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SUR UNE FORMULE DE R.H. FOX
CONCERNANT L’HOMOLOGIE DES REVETEMENTS CYCLIQUES

par Claude WEBER

1. INTRODUCTION

Dans [2] et dans [3], R. H. Fox a donné une formule exprimant I’ordre
de I’homologie d’un revétement cyclique de S3, ramifié sur un nceud.
L’exposition de Fox a été reprise par L. P. Neuwirth dans [7]. Comme I’a
remarqué M. A. Gordon, [4] p. 17, la démonstration proposée par Fox
demande quelques aménagements. Nous proposons ici une démonstration
de cette formule, basée sur les deux principes suivants:

1. La formule est une conséquence facile de la définition du résultant
de deux polyndémes, dans le cas ou ’homologie du revétement cyclique
infini du complémentaire du nceud est somme directe de modules cycliques.

2. Un raisonnement basé sur un argument dfi 3 D. W. Sumners permet
de se ramener au cas précédent.

Le fait qu’un nceud ne satisfait pas nécessairement les conditions énoncées
dans 1 est connu des spécialistes du sujet. Nous revenons sur ce point
au § 5.

Je tiens a remercier Daniel Lines dont les connaissances sur les résultants
m’ont été fort utiles.

2. RESULTANTS

Dans ce paragraphe, nous rappelons quelques faits classiques concernant
les résultants, qui.nous seront nécessaires par la suite.

Soit R un anneau intégre et soient f et g deux polynémes & coefficients
dans R:

f@® =a,t"+a,_," 1 +.. +a,
g@®) = b, t" + ... + b,.

[P
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Par définition, le résultant de f et g, noté Rés (f, g), est égal au déter-
minant de la (m+n)-matrice carrée:

a, b,,
n-1 ay bm
a, b, b,
ap b, b,
ag b,
ao b,
THEOREME.

a) Rés(f,g) = 0 si et seulement si @, = 0 = b,, ou si f et g ont une
racine commune (dans une cl6ture algébrique K du corps des fractions §
K de R).

b) Rés(f,9) = a," by [] (xi—y)
L,J

si a, # 0 # b, ou: {xg,..,x,} sont les racines de f dans K et
{ Y15 +es Vm } celles de g.

COROLLAIRE. Rés (f,91.9,) = Rés(f,91).Ré(f, g,)
l : (multiplicativité du résultant).

Pour une démonstration, voir [10], pp. 102-106.
Désignons par T le groupe cyclique infini, noté multiplicativement,
et de générateur ze 7. Soit RT I’anneau du groupe T sur :R. Soit o
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= (P4, .., P,) un idéal de RT, engendré par Py, ..,P,€ RT. (P; # 0).
Comme + ¢' est une unité de RT, on ne restreint pas la généralité en
supposant que les P; (¢) sont de la forme:

P(H) =ay + ... +a, " avec a9 #0,n=>0.

Dans ce qui suit, nous supposerons en général que les éléments de RT
que nous considérons satisfont cette condition (*). Nous dirons qu’un tel
polyndme est biunitaire si a, et g, sont des unités de R.

PROPOSITION. Scient f et g € ZT deux polyndmes non nuls et sans
racine commune (dans Q). Supposons f biunitaire.
Alors ZT / est un groupe fini et son ordre est égal & | Rés (f; ¢) |-
(f.9)

Remarques. 1) Bien str, ZT est aussi un Z7-module. Mais dans

(f>9)

la suite, nous le considérerons comme un groupe abélien pour calculer son
ordre, d’ou la terminologie adoptée.

2) Dire que f et g sont sans racine commune revient a dire qu’ils sont
premiers entre eux dans Q7. Comme ZT n’est pas principal, cela signifie
(seulement) qu’il existe des €léments k et 4 € Z tels que

fk+gh =neZ,n #0.

En général, n # + 1. En fait, soit e (f, g) le plus petit entier strictement
positif e tel qu’il existe k et 4 pour que '

fk +gh =e.
Alors e (f, g) est I’exposant du groupe ZT / sans méme qu’il soit

nécessaire de supposer f biunitaire. Si c’est le cas, Rés (f, g) et e ([, g)
ont mémes diviseurs premiers, et rendent ainsi souvent les mémes services.
En bien des occasions, I’exposant est plus facile a calculer que I’ordre.

