Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN de la Harpe, P. / Siegfried, P.

Kapitel: V.1. Le cas de l'icosaèdre

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

convenable r (nous avons utilisé ici les remarques qui précèdent la proposition 13). Avec les notations de la section 2, on a précisément $\lambda = \lambda_2$ et $2 + r = b_1$.

En cherchant à itérer l'argument jusqu'à trouver une surface lisse, on aurait précisément à considérer les suites numériques de la section 2.

V. L'ICOSAÈDRE ET LES SOUS-GROUPES FINIS NON CYCLIQUES DE *SU*(2)

V.1. LE CAS DE L'ICOSAEDRE

Soient $h: \mathbb{C}^2 - \{0\} \to P^1 = \mathbb{S}^2$ la projection canonique et $\delta: SU(2) \to SO(3)$ le revêtement universel (à deux feuillets) du groupe des automorphismes analytiques isométriques de P^1 (= du groupe des rotations de la sphère). Soient G le sous-groupe de SO(3) des rotations qui laissent invariant un icosaèdre régulier inscrit dans \mathbb{S}^2 , et $G = \delta^{-1}(G)$; nous noterons encore δ la projection canonique de G sur G. Le groupe G a 60 éléments; ses orbites sur \mathbb{S}^2 ont aussi 60 points à trois exceptions près qui sont

l'orbite $\underline{\mathscr{A}} = \{\underline{a_1}, ..., \underline{a_{12}}\}$ des sommets de l'icosaèdre l'orbite $\underline{\mathscr{B}} = \{\underline{b_1}, ..., \underline{b_{20}}\}$ des barycentres de ses faces l'orbite $\underline{\mathscr{C}} = \{\underline{c_1}, ..., \underline{c_{30}}\}$ des milieux de ses arêtes.

Le groupe G agit linéairement dans \mathbb{C}^2 ; ses orbites ont toutes 120 points, à la seule exception de l'origine.

Le quotient $X_{ico} = \mathbb{C}^2/G$ est un ensemble analytique, normal par le théorème de Cartan; il a un unique point non lisse, que nous noterons x_0 et qui est l'image canonique de l'origine de \mathbb{C}^2 . Nous renvoyons à [12], chapitre II, § 13 et/ou à [15], théorème 4.5 pour le résultat classique suivant (dont nous ne faisons pas usage ci-dessous): il existe une application poly-

nômiale $\phi: \mathbb{C}^2 \to \mathbb{C}^3$ qui fournit par passage au quotient un isomorphisme ϕ de X_{ico} sur la surface de \mathbb{C}^3 à singularité unique

$$A_{ico} = \{(x, y, z) \in \mathbb{C}^3 \mid z^5 = x^2 + y^3 \}.$$

Le but de cette section est d'exhiber une désingularisation de X_{ico} . La première étape consiste à remplacer l'unique singularité x_0 par trois singularités d'un type connu, et ceci grâce à un premier éclatement.

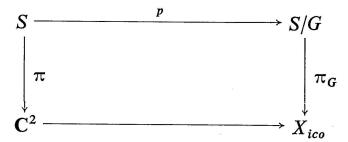
Le groupe SU(2) agit sur l'éclaté de \mathbb{C}^2 à l'origine: si $\sigma \in SU(2)$ et $([z], w) \in S \subset P^1 \times \mathbb{C}^2$, alors $\sigma([z], w) = (\delta(\sigma)[z], \sigma w)$. L'éclatement $\pi: S \to \mathbb{C}^2$ est alors équivariant pour SU(2). Avec les coordonnées locales de la section I.3, l'action d'un élément $\sigma = \begin{pmatrix} fg \\ hj \end{pmatrix}$ dans SU(2) sur S est décrite par

$$\begin{cases}
\{(u,v) \in \psi_0(S_0) \mid f + gu \neq 0\} \rightarrow \{(u,v) \in \psi_0(S_0) \mid j - gu \neq 0\} \\
(u,v) & \mapsto \frac{\left(\frac{h+ju}{f+gu}, fv + guv\right)}{\left(\frac{h+gu}{f+gu}, fv + guv\right)}
\end{cases}$$

