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IV. RECENT PROGRESS ON UNIQUENESS PROBLEMS

It is a well-known fact that even for absolutely minimizing surfaces the
minimum need not be unique. It is expected that in case there are two or
more absolute minima, a small deformation of the boundary will separate
them, restoring uniqueness of absolute minimum. This has been recently
done by F. Morgan [M], who proves that almost every C?3 closed curve
in R? bounds a unique minimal surface of least area. It would be however
too technical to describe this result in more detail and, going to the opposite
point of view, I will give an explicit example of a 2 dimensional compact
manifold in R* bounding infinitely many oriented stationary manifolds of
dimension 3. In fact, our example will be the Clifford flat torus

2+ xE=xi4+xi=1/2
which is also minimal in S 3.

THEOREM 2. The Clifford flat torus in R* bounds infinitely many 3-
dimensional manifolds with mean curvature O at every point.

We sketch the proof of this result, which is implicit in the paper [B-
DG-G] on minimal cones and the Bernstein problem.

Let p + ¢ = n — 2 and consider the action of SO (p) x SO (g) on
R" = RP*! x RIYL, Let u = (x%+...+xpil)%, v = (xpiz—{-...—l-
xpi q+2)%. If we consider minimal hypersurfaces in R" invariant by
SO (p) X SO (g), we may describe them in the form f(u,v) = 0 with
u, v as above, and thus as a curve I in the quadrant u,v = 0. If we now
represent I parametrically as (u (1), v (¢)) the condition of mean curvature 0
on the hypersurface means that

w'o' = v+ [p@)? + q @) (“— - "’—) =0
v U
or in other words that I" is a geodesic for the metric

ds® = uP o1 [(du)* + (dv)?] .

In our case .
ds* = (wv) [(du)® + (dv)?]

and the requirement that our hypersurface has the Clifford torus as bound-
ary means that we have to find all geodesics which start at <i_ , L_ and
W2 'v2

end at wv = 0. There is exactly one such geodesic ending at (0, 0), namely




— 6 —

= 9. This corresponds to the well-known cone x2 + xﬁ = x3 + x3,

‘which has indeed mean curvature 0. The other possibility for a geodesic |
is to end on the u-axis, those ending on the v-axis being obtained by a sym- !
metrical reflection. Up to a homothetic transformation there is only one '

such geodesic. We introduce the new homothetically invariant parameters

) v’
¢ = artg—, 0 = artg—,
u u

. T T
=0 - 30 + -, =0+ ¢ — —
_ ¢+ 3 1/ -

and rewrite the equation for geodesics as

- 3 7 .
6 = —— sin 06 ——= sin Y
J 2 2
l‘ﬁ 1 . 3 . y
= — sin ¢ — — sin
‘ 2 2 :
We are interested in the unique characteristic C which at time t = — o0 _

starts at the saddle point (z, 0) and at time # = oo ends at the origin (0, 0).
Since the diagonal u = v goes in the line ¢ = y in the (o, Y)-plane, if we

follow C from ¢ = — oo to a time ¢, for which ¢ = , going back to the

(4, v) plane we get a geodesic starting on the axis v = 0 and ending on
u = v; clearly by applying a suitable homothety we may get a geodesic

ending at u = v = 5 and a solution to our problem. It follows that

our result will be proved if we show that the characteristic C crosses the
line ¢ = ¥ infinitely many times. This in fact is obvious, because C ends
at (0,0) and it is easily checked that (0, 0) is a focal singular point, or
vortex, of the differential system for o, .

It may be noted that the same construction gives other’examples, like

1 1
for the boundary S2 < \/2> S2 ( \/§>, with almost exactly the same

result.

V. RECENT PROGRESS ON REGULARITY PROBLEMS -

The regularity thec;ry of minimal currents and varifolds is fundamental

if we want to obtain classical solutions to variational problems. Here the
theory proceeds in two main directions: one is to prove stronger and better
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