3) Une hypothése du genre « biunitaire » est nécessaire, comme le
montre 1’exemple f(¢) = 3t — 1 g() = 3t — 2. En ce cas ZT/
)

= {0} care(f,9) = 1, mais | Rés (f, 9) | = 3.
Preuve de la proposition. Puisque fest biunitaire, le ZT-module ZT /
(f)

est isomorphe au ZT-module




n—1
i=0
ol
t(ei) = €11, i=0519 ey B — 2,
‘ 1
t(€n-1) = — — (Ayy €yq +... +ap).
a |
Comme | — a_o = 1, ¢ agit bien par un isomorphisme de .#. Notons
9. 1T — A Pisomorphisme donné par 1 — e,. Puisque
f)
7T
T ~ (f) /
| (f.9) @)
ol g désigne I'image de g dans ZT , on déduit que ZT est §
(f) (f>9)

isomorphe au quotient de .# par le sous-module A" engendré par & (7). §

Affirmation : Comme groupe abélien, 4" est engendré par‘

@(g')’ @(tg), "'aqj (tn_l g) .

En effet, A" est certainement engendré par les @ (¢/ §) pour j e Z. Mais

f.g=@l"+...+ap).9g et &(f.5 =0
Donc

1 -t .
O(t".g9) = —— ) a;9(g).

An j=0
Considérons maintenant les deux polyn6émes
f(t) = a,t" + ... + q,
g =b,t" + ... + by

avec f biunitaire et envisageons la (m+n)-matrice carrée dont le déter-
minant est Rés (f, g). Par soustractions répétées des colonnes @ aux
colonnes b, on obtient, puisque l a, | = 1, une matrice:
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B m colonnes n colonnes
an
a,—y a, 0
an
o - o(f" ')y . . . PO
Qo
ao
L . o
Dans la matrice précédente, @ (f7g) désigne un vecteur colonne dans la
base (e,— 15 €n— 25 - eO).
Comme | a4,

Le déterminant de cette derniére matrice est égal, en valeur absolue, d’une
part a 1'ordre du groupe 4 / et d’autre part, par construction, a
‘ N

Rés (f, g). C.q.f.d.

3. REVETEMENTS CYCLIQUES DE S°, RAMIFIES SUR UN NGEUD

Soit K un nceud apprivoisé dans S>. Désignons par X le complémen-
taire du neeud S° — K, par X, le revétement cyclique infini de X, par X,

le revétement cyclique & m feuilles de X, par X,, le revétement cyclique a
m feuilles de S3, ramifié sur K.
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Considérons K-et S® comme orientés. Alors, via des conventions fixées
une fois pour toutes, on obtient un générateur ¢ du groupe de Galois du
revétement X, — X.

Les « groupes » d’homologie H, (X, R), H, (X,,, R) et H, (X,, R) |

sont alors munis d’une structure de RT-modules, ¢ agissant via Galois. |

Les faits suivants sont bien connus. Pour une démonstration, voir [4].

(1) H; (X, Z) est un ZT-module de type fini. (C’est essentiellement une
conséquence du fait que ZT est ncethérien.)

(i) H;(X,; R) ~ Coker {1 —t":H,(X,,R) > H;(X,,R)}.
(Cest une conséquence de la « suite exacte de Milnor »).
Si I’on fait m = 1 dans la derniére égalité et si I'on utilise le fait que
RT est ncethérien, on obtient que 1 — ¢ : H; (X, R) » H,(X,; R)
est un isomorphisme pour tout R ncethérien.

(1) H; (X, Q) est un espace vectoriel de dimension finie sur Q.
(Conséquence facile du dernier argument par R = Q.)
Le résultat suivant est dit & R. H. Crowell [1].

(iv) Soit 4 un ZT-module admettant une présentation carrée (c’est-a-dire:
nombre de générateurs égal au nombre de relations). Soit 4 € ZT
le déterminant de cette présentation. (4 est le générateur du premier
1déal élémentaire de 4.) Alors A4 est sans Z-torsion si et seulement si 4
est « primitif » (c’est-a-dire si ses coefficients sont premiers entre eux).
Il est classique que H, (X, ; Z) satisfait les hypothéses du théoréme
de Crowell.

Le dernier fait dont nous aurons besoin est dii a M. Kervaire [5]:

(v) Soit A un ZT-module de type fini et tel que la multiplication par

(1—1¢) soit un isomorphisme, alors le sous-groupe de Z-torsion de 4 |

est fini.

4, 1.A FoRMULE DE R. H. Fox

Conformément a nos conventions du paragraphe précédent, désignons

A
par X, le revétement cyclique & m feuilles de S3, ramifié sur nceud de
polynéme d’Alexander 4. La formule de Fox s’énonce ainsi:

H, (X,,; Z) est fini si et seulement si Rés (1—¢™ A) # 0. En ce cas Pordre
du groupe H, (X,,; Z) est égal & | Rés (1—1™, 4) |.
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I’essentiel du paragraphe sera consacré a la démonstration de cette

formule.

