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SOMMES DE BICARRÉS DANS Z [v/_1] ET Z [-^T]

par Ph. Revoy

La résolution du problème de Waring pour est fondée sur des identités

algébriques, dont la première est celle de Liouville pour les bicarrés:
6 (al + al + al + al)2 £ \_(at+aj)* 4- (ai-aj)4']. De même, à

l^t<
la base des études sur le problème « facile » de Waring se trouvent toujours
des identités algébriques ([1], [2]).

Nous montrons ici à l'aide de diverses identités que dans Z [z] et dans

Z [p] où p2 + p + 1 =0 tout entier qui est somme de bicarrés est somme
d'au plus 12 bicarrés. Nous dirons qu'un élément a d'un anneau est Bn

s'il est somme de n bicarrés d'éléments de l'anneau.

1. Dans [3], I. Niven montre que tout entier de Gauss de la forme
a + 24 bi, a, beZ est somme d'au plus 18 bicarrés et que tout entier
de Gauss qui est Bn a sa partie imaginaire divisible par 24. Ici, nous allons
établir:

Theoreme 1. Tout entier de Gauss de la forme a + 24 bi est somme
d'au plus 12 bicarrés.

La divisibilité par 24 de la partie imaginaire provient de ce que
Im (x + z»4 4xy (x2 - y2): si xy ^ 0 (2), x2 - y2 0 (2) et si xy
^ 0 (3), x2 y2 1 (3). Dans [3], I. Niven montre que tout entier de
Gauss de la forme 48z + 12 ou de la forme 48z + 24 z + 36 est B12 à
l'aide de l'identité:

(1) 6 (X2+ Y2)2 2 (X+ Y)4 + 2 (X- 7)4
+ (I+/T)4 + (I-/T)4

En fait, on peut montrer le

Lemme Tout entier de Gauss de la forme 24z + a avec a 9, 10, 12

ou 16 est B10.
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Nous allons utiliser l'identité (1) en choisissant convenablement l'un
des deux derniers bicarrés du second membre. Pour cela, notons que

2z + 1 (z+1)2 + (iz)2et 4z (z+1)2 + [i(z— l)]2
Ainsi

8z + 2 [2 (1+0 z+1]2 + [2 (1 — 0 z+1]2
[[(1+0 z+1]2 + [(1-0 z]2]2 + [[(1-Oz+l]2 + [(l + 0z]2]2.

En multipliant par 6 et en utilisant (1), on obtient:

48z + 12 4 (2z+1)4 + 2(2z+04 + 2(2z-r)4
+ [2 (1 + 0 z+1]4 + [2 (1 — 0 z+1]4 + 2.

En remplaçant 2z par z on obtient:

24z + 10 4 (z+l)4 + 2(z + 04 + 2(z-04
+ [(1+0 z+1]4 + [(1-Oz+l]4

ce qui est l'un des résultats annoncés.
En partant de 8z + 1 + 4 i+1)2 + (4z'z-2)2, on établit

de la même façon que plus haut, l'identité suivante:

24z + 9 (2z + l)4 + 2(z+04 + 2(z-04 + [(1 + 0 <T
+ 2 [z(1 +0+1]4 + 2 [z (1 — 0 +1]4 •

Les deux autres résultats s'obtiennent d'une autre façon: on a tout
d'abord l'identité:

(2) (x + 3)4 - 3 (x+2)4 + 3 (x+ l)4 - x4 24x + 36

Comme - 3 (1+ 04 + 1 et -1 (1 + 04 + 3, on a

24x + 12 (x+ 2)4 + (x+l)4 + + 3 (x-1)4
+ [(1+0 (x+1)]4 + [(1+0 (x-1)]4

qui est donc somme de 10 bicarrés.
Le dernier résultat provient d'une méthode mixte: on a (x+l)4 - 2x4

+ (x—l)4 12x2 + 2; comme — 2 (1 + i)4 + 2, cela montre que
12x2 + 2 est Bs; de même pour 12 (ix+2. Donc 12x2 + 12 i)2
+ 4 24x — 8 est Bu) ce qui achève la démonstration du lemme.

