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ol les points représentent un diviseur dont le support est disjoint de | 0o l
De I’équation { Di | oo ) =0, on déduit alors

60< ao|00» + 50 +40 +30 =0

et la proposition. H

Remarques. On aurait pu partir d’'un polynéme ¢’ invariant par G
et nul sur 4. On aurait alors obtenu les diviseurs associés & 712 sur My, g,
En?° sur My 4 et n°° sur M, ,, d’olt un diviseur associé a une fonction F’
de la forme ‘
Dg = 600y + 4804, + 420,45 + 300, + ...

et une équation ‘
60< 00|00 +48 +42 +30 =0

On aurait enfin pu partir d’'un polynéme ¢” nul sur €, d’ou des divi-
seurs associés & 7% sur M, o g, n2° sur My 4 et én>° sur M, , et une équa-
tion

60<{a|0p> + 48 +40 +32 = 0.

CorOLLAIRE. Le schéma de Dynkin associé a la résolution ngp;: M;,,
- X, st
-2
L

oe—o—0—0—0 00— (exP)
-2 =2 =2 =2 =2 =2 =2

et la matrice d’intersection associée est la matrice de Cartan Ej .

V. 2. LE CAS DES AUTRES POLYEDRES REGULIERS ¢

Nous noterons dans cette section G, [respectivement G, G,;, D,]
le sous-groupe de SO (3) des rotations qui laissent invariant un icosaédre
régulier [resp. octaédre régulier, tétraédre régulier, polygone plan régulier
a n > 3 sommets] inscrit dans S? et G,,, [resp. Goers Giges D,] son image
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inverse par 6~ ! dans SU (2). La section précédente est ’étude de I’espace
Xico = C?/G,,, qui a un unique point singulier et qu’on a dit étre isomorphe
a la surface

iy = {(x,7,2)e C* | 2° = x> + )},

Soit X, le quotient de C? par G, 11 est isomorphe a la surface
Aoct = {(xays Z)EC3 , Zz = x(xZ _'y3)} .

On peut en construire, comme pour le cas précédent, une désingularisation
M, — X,.. Les calculs du chapitre IV relatifs 2 Xs,6 Xo,4 €t Xy, et
un calcul analogue & celui de la proposition 18 montrent que le diagramme
de Dynkin associé est

-2
L

X

*—0—0—0—0—+o (@ ~ P

-2 =2 =2 =2 =2 =2

et que la matrice d’intersection est la matrice de Cartan E 7.

' Contrairement a G,,,, le groupe G, n’est pas parfait. Son groupe
dérivé est G, et son abélianisé Z,. Le quotient X, de C? par G
= (G,er» G,.;) est isomorphe 2 la surface

tét

Ay = {(x,,2)eC’ l zt = x% + y3} .
(Pour I'isomorphisme, voir [12], chap. II, § 12 et [15], § 4.) On trouve aussi
Ay = {(x",y",2)eC|y? = x"(x'—z')},

ce qui correspond au changement de coordonnées x = x’ — z%2,y = -y’ | |
z = z'[2. On obtient cette fois M, » X,,,, o M, se fabrique en recollant
deux copies de Mg , et une copie de M, ,. Le diagramnie de Dynkin
associé est ‘

-2

o

o—0—0——0—o (@ ~ PY
-2 =2 =2 =2 =2

et la matrice d’intersection est la matrice de Cartan E.
L’analogue du théoréme A de la section IV.3 s’énonce donc comme
suit.
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TuforEME E. Les désingularisations des ensembles analytiques a
singularité unique C2?/G, ou G est I'un des trois groupes polyédraux binaires
Gico> Goers Gy, définissent les schémas de Dynkin Eg, E; et Eg.

Le dernier théoréme résume la situation qu’on obtiendrait en étudiant
le cas des groupes diédraux binaires (voir [1]).

TuEorREME D. Soient n > 3 et X, ’ensemble analytique quotient de
C? par le groupe diédral binaire D, (2 4n éléments). On obtient une désin-
gularisation M, — X,, o M, se fabrique en recollant deux copies de
M, , et une copie de X,, ,. Le schéma de Dynkin associ€ est

et la matrice d’intersection est la matrice de Cartan D,
On trouvera des renseignements complémentaires dans bien d’autres
articles parmi lesquels nous citerons [10] et [20].
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