et par

$$\begin{cases} \left\{ \left(u,v \right) \in \psi_1 \left(S_1 \right) \middle| j + hu \neq 0 \right\} \rightarrow \left\{ \left(u,v \right) \in \psi_1 \left(S_1 \right) \middle| f - hu \neq 0 \right\} \\ \left(u,v \right) & \mapsto & \left(\frac{fu + g}{hu + j} , \ huv + jv \right) \end{cases}$$

Nous noterons $p: S \to S/G$ le morphisme quotient. L'éclatement passe au quotient modulo G et définit un morphisme π_G , propre et surjectif, rendant le diagramme



commutatif. Si E est la fibre exceptionnelle de π , alors celle de π_G est $\pi_G^{-1}(x_0) = E/G$ et la restriction $S/G - E/G \to X_{ico} - \{x_0\}$ de π_G est un isomorphisme. Par suite, toute résolution de S/G fournit par composition avec π_G une résolution de X_{ico} .

Comme tout quotient de P^1 par un groupe fini, l'ensemble analytique E/G est homéomorphe à P^1 lui-même. On sait d'ailleurs expliciter: consi-

dérons par exemple la fonction méromorphe
$$\begin{cases} \mathbf{C} & \longrightarrow \mathbf{C} \\ z & \longrightarrow \frac{H^3}{1728f^5} & \text{où } H(z) \end{cases}$$

$$= -(z^{20}+1) + 228(z^{15}-z^5) - 494z^{10} \text{ et } f(z) = z(z^{10}+11z^5-1); \text{ son prolongé à la droite projective } E \text{ passe au quotient et définit l'homéo-$$

morphisme $E/G oup P^1$ (voir [12], § 13 et § 14). Mais nous voulons plutôt étudier le plongement de E/G dans S/G, c'est-à-dire le morphisme p au voisinage de E. Les points de S où le sous-groupe d'isotropie de G n'est pas trivial sont précisément ceux de $\mathscr{A} \cup \mathscr{B} \cup \mathscr{C}$, considéré comme sous-ensemble de $E = \pi^{-1}$ (0). Par suite S/G est un ensemble analytique lisse, sauf aux trois points $\alpha = \mathscr{A}/G$ $\beta = \mathscr{B}/G$ et $\gamma = \mathscr{C}/G$. La prochaine étape consiste à analyser la singularité de S/G en α .

Choisissons un point \underline{a} de $\underline{\mathscr{A}}$ et soit a la droite correspondante dans \mathbb{C}^2 . Le sous-groupe d'isotropie de \underline{G} en \underline{a} est cyclique à 5 éléments. Son image inverse G_a par δ est le sous-groupe des éléments de G laissant (globalement) invariante la droite a; il est cyclique d'ordre 10. Choisissons des coordonnées sur \mathbb{C}^2 telles que a soit la droite d'équation y=0 et que les éléments de G_a soient représentés par des matrices $\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$ où ω est une racine dixième de l'unité. L'action d'un tel élément sur S s'écrit alors dans les cartes

$$\begin{cases}
\mathbf{C}^2 = \psi_0(S_0) \to \psi_0(S_0) \\
(u, v) \mapsto (\omega^{-2}u, \omega v)
\end{cases}
\begin{cases}
\mathbf{C}^2 = \psi_1(S_1) \to \psi_1(S_1) \\
(u, v) \mapsto (\omega^2u, \omega^{-1}v)
\end{cases}$$

Le choix des coordonnées permet donc de considérer que G_a agit linéairement. En comparant avec le chapitre III, on voit de plus que la singularité en α est du type $\mathbb{C}^2/G_a = \mathbb{C}^2/G_{10,8} = X_{10,8}$. On montre de même que les singularités en β et γ sont respectivement du type $X_{6,4}$ et $X_{4,2}$.

