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convenable 7 (nous avons utilisé ici les remarques qui précédent la propo-
sition 13). Avec les notations de la section 2, on a précisément A = Ay
et 2 +r=b,.

En cherchant & itérer I’argument jusqu’a trouver une surface lisse,
on aurait précisément i considérer les suites numériques de la section 2.

V. LICOSAEDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.1. LE CAS DE L’ICOSAEDRE

Soient 4: C* — {0} » P! = S? la projection canonique et : SU (2)
— 80O (3) le revétement universel (3 deux feuillets) du groupe des auto-
morphismes analytiques isométriques de P! (= du groupe des rotations
de la sphére). Soient G le sous-groupe de SO (3) des rotations qui laissent |
invariant un icosaddre régulier inscrit dans S2, et G = 61 (G); nous
noterons encore ¢ la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S* ont aussi 60 points 3 trois exceptions prés
qui sont

Porbite & = {ay,..,a;,} des sommets de I’icosaédre
Porbite & = { by, ..., b, } des barycentres de ses faces

Porbite € = {c¢;, ..., c30 } des milieux de ses arétes.

Le groupe G agit linéairement dans C?; ses orbites ont toutes 120 points,
a la seule exception de I’origine.

Le quotient X;,, = C%/G est un ensemble analytique, normal par
le théoréme de Cartan; il a un unique point non lisse, que nous noterons-
X, et qui est 'image canonique de ’origine de C2. Nous renvoyons a [12], |
chapitre II, § 13 et/ou a [15], théoréme 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application poly-

némiale ¢: C* —» C* qui fournit par passage au quotient un isomorphisme
¢ de X, sur la surface de C* a singularité unique

Ay = {(6,7,2)€C* | 2° = x? + y*}.
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Le but de cette section est d’exhiber une désingularisation de X;,.
La premiére étape consiste a remplacer 'unique singularité x, par trois
singularités d’un type connu, et ceci grice a un premier éclatement.

Le groupe SU (2) agit sur I’éclaté de C2 a Porigine: si o € SU (2) et
(2, w)e S « P! x C?, alors o ([z], w) = (6 (0) [z], ow). L’éclatement
n: S — C? est alors équivariant pour SU (2). Avec les coordonnées locales
f9

de la section 1.3, I’action d’un élément ¢ = (
J

)dans SU (2) sur S est
décrite par |

]{(u,v)ewo(So) |f+9u # 0} "{(ua”)E‘//O(So)lj —gu#0}

o
1 (u,?) = (f :;Z , Ju+ guv)
et par
J{(u,v)eth (SO |j+hu #0} = {(@,v) ey, (S)|f —hu #0)
1 | (u,v) > <}{: _:-jg , huv + jv)

Nous noterons p: S — S/G le morphisme quotient. L’éclatement passe
au quotient modulo G et définit un morphisme 74, propre et surjectif,
rendant le diagramme

S - S/G

T UTe

! I
C? X

ico

commutatif. Si E est la fibre exceptionnelle de 7, alors celle de 7 est gt (x,)

= E/G et la restriction S/G—E/G —» X;,, — {x,} de ns est un isomor-

phisme. Par suite, toute résolution de S/G fournit par composition avec

ng une reésolution de X,
Comme tout quotient de P! par un groupe fini, ’ensemble analytique

E|G est homéomorphe & P! lui-méme. On sait d’ailleurs expliciter: consi-

C-----C
dérons par exemple la fonction méromorpheI H® ou H(2)
Z|= = -—
I 172813

= = (2*°+1) + 228 (z'°—2%) — 494210 ¢t f(2) = z(z'°+112°-1); son
prolongé a la droite projective E passe au quotient et définit ’homéo-




- invariante la droite a; il est cyclique d’ordre 10. Choisissons des coordonnées
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morphisme E/G — P (voir [12], § 13 et § 14). Mais nous voulons plut6t
etudier le plongement de E/G dans S/G, c’est-a-dire le morphisme p aul
voisinage de E. Les points de S ou le sous-groupe d’isotropie de G n’est
pas trivial sont précisément ceux de & U B U %, considéré comme sous-
ensemble de E = 7~ ! (0). Par suite S/G est un ensemble analytique lisse, |
sauf aux trois points o = AIG B = B|G et y = %/G. La prochaine
etape consiste 4 analyser la singularité de S/G en a.

