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SOMMES DE BICARRES DANS Z[./—1] ET Z [¥/1]

par Ph. REvOY

La résolution du probléme de Waring pour N est fondée sur des iden-
tités algébriques, dont la premiére est celle de Liouville pour les bicarrés:
6 (ai+az+as+ay)? = Y [(ata)* + (a;—a)*]. De méme, a

1=i<j=4 y
la base des études sur le probléme « facile » de Waring se trouvent toujours
des identités algébriques ([1], [2]).

Nous montrons ici 4 I’aide de diverses identités que dans Z [i] et dans
Z [p] ou p* + p + 1 = 0 tout entier qui est somme de bicarrés est somme
d’au plus 12 bicarrés. Nous dirons qu’un élément a d’un anneau est B,

s’il est somme de n bicarrés d’éléments de I’anneau.

1. Dans [3], I. Niven montre que tout entier de Gauss de la forme
a+ 24bi,a,beZ est somme d’au plus 18 bicarrés et que tout entier
de Gauss qui est B, a sa partie imaginaire divisible par 24. Ici, nous allons
établir:

THEOREME 1. Tout entier de Gauss de la forme a + 24bi est somme
d’au plus 12 bicarrés.

La divisibilit¢ par 24 de la partie imaginaire provient de ce que
Im(x+iy)* =4xy(x*—»?): si xp#0(2),x> —p2=0() et si xy
# 0(3), x* = y* = 1(3). Dans [3], I. Niven montre que tout entier de
Gauss de la forme 48z + 12 ou de la forme 48z + 24i + 36 est B,, a
Paide de I'identité:

(1) 6(X*+Y*)? =2X+V)*+2(X-1)*
+(X+iV*+ (X-iY)*.

En fait, on peut montrer le

LEMME . Tout entier de Gauss de la forme 24z + a avec a = 9,10, 12
ou 16 est B,.
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Nous allons utiliser 1’identité (1) en choisissant convenablement I’un
des deux derniers bicarrés du second membre. Pour cela, notons que

22+ 1=(E+1)* + (2 et 4z=(z+1)*+ [iz-D]?.
Ainsi
8z +2 =20+ z+1> + [2(1-i) z+1]?
= [[A+) z+1]* + [(1=0) 2]*]* + [[A=0) z+1]* + [(1+0) 2]*].
En multipliant par 6 et en utilisant (1), on obtient:
48z + 12 = 4 2z+D* + 2Qz+)* + 2 (2z—)*
+20+)z+1]* + [2(1-i)z+1]* + 2.
En remplaganf 2z par z on obtient:

24z + 10 = 4 (z+1D)* + 2(@+D)* + 2(z—)*
+[A+D) z+1]* + [A—i) z+1]*
ce qui est I'un des résultats annoncés. |
En partant de 8z + 1+ 4i = (4z+2i+1)*> + (4iz—2)%, on établit |
de la méme fagon que plus haut, ’identité suivante: |
24z +9 = 2z+D* + 2(+D)* + 2(@—i)* + [(1+i) ]*
+2[z(A+D)+1]* + 2[z(1-)+1]*.
Les deux autres résultats s’obtiennent d’une autre fagcon: on a tout
d’abord I'identité:
2 (x+3)* = 3(x+2)* + 3 (x+1)* — x* = 24x + 36.
Comme — 3 = (1+)*+ 1et —1 = (1+i)4 + 3, 0n a
24x + 12 = (x+2)* + (x+1)* + 3x* + 3 (x—1)*
+ [A+) x+D]* + [A+) x—D]*
qui est donc somme de 10 bicarrés. ,
Le dernier résultat provient d’une méthode mixte: on-a (x+1)* — 2x* |
+ (x—1)* = 12x*> + 2; comme -2 = (1+i)* + 2, cela montre que
12x* + 2 est Bs; de méme pour 12 (ix—i)*> + 2. Donc 12x% + 12 (ix— i)