Il n'y a donc plus qu'à recoller les résultats du chapitre IV. Il existe ainsi un voisinage U_{α} de α dans S/G (ne contenant ni β ni γ), un voisinage V_{α} du point singulier dans $X_{10,8}$, une variété lisse W_{α} isomorphe à ρ^{-1} (V_{α}) , des isomorphismes κ_{α} et K_{α} rendant commutatif le diagramme

$$W_{\alpha} \xrightarrow{K_{\alpha}} \tilde{\rho}^{-1}(V_{\alpha}) \xrightarrow{\leftarrow} M_{10,8}$$

$$\downarrow \rho_{i,\alpha} \qquad \qquad \downarrow \tilde{\rho}$$

$$S/G \longleftrightarrow U_{\alpha} \xrightarrow{\kappa_{\alpha}} V_{\alpha} \xrightarrow{\leftarrow} X_{10,8}$$

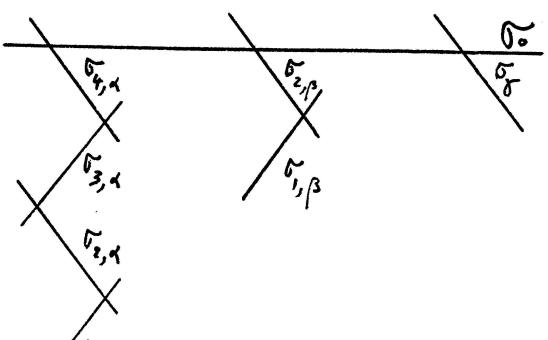
et des données analogues correspondant à β et γ . Les variétés W_{α} , W_{β} et W_{γ} se recollent en une variété lisse M_{ico} ; les morphismes $\rho_{i,\alpha}$, $\rho_{i,\beta}$ et $\rho_{i,\gamma}$ se recollent en une désingularisation $\rho_i \colon M_{ico} \to S/G$. De plus, on a les propriétés suivantes:

- (a) Notons \tilde{a}/G l'image par p de la transformée stricte de a. Alors κ_{α} applique $(\tilde{a}/G) \cap U_{\alpha}$ sur $[\{(0,t)\}/G_{10,8}] \cap V_{\alpha}$ et $(E/G) \cap U_{\alpha}$ sur $[\{(s,0)\}/G_{10,8}] \cap V_{\alpha}$. L'isomorphisme K_{α} applique ρ_i^{-1} $(\tilde{a}/G) \cap W_{\alpha}$ et ρ_i^{-1} $(E/G) \cap W_{\alpha}$ dans les courbes notées σ_{in} et σ_{fi} à la section IV.3.
- (β) De même, ρ_i est au-dessus de β du même type que $M_{6,4} \to X_{6,4}$. L'isomorphisme κ_{β} fait correspondre E/G à $\{(s,0)\}/G_{6,4}$ et K_{β} fait correspondre ρ_i^{-1} (E/G) au σ_{fi} de $M_{6,4}$.
- (γ) De même, ρ_i est au-dessus de γ du même type que $M_{4,2} \to X_{4,2}$. L'isomorphisme κ_{γ} fait correspondre E/G à $\{(s,0)\}/G_{4,2}$ et K_{γ} fait correspondre ρ_i^{-1} (E/G) au σ_{fi} de $M_{4,2}$.

