - ® Q

/ (1 -tm)A
A® Q est injectif (puisque le rang sur Q de (g) Q est fini).

Si l'on passe à une décomposition de ® Q en somme de modules

cycliques, on voit que ceci a lieu si et seulement si (1 — tm) et A n'ont pas de

facteurs communs, c'est-à-dire si et seulement si Rés (1— tm, # 0.

Considérons alors le diagramme commutatif:

0-+B^A^AIB->0
$ 2>

0 —> B—>- A—* A/B * 0

où les homomorphismes 'P; sont la multiplication par (1 —

Si Rés (1 - tm, A) 0, Ker <î>2 0 et la suite Ker-Coker associée au

diagramme précédent devient

0 -»• Ker -> Coker (P1 -* Coker <P2 Coker -»• 0

Maintenant, comme A / est fini, on a

/B
| Ker 4>3 | | Coker #3 | (où | E | désigne le cardinal de l'ensemble E).

D'antre part, Rés(l-*m, A) i- 0 implique (cf. §2) que j Coker ^ |

est fini. Donc | Coker #2 | l'est aussi et suite Ker-Coker implique
Coker | | Coker |-

Il suffit donc de démontrer la formule de Fox pour le module B à la

place du module A.
Si B est cyclique, cela résulte de la proposition du § 2. Si B est somme

de modules cycliques, cela résulte de cette proposition et de la multipli-
cativité du résultant. C.q.f.d.

Remarque. L'argument ci-dessus basé sur la suite Ker-Coker indique
pourquoi la démonstration de Fox (qui suppose plus ou moins implicitement

que H1 (X^ Z) est somme de modules cycliques) a permis de

trouver néanmoins la formule correcte.
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