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Considérons K-et S® comme orientés. Alors, via des conventions fixées
une fois pour toutes, on obtient un générateur ¢ du groupe de Galois du
revétement X, — X.

Les « groupes » d’homologie H, (X, R), H, (X,,, R) et H, (X,, R) |

sont alors munis d’une structure de RT-modules, ¢ agissant via Galois. |

Les faits suivants sont bien connus. Pour une démonstration, voir [4].

(1) H; (X, Z) est un ZT-module de type fini. (C’est essentiellement une
conséquence du fait que ZT est ncethérien.)

(i) H;(X,; R) ~ Coker {1 —t":H,(X,,R) > H;(X,,R)}.
(Cest une conséquence de la « suite exacte de Milnor »).
Si I’on fait m = 1 dans la derniére égalité et si I'on utilise le fait que
RT est ncethérien, on obtient que 1 — ¢ : H; (X, R) » H,(X,; R)
est un isomorphisme pour tout R ncethérien.

(1) H; (X, Q) est un espace vectoriel de dimension finie sur Q.
(Conséquence facile du dernier argument par R = Q.)
Le résultat suivant est dit & R. H. Crowell [1].

(iv) Soit 4 un ZT-module admettant une présentation carrée (c’est-a-dire:
nombre de générateurs égal au nombre de relations). Soit 4 € ZT
le déterminant de cette présentation. (4 est le générateur du premier
1déal élémentaire de 4.) Alors A4 est sans Z-torsion si et seulement si 4
est « primitif » (c’est-a-dire si ses coefficients sont premiers entre eux).
Il est classique que H, (X, ; Z) satisfait les hypothéses du théoréme
de Crowell.

Le dernier fait dont nous aurons besoin est dii a M. Kervaire [5]:

(v) Soit A un ZT-module de type fini et tel que la multiplication par

(1—1¢) soit un isomorphisme, alors le sous-groupe de Z-torsion de 4 |

est fini.

4, 1.A FoRMULE DE R. H. Fox

Conformément a nos conventions du paragraphe précédent, désignons

A
par X, le revétement cyclique & m feuilles de S3, ramifié sur nceud de
polynéme d’Alexander 4. La formule de Fox s’énonce ainsi:

H, (X,,; Z) est fini si et seulement si Rés (1—¢™ A) # 0. En ce cas Pordre
du groupe H, (X,,; Z) est égal & | Rés (1—1™, 4) |.
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I’essentiel du paragraphe sera consacré a la démonstration de cette

formule.

Pour abréger, désignons par 4 un ZT “module de type fini, sans Z-
torsion, et de rang fini sur Q. Nous commengons par appliquer a 4 un
argument dit & D. W. Sumners [8]. Comme A est sans Z-torsion, on a une
injection naturelle:

A= AR®Q.

A ® Q est un QT-module. Comme QT est principal, on peut choisir un
isomorphisme (de Q7-modules):

A®Q—>®QT/ :
¢ (4)

Comme A est de rang fini sur Q, les polynémes ; sont differents de zéro.
Sans restreindre la généralité, on peut les choisir a coefficients entiers,
primitifs et satisfaisant la condition (*) du § 2.
Par Crowell, ZT / est sans Z-torsion et 'on a donc une injection
(4

@ZT/ C-—>QT/ - AR®Q.
(4) (4)

Dans 4 ® Q se trouvent ainsi deux ZT-modules de type fini, qui engendrent
A®qurQ.Ils’agitdeAetdeB=@ZT/ .
i (4)

de ZT-modules:

Affirmation 1: Dans ces conditions, il existe un entier b # 0 tel que
b.B < A. (Preuve évidente utilisant des systémes finis de générateurs
pour A4 et pour B.)