Pour abréger, désignons par 4 un ZT “module de type fini, sans Z-
torsion, et de rang fini sur Q. Nous commengons par appliquer a 4 un
argument dit & D. W. Sumners [8]. Comme A est sans Z-torsion, on a une
injection naturelle:

A= AR®Q.

A ® Q est un QT-module. Comme QT est principal, on peut choisir un
isomorphisme (de Q7-modules):

A®Q—>®QT/ :
¢ (4)

Comme A est de rang fini sur Q, les polynémes ; sont differents de zéro.
Sans restreindre la généralité, on peut les choisir a coefficients entiers,
primitifs et satisfaisant la condition (*) du § 2.
Par Crowell, ZT / est sans Z-torsion et 'on a donc une injection
(4

@ZT/ C-—>QT/ - AR®Q.
(4) (4)

Dans 4 ® Q se trouvent ainsi deux ZT-modules de type fini, qui engendrent
A®qurQ.Ils’agitdeAetdeB=@ZT/ .
i (4)

de ZT-modules:

Affirmation 1: Dans ces conditions, il existe un entier b # 0 tel que
b.B < A. (Preuve évidente utilisant des systémes finis de générateurs
pour A4 et pour B.)

On obtient alors une suite exacte de ZT-modules:

.b
0-+B—>A—>A/ -0

b.B

Affirmation 2 : Le quotient 4 / est un groupe abélien de torsion,
b.B
d’exposant fini.
En effet, en inversant le role de 4 et B dans l'affirmation 1, il existe
un entier a # 0 tel que a. 4 = B. Il est clair que a . b annule A / .
b.B
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Avertissement : Si ) et p sont deux éléments non nuls de Z7T, sans
facteurs communs, on a

QT/ @QT/ zQT/ .
(4) () (A

Comme ZT n’est pas principal, on n’a en général pas

ZT/ @ZT/ xZT/ .
A (w (AW

Ceci indique que le choix d’une décomposition de 4 ® Q en somme de
modules cycliques n’est pas innocent. Nous reviendrons sur ce point au § 5.

PrOPOSITION. Soit A un ZT-module de type fini, sans Z-torsion et de

rang fini sur Q. Supposons qu’on a une injection B = @ ZT /
i=1
‘ (4)
S— A telle que A / soit un groupe fini. Alors A est fini si
B ' (1-tmA
et seulement si Rés(1—¢™, [] 4,) # O et dans ce cas Pordre de 4
i=1 (1 —tm) A

est égal & [ Rés (1—¢™, [T 4)|.
i=1

Remarques. 1) []A; ne dépend que de A4, puisqwil s’agit d’un géné- |
rateur primitif du premier idéal élémentaire de 4 ® Q, normalisé, suivant
nos conventions, pour que ce soit un « vrai » polyndme de terme constant
non nul. (Seul son signe est encore libre.)

2) Sid = H{(X,,Z), nous savons déja que A4 satisfait les hypothéses
de la proposition. De plus, la multiplication par (1—¢) est un isomor-
phisme de 4. Comme ZT est ncethérien, ceci reste vrai pour n’importe
quel module quotient de 4. Ainsi 4 / satisfait les hypothéses du théoréme
de Kervaire. B

Comme il est de Z-torsion par 'affirmation 2, il est fini. Toutes les
hypothéses de la proposition sont donc satisfaites, ce qui démontre la
formule de Fox, puisque [[4; = 4.

3) Nous laissons au lecteur le soin de faire la liste des conditions qui
rendent la formule valable pour les neeuds de dimension supérieure.

Preuve de la proposition. Par exactitude 3 droite du produit tensoriel,
on a: '
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A ®Q~xA®Q
1—-t™A4 (1-1t" (ARQ).

Donc: 4 / est de Z-torsion si et seulement si 1 — ": 4 ® Q
(1—t™ A

- A ® Q est injectif (puisque le rang sur Q de 4 ® Q est fini).

Si I'on passe & une décomposition de 4 ® Q en somme de modules
cycliques, on voit que ceci a lieu si et seulement si (1— t™) et 4 n’ont pas de
facteurs communs, c’est-3-dire si et seulement si Rés (1—1™, 4) # 0.

Considérons alors le diagramme commutatif:

0O-B—>A4A—- AB->0

4511 @Zl @sl

0O—-B—>A— AB->90

otl les homomorphismes &@; sont la multiplication par (1—™).
Si Rés(1—1™ A) # 0, Ker d, = 0 et la suite Ker-Coker associée au
diagramme précédent devient

0 — Ker &, — Coker &; — Coker &, — Coker &3 — 0.