Remarquons qu'on peut obtenir d'autres identités: ainsi

8z+1 (4z+1)2 + (4/z)2

[(2z+l)2 + (2/z)]2 + [(;'z+1)2 + (z + 02]2 •
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En utilisant (1), on voit que 48z + 6 est B12; mais comme (2z +1) + i (2iz)
1 et (fz+1) - i(z + i) 2, on voit que parmi ces 12 bicarrés, on a

l4 et 24. On a donc 48z + 37 B10 avec la formule:

48z - 11 2 [2 (1 + i) z+1]4 + [2 (1 —/) z +1]4 + (4z+1)4

+ 2 [(1+0 (z+1)]4 + 2 [(1+0 (z -1)]4 + (2z)4

où l'on peut d'ailleurs remplacer z par (1 + i) z.
Une autre identité donne 48z + 4 B10 à l'aide de 12x2 + 2 B5

et 12(/x-202 + 2 B10.
Pour déduire le théorème 1 du lemme, il suffit de montrer qu'en ajoutant

à 24z + 9, 10, 12 ou 16, un ou deux bicarrés, on obtient toutes les suites
24z, 24z+1,..., 24z + 23. Pour cela, on utilise les congruences suivantes
modulo 24: l4 1, 24 16, 34 9 mod 24, (1 + z)4 20 mod 24,
[2(1 + 0]4 8 mod 24, [3 (1+0]4 12 mod 24, (2 + 04 17 mod 24
et (3 + 04 4 mod 24. Ces congruences permettent de vérifier que sauf
pour 24z + 7, +15 et +23, tout entier de Gauss de la forme 24z + a,
0 < a < 23 est B1±; les trois restants sont donc bien B12 et le théorème
est démontré.

2. Soit p une racine cubique primitive de l'unité, de sorte que 0 p2
+ p + 1. Si dans l'identité de Liouville, on fait x2 x4, on trouve
l'identité:

(3) 2 (X2 + XY+ Y2)2 Z4 + (X+ Y)4 + Y4

qui va permettre d'étudier les sommes de bicarrés dans Z [p]. En effet,
on a l'identité:

u2 + u (pu + v) + (pu + v)2 uv(\+2p) + v2

En prenant v 1 + 2p, on trouve en changeant wen«- 1,

-3u (u l)2 + (u-l)[p(u+l) + l] + [p(w+l) + l]2.
On a donc d après (3) : 18u2 e B2 comme tout élément de Z [p] est somme
de 3 carrés, on en déduit que tout multiple de 18 est B9. De la même façon,
en prenant v 1, plus haut, on voit que 2 [w (1+2p)+1]2 B3, ce
qui donne

12 (1+2/9) u2 [m (1 +2p) +1]2 + 2 (1 +
+ 2 [up2 (1+2 p) +pfB9 ;

on a donc montré:
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Lemme. Tout multiple de 18 ou de 12(1+2 dans Z est Bg.
Cela va nous permettre de démontrer le:

Theoreme 2. Tout élément de Z [p] est somme d'au plus 12 bicarrés.

Il s'agit d'après le lemme ci-dessus de montrer que si Z [p], l'équation

diophantienne z X4 + Y4+ Z4 + 18 Ta. une solution (T, Y, Z,T)
dans Z [p]; pour cela, il suffit de montrer que tout élément de Z [p]/(18)
est somme d'au plus 3 bicarrés. L'anneau Z [p]/(18) est produit direct
de et de AZ [jc]/(9, x2+3) car (9) (l+2p)4: dans F4, tout
élément est une puissance 4ème et dans +, les bicarrés sont les éléments congrus
à 1 modulo x (d'après le lemme de Hensel) de sorte que 3 suffisent pour
exprimer tout élément de A.
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