+ 4 = 24x — 8 est B;, ce qui achéve la démonstration du lemme.
Remarquons qu’on peut obtenir d’autres identités: ainsi

8z+1 = (4z+1)% + (4iz)?
= [@z+1)* + Q)] + [Gz+1)* + +i)*]*.
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En utilisant (1), on voit que 48z + 6 est B, ,; mais comme (2z+1) + i (2iz)
= 1et (iz+1) —i(z+i) = 2, on voit que parmi ces 12 bicarrés, on a
1* et 2%. On a donc 48z + 37 = B,, avec la formule:

48z — 11 = 2[2(1+i)z+1]* + [2(A—) z+1]* + (4z+1)* |
+2[A+) E+D]* + 2[(1+D) - D]* + (22)*,

ol ’on peut d’ailleurs remplacer z par (1+7) z.

Une autre identité donne 48z + 4 = B,, 4 laide de 12x* + 2 = B,
et 12 (ix—2i)®> + 2 = B,,.

Pour déduire le théoréme 1 du lemme, il suffit de montrer qu’en ajoutant
a24z + 9, 10, 12 ou 16, un ou deux bicarrés, on obtient toutes les suites
24z, 24z+1, ...,24z+23. Pour cela, on utilise les congruences suivantes
modulo 24: 1* =1, 2* = 16, 3* = 9 mod 24, (1+i)* = 20 mod 24,
[2(1+7)]* = 8 mod 24, [3 (1+0)]* = 12 mod 24, 2+i)* = 17 mod 24
et (3+i)* = 4 mod 24. Ces congruences permettent de vérifier que sauf
pour 24z+7, +15 et +23, tout entier de Gauss de la forme 24z + a,
0 <a< 23 est By;; les trois restants sont donc bien B,, et le théoréme
est démontré.

2. Soit p une racine cubique primitive de l'unité, de sorte que 0 = p?
+ p + 1. Si dans l'identité de Liouville, on fait x, = x; = x,, on trouve
I'identité:
(3) 2(X°+XY+Y?2 = X*+ (X+Y)* + Y4,
qui va permettre d’étudier les sommes de bicarrés dans Z [p]. En effet,
on a l'identité:

u? + u(pu+v) + (pu+v)? = uv (1+2p) + 22 .
En prenant v = 1 + 2p, on trouve en changeant u en u — 1,
=3u=@-1+@-1[p @+D+1] + [p (u+1)+1]>.

On a donc d’apres (3): 184* € B;; comme tout élément de Z [p] est somme
de 3 carrés, on en déduit que tout multiple de 18 est By. De la méme fagon,

¢n prenant v = 1, plus haut, on voit que 2[u (1+2p)+1]2 = B;, ce
qui donne

12(1+2p)u = 2[u (1+2p)+1]* + 2 [up (1+2p) + p*]?

+ 2 [up? (1+2p)+p]* = B, ;
on a donc montré: ‘
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LeEMME. Tout multiple de 18 ou de 12 (1+2p) dans Z [p] est B,.

Cela va nous permettre de démontrer le:

THEOREME 2. Tout élément de Z [p] est somme d’au plus 12 bicarrés. §

Il s’agit d’aprés le lemme ci-dessus de montrer que si z € Z [p], I’équa- §
tion diophantiennez = X* + Y* + Z* + 18 T'a une solution (X, Y, Z, T
dans Z [p]; pour cela, il suffit de montrer que tout élément de Z [p]/(18)
est somme d’au plus 3 bicarrés. L’anneau Z [p]/(18) est produit direct §
de Fy et de 4 = Z [x]/(9, x*+3) car (9) = (1+2p)*: dans F,, tout élé- §
ment est une puissance 4éme et dans A4, les bicarrés sont les éléments congrus §

a 1 modulo x (d’aprés le lemme de Hensel) de sorte que 3 suffisent pour
exprimer tout élément de A.
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