Par suite, $\pi_G \rho_i : M_{ico} \to X_{ico}$ est une résolution de la singularité x_0 de $X_{ico} = \mathbb{C}^2/G$. Sa fibre exceptionnelle contient 8 courbes irréductibles sans point triple, à intersections transverses, toutes isomorphes à P^1 , et que nous noterons comme suit:

$$\begin{split} \sigma_0 &= \stackrel{\sim}{\rho_i^{-1}}(E/G) \\ \sigma_{j,\alpha} & \text{correspondant aux } \sigma_j \text{ de } M_{10,8} \ (j=1,2,3,4) \\ \sigma_{j,\beta} & \text{correspondant aux } \sigma_j \text{ de } M_{6,4} \ (j=1,2) \\ \sigma_{\gamma} & \text{correspondant à } \sigma_1 \text{ dans } M_{4,2}. \end{split}$$

Les calculs de la section IV.3 montrent que l'intersection de deux de ces courbes est 0 ou 1, et vaut 1 si et seulement si elles se coupent dans le diagramme suivant:



Les auto-intersections des $\sigma_{j,\alpha}$, $\sigma_{j,\beta}$, σ_{γ} sont toutes -2 vu la proposition 17 et la propriété de la forme d'intersection rappelée à la section IV.1 sous (vj). Pour connaître la matrice d'intersection de la résolution $\pi_G \rho_i$: $M_{ico} \to X_{ico}$, il reste donc à calculer l'auto-intersection de σ_0 .

Proposition 18. On a $\langle \sigma_0 | \sigma_0 \rangle = -2$.

Première étape de la preuve : définition de la fonction holomorphe \tilde{F} sur M_{ico} .

Ecrivons $\mathscr{A} = h^{-1}(\mathscr{A}) \cup \{0\} = \{a_1, ..., a_{12}\}$ où chaque a_j est une droite de \mathbb{C}^2 passant par l'origine. La transformée stricte \mathscr{A} de \mathscr{A} consiste en 12 « droites » disjointes de S; comme nous l'avons déjà fait ci-dessus (pour définir $\alpha \in E/G$), on peut identifier $\mathscr{A} \cap E$ à \mathscr{A} .

Soit φ un polynôme homogène de degré 120 sur \mathbb{C}^2 invariant par G et s'annulant sur \mathscr{A} . (Un tel polynôme s'obtient en multipliant un polynôme de degré 1 nul sur a_1 par ses transformés par G.) Soit $f = \varphi \cdot \pi$, qui s'annule sur E et sur les transformés strictes a_j des a_j ; plus précisément

$$D_f = nE + \sum_{j=1}^{12} 10\tilde{a}_j$$

où n est un entier que l'on calcule ci-dessous. La fonction f est invariante par G, donc définit une fonction holomorphe F sur S/G. La « droite » $\stackrel{\sim}{a/G}$ est l'image par p de chacune des « droites » $\stackrel{\sim}{a_j}$. La fonction F s'annule donc sur E/G et sur $\stackrel{\sim}{a/G}$ avec

$$D_F = \frac{n}{120} (E/G) + 12 (a/G).$$

Enfin, la fonction annoncée \tilde{F} est la composition $F\rho_i$.

Deuxième étape: calcul du diviseur de F.

Considérons à nouveau sur \mathbb{C}^2 les coordonnées (x, y) telles que a_1 soit l'axe d'équation y = 0 et tel que les éléments du groupe d'isotropie G_{a_1} soient représentés par $\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$ avec $\omega^{10} = 1$. Alors $\varphi(x, y)$ $= y^{10} \prod_{k=1}^{11} (x - \lambda_k y)^{10}$ avec les λ_k des nombres complexes distincts

(exercice facile: l'un d'entre eux est nul). Puis, avec π_0 et π_1 comme à la section I.3, $f_0 = \varphi \pi_0 : \psi_0(S_0) \to \mathbb{C}$ et $f_1 = \varphi \pi_1 : \psi_1(S_1) \to \mathbb{C}$ sont donnés par

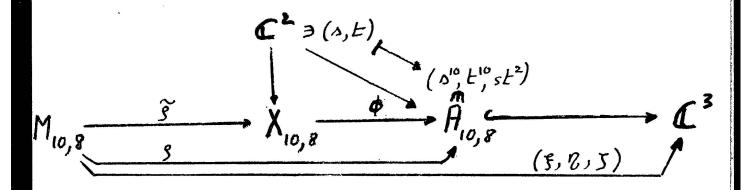
$$f_0(u,v) = \varphi(v,uv) = u^{10} v^{120} \prod_{k=1}^{11} (1 - \lambda_k u)^{10}$$
$$f_1(u,v) = \varphi(uv,v) = v^{120} \prod_{k=1}^{11} (u - \lambda_k)^{10}.$$