On obtient alors une suite exacte de ZT-modules:

.b
0-+B—>A—>A/ -0

b.B

Affirmation 2 : Le quotient 4 / est un groupe abélien de torsion,
b.B
d’exposant fini.
En effet, en inversant le role de 4 et B dans l'affirmation 1, il existe
un entier a # 0 tel que a. 4 = B. Il est clair que a . b annule A / .
b.B
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Avertissement : Si ) et p sont deux éléments non nuls de Z7T, sans
facteurs communs, on a

QT/ @QT/ zQT/ .
(4) () (A

Comme ZT n’est pas principal, on n’a en général pas

ZT/ @ZT/ xZT/ .
A (w (AW

Ceci indique que le choix d’une décomposition de 4 ® Q en somme de
modules cycliques n’est pas innocent. Nous reviendrons sur ce point au § 5.

PrOPOSITION. Soit A un ZT-module de type fini, sans Z-torsion et de

rang fini sur Q. Supposons qu’on a une injection B = @ ZT /
i=1
‘ (4)
S— A telle que A / soit un groupe fini. Alors A est fini si
B ' (1-tmA
et seulement si Rés(1—¢™, [] 4,) # O et dans ce cas Pordre de 4
i=1 (1 —tm) A

est égal & [ Rés (1—¢™, [T 4)|.
i=1

Remarques. 1) []A; ne dépend que de A4, puisqwil s’agit d’un géné- |
rateur primitif du premier idéal élémentaire de 4 ® Q, normalisé, suivant
nos conventions, pour que ce soit un « vrai » polyndme de terme constant
non nul. (Seul son signe est encore libre.)

2) Sid = H{(X,,Z), nous savons déja que A4 satisfait les hypothéses
de la proposition. De plus, la multiplication par (1—¢) est un isomor-
phisme de 4. Comme ZT est ncethérien, ceci reste vrai pour n’importe
quel module quotient de 4. Ainsi 4 / satisfait les hypothéses du théoréme
de Kervaire. B

Comme il est de Z-torsion par 'affirmation 2, il est fini. Toutes les
hypothéses de la proposition sont donc satisfaites, ce qui démontre la
formule de Fox, puisque [[4; = 4.

3) Nous laissons au lecteur le soin de faire la liste des conditions qui
rendent la formule valable pour les neeuds de dimension supérieure.

Preuve de la proposition. Par exactitude 3 droite du produit tensoriel,
on a: '
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A ®Q~xA®Q
1—-t™A4 (1-1t" (ARQ).

Donc: 4 / est de Z-torsion si et seulement si 1 — ": 4 ® Q
(1—t™ A

- A ® Q est injectif (puisque le rang sur Q de 4 ® Q est fini).

Si I'on passe & une décomposition de 4 ® Q en somme de modules
cycliques, on voit que ceci a lieu si et seulement si (1— t™) et 4 n’ont pas de
facteurs communs, c’est-3-dire si et seulement si Rés (1—1™, 4) # 0.

Considérons alors le diagramme commutatif:

0O-B—>A4A—- AB->0

4511 @Zl @sl

0O—-B—>A— AB->90

otl les homomorphismes &@; sont la multiplication par (1—™).
Si Rés(1—1™ A) # 0, Ker d, = 0 et la suite Ker-Coker associée au
diagramme précédent devient

0 — Ker &, — Coker &; — Coker &, — Coker &3 — 0.

Maintenant, comme A4 / est fini, on a
B

| Ker &5 | = | Coker @, | (ol | E | désigne le cardinal de I'ensemble E).

D’autre part, Rés(1—™, 4) # 0 implique (cf. §2) que | Coker @, |
est fini. Donc | Coker @, | I'est aussi et la suite Ker-Coker implique
| Coker @, | = | Coker @, |.

Il suffit donc de démontrer la formule de Fox pour le module B a la
place du module 4.

Si B est cyclique, cela résulte de la proposition du § 2. Si B est somme
de modules cycliques, cela résulte de cette proposition et de la multipli-
cativité du résultant. C.q.f.d.

Remarque. L’argument ci-dessus basé sur la suite Ker-Coker indique
pourquoi la démonstration de Fox (qui suppose plus ou moins implici-

tement que H, (X, Z) est somme de modules cycliques) a permis de
trouver néanmoins la formule correcte.
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