Choisissons un point a de o/ et soit a la droite correspondante dans C2.
Le sous-groupe d’isotropie de G en a est cyclique & 5 éléments. Son image
inverse G, par J est le sous-groupe des éléments de G laissant (globalement)

sur C? telles que a soit la droite d’équation y = 0 et que les éléments §

0

_1> ol w est une racine §
w

dixiéme de I'unité. L’action d’un tel élément sur S s’écrit alors dans les
cartes

de G, soient représentés par des matrices (

{ C? = Yo (So) = ¥y (So) { C* = Y (S) = Yy (Sy)

(u,v) = (0™ %u, wv) - (u,v) - (0*u, 0™ 1)

Le choix des coordonnées permet donc de considérer que G, agit linéai-
rement. En comparant avec le chapitre III, on voit de plus que la singularité
en o est du type C?/G, = C*lGio g = X10,3- On montre de méme que les
singularités en f§ et y sont respectivement du type X 4 €t X, 5.

Il n’y a donc plus qu’a recoller les résultats du chapitre IV. Il existe
ainsi un voisinage U, de « dans S/G (ne contenant ni B ni ), un voisinage |

V. du point singulier dans X , g, une variété lisse W,isomorphe a p~1 (V),
des isomorphismes k, et K, rendant commutatif le diagramme

W, —— p=1(V,)

M10,8
pi,a p
K, |
S/G > Uoz - Va “ X10,8

et des données analogues correspondant 3 B et y. Les variétés W, W, et
W, se recollent en une variété lisse M ,,,; les morphismes Pia Pip € Piy

se recollent en une désingularisation p,: M., — S/G. De plus, on a les
propriétés suivantes:
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(x) Notons d/G I'image par p de la transformée stricte de a. Alors k,
applique (@3/G) n U, sur [{(0,1)}/Gios]lnV, et (E/G)N T,

sur [{ (s, 0) }/Gyo.5] N V,. L’isomorphisme K, applique p; ! (4/G)

N W, et p; ' (E/G) n W, dans les courbes notées oim €t 0;; ala
section IV.3.

(B) De méme, p; est au-dessus de f du méme type que Mg 4— X 4.
L’isomorphisme k, fait correspondre E/G & {(s,0) }/Gg 4 et K,

fait correspbndre pi ' (E/G) au o, de Mg 4.

(y) De méme, p; est au-dessus de 7 du méme type que My, X, 5.
L’isomorphisme «, fait correspondre E/G & {(s,0)}/G, , et K,

fait correspondre ;),-— Y (E/G) au o de My ,.

Par suite, ngp;: M;., - X, est une résolution de la singularité xo de
X, = C?/G. Sa fibre exceptionnelle contient 8 courbes irréductibles sans
point triple, & intersections transverses, toutes isomorphes 3 P!, et que nous
noterons comme suit:

oo = pi ' (E[G)

0;. correspondant aux o;de My, (j = 1,2,3,4)
o;p correspondant aux o;de My, (j = 1,2)

o,  correspondant a ¢, dans M, ,.

Les calculs de la section IV.3 montrent que 'intersection de deux de ces

courbes est 0 ou 1, et vaut 1 si et seulement si elles se coupent dans le dia-
gramme suivant:
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Les auto-intersections des Oja Tj,ps 0y sont toutes —2 vu la propo-
sition 17 et la propriété de la forme d’intersection rappelée a la section IV.1 §
sous (v/ ). Pour connaitre la matrice d’intersection de la résolution TgpP;:
M;co = X, il reste donc A calculer Iauto-intersection de Co-

PRroPoOSITION 18. Ona{a,|0,> = —2.

Premiéere étape de la preuve : définition de la fonction holomorphe F
sur M;,,. ,
Ecrivons o = h™' (&) v {0} = {a, .., a