Comme $E_j = \psi_j(S_j \cap E) = \{(u, v) \in \mathbb{C}^2 \mid v = 0\} (j = 0, 1)$, les diviseurs de f et de F sont

$$D_f = 120 E + \sum_{j=1}^{12} 10 \tilde{a}_j \qquad D_F = E/G + 12 (\tilde{a}/G).$$

Troisième étape: calcul du diviseur de \tilde{F} au voisinage de ρ_i^{-1} (α).

Soit H_{α} : $X_{10,8} \to \mathbb{C}$ l'application définie par le polynôme $s^{10}t^{120}$ sur \mathbb{C}^2 . Rappelons des sections précédentes que l'on a



et que

$$\phi^{-1} \left[\left\{ (x,0,0) \right\} \right] = \left\{ (s,0) \right\} / G_{10,8} \qquad \phi^{-1} \left[\left\{ (0,y,0) \right\} \right] = \left\{ (0,t) \right\} / G_{10,8}$$

$$\tilde{\rho}^{-1} \left[\left\{ (s,0) \right\} / G_{10,8} \right] = \sigma_{fi} \qquad \tilde{\rho}^{-1} \left[\left\{ (0,t) \right\} / G_{10,8} \right] = \sigma_{in}$$

$$\tilde{\rho}^{-1} \left[\left\{ (0,0) \right\} / G_{10,8} \right] = \sigma_{1} \cup \sigma_{2} \cup \sigma_{3} \cup \sigma_{4}.$$

Par suite

$$D_{H_{\alpha}} = \left[\{ (s,0) \} / G_{10,8} \right] + 12 \left[\{ (0,t) \} / G_{10,8} \right]$$

et le diviseur de $H_{\alpha}\rho = \xi \eta^{12}$ est $D_{\xi} + 12 D_{\eta}$.

Si F_{α} est la restriction de F à U_{α} , il résulte de l'expression de D_F que $F_{\alpha} \kappa_{\alpha}^{-1}$ et la restriction de H_{α} à V_{α} ont même diviseur, donc que D_F^{\sim} au voisinage de ρ_i^{-1} (α) correspond à D_{ξ} + 12 D_{η} . En recopiant dans la preuve

de la proposition 17 et avec les notations introduites peu avant la proposition 18, on voit que D_F^{\sim} est donné dans le voisinage de $\rho_i^{-1}(\alpha)$ par

$$10 \,\sigma_{in,\alpha} + 8 \,\sigma_{1,\alpha} + 6 \,\sigma_{2,\alpha} + 4 \,\sigma_{3,\alpha} + 2 \,\sigma_{4,\alpha} + 12 \,(\sigma_{1,\alpha} + 2 \,\sigma_{2,\alpha} + 3 \,\sigma_{3,\alpha} + 4 \,\sigma_{4,\alpha} + 5 \,\sigma_0)$$

ou encore par

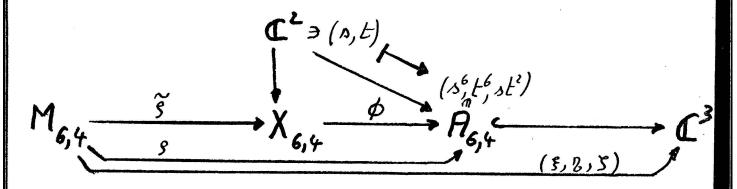
$$60 \sigma_0 + 50 \sigma_{4,\alpha} + \dots$$

ou les points représentent un diviseur dont le support est disjoint de $|\sigma_0|$.

Quatrième étape: calcul de D_F^{\sim} au voisinage de $\rho_i^{-1}(\beta)$ et de $\rho_i^{-1}(\gamma)$.