Maintenant, comme A4 / est fini, on a
B

| Ker &5 | = | Coker @, | (ol | E | désigne le cardinal de I'ensemble E).

D’autre part, Rés(1—™, 4) # 0 implique (cf. §2) que | Coker @, |
est fini. Donc | Coker @, | I'est aussi et la suite Ker-Coker implique
| Coker @, | = | Coker @, |.

Il suffit donc de démontrer la formule de Fox pour le module B a la
place du module 4.

Si B est cyclique, cela résulte de la proposition du § 2. Si B est somme
de modules cycliques, cela résulte de cette proposition et de la multipli-
cativité du résultant. C.q.f.d.

Remarque. L’argument ci-dessus basé sur la suite Ker-Coker indique
pourquoi la démonstration de Fox (qui suppose plus ou moins implici-

tement que H, (X, Z) est somme de modules cycliques) a permis de
trouver néanmoins la formule correcte.
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5. EXEMPLES ET COMMENTAIRES

A. La premiére mention du fait que H, (X,,Z) n’est pas nécessai-
rement somme directe de Z7-modules cycliques se trouve (3 ma connais-
sance) dans une note de Plarticle de J. Milnor [6]. Voici une facon tres
simple de construire de tels nceuds.

Affirmation : Soit K = S* un nceud dont le polynome d’Alexander est
A

irréductible (sur Q) et pour lequel H, (X,, Z) n’est pas un groupe cyclique.
Alors H, (X, Z) n’est pas somme de modules cycliques.

En effet, I'irréductibilité du polynéme d’Alexander entraine que, si [
H, (X, Z) était somme de modules cycliques, il serait en fait cyclique.

Comme une présentation du groupe H, (X,; Z) est obtenue en remplagant

t par —1 dans une présentation du module H, (X ;Z) (appliquer le

§ 3, (i), pour m = 2 et le fait que (1 —¢) est un isomorphisme), on déduirait
A

l

que H, (X,, Z) serait cyclique. Contradiction.

Bien siir, ’argument est susceptible de multiples généralisations. Mais
il a Pavantage de permettre 'usage des tables! C’est ainsi qu’on découvre
que le nceud 955 satisfait les conditions de ’affirmation (cf. livre de Relde- |
meister).

En fait, il est facile de voir que 955 est le nceud de pretzel (3, 3, 3). En
appliquant la méthode classique pour obtenir une matrice de Seifert des
nceuds de pretzel (cf., par exemple, H. Trotter [9]) on obtient la matrice
de présentation suivante pour le module H, (X, Z):

3(1—9) 2t — 1
t—2 3(1—9)
D’ou le polyndme d’Alexander A4 = 7t> — 13¢ + 7 (irréductible sur R)

et Hy (Xza Z) =173 ®Z,.
Naturellement, on peut construire d’autres nceuds de pretzel sur le
méme principe.

B. L’argument basé sur la suite Ker-Coker (et a fortiori la formule de
Fox) montrent que le choix de la décomposition en somme de modules

cycliques sur Q7 n’intervient pas pour calculer I'ordre de H, (X,,; Z)
lorsqu’il est fini.
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Il est bien connu que, en revanche, le groupe lui-méme dépend de la
décomposition. L’exemple classique consiste en les neeuds 6; et 9ue
(et m=2).

C. 1l faut prendre garde au fait que la formule de Fox ne donne pas

A
Pordre de la Z-torsion de H, (X,;Z) lorsque ce groupe n’est pas fini,
contrairement & ce que la formulation utilisée par L.P. Neuwirth [7]
laisse croire. En fait, comme nous I’avons vu, Rés (1—¢™, 4) est nul dans

A
le cas ou H, (X,,; Z) n’est pas fini.
L’exemple suivant montre que la détermination de I’ordre de la torsion

de H, (X,,; Z), lorsque ce groupe n’est pas fini est une question plus difficile.
Soient P(t) =1—t+1¢% Q(t) = 6> — 11t +6, 4; = ZT/
P(1)

@ZT/

- Q)
A, = LT
/P(t).Q(t).

D’aprés les résultats classiques de H. Seifert, 4; et 4, peuvent €tre réalisés
comme H, (X, Z) de nceuds dans S°>.
Il n’est pas trés difficile de voir que

Ay ~7Z ®Z @ un S5-groupe de rang 2,
(1-1°4, |

A, ~1 DZL.
(1—1°) 4,

La raison essentielle de ces comportements est que P () = Q (¢) sur
le corps Fs.

Cet exemple montre, en particulier, que cette fois-ci, le choix de la décompo-
sition sur QT n’est pas innocent.
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