On peut choisir U_{β} de telle sorte qu'il ne rencontre pas a/G. Le diviseur de la restriction F_{β} de F à U_{β} coı̈ncide alors avec $(E/G) \cap U_{\beta}$.

Soit $H_{\beta}: X_{6,4} \to \mathbb{C}$ l'application définie par le polynôme t^{120} sur \mathbb{C}^2 . Rappelons que



Par suite, le diviseur de H_{β} est 20 [{ (0, t) }/ $G_{6,4}$] et le diviseur de $H_{\beta}\hat{\rho}$ = η^{20} est 20 D_{η} . On voit donc que D_{F} est donné dans le voisinage de $\rho_{i}^{-1}(\beta)$ par

$$20 \left(\sigma_{1,\beta} + 2 \,\sigma_{2,\beta} + 3 \,\sigma_0\right) = 60 \,\sigma_0 + 40 \,\sigma_{2,\beta} + 20 \,\sigma_{1,\beta} \,.$$

De même, il est donné au voisinage de $\rho_i^{-1}(\gamma)$ par

$$30 (\sigma_{\gamma} + 2 \sigma_{0}) = 60 \sigma_{0} + 30 \sigma_{\gamma}.$$

Dernière étape: calcul de l'auto-intersection de σ_0 .

En résumé:

$$D_{\widetilde{F}} = 60 \,\sigma_0 + 50 \,\sigma_{4,\alpha} + 40 \,\sigma_{2,\beta} + 30 \,\sigma_{\gamma} + \dots$$

où les points représentent un diviseur dont le support est disjoint de $|\sigma_0|$. De l'équation $\langle D_F | \sigma_0 \rangle = 0$, on déduit alors

$$60 \langle \sigma_0 | \sigma_0 \rangle + 50 + 40 + 30 = 0$$

et la proposition.

Remarques. On aurait pu partir d'un polynôme φ' invariant par G et nul sur \mathcal{B} . On aurait alors obtenu les diviseurs associés à η^{12} sur $M_{10,8}$, $\xi \eta^{20}$ sur $M_{6,4}$ et η^{30} sur $M_{4,2}$, d'où un diviseur associé à une fonction F' de la forme

$$D_{F'} = 60 \sigma_0 + 48 \sigma_{4,\alpha} + 42 \sigma_{2,\beta} + 30 \sigma_{\gamma} + \dots$$

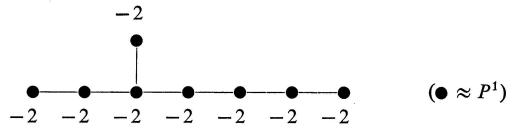
et une équation

$$60 \langle \sigma_0 | \sigma_0 \rangle + 48 + 42 + 30 = 0$$

On aurait enfin pu partir d'un polynôme φ'' nul sur \mathscr{C} , d'où des diviseurs associés à η^{12} sur $M_{10,8}$, η^{20} sur $M_{6,4}$ et $\xi\eta^{30}$ sur $M_{4,2}$ et une équation

$$60 \langle \sigma_0 | \sigma_0 \rangle + 48 + 40 + 32 = 0$$
.

COROLLAIRE. Le schéma de Dynkin associé à la résolution $\pi_G \rho_i \colon M_{ico} \to X_{ico}$ est



et la matrice d'intersection associée est la matrice de Cartan E_8 .

V. 2. Le cas des autres polyèdres réguliers •

Nous noterons dans cette section \underline{G}_{ico} [respectivement \underline{G}_{oct} , $\underline{G}_{t\acute{e}t}$, \underline{D}_n] le sous-groupe de SO (3) des rotations qui laissent invariant un icosaèdre régulier [resp. octaèdre régulier, tétraèdre régulier, polygone plan régulier à $n \ge 3$ sommets] inscrit dans S^2 et G_{ico} [resp. G_{oct} , $G_{t\acute{e}t}$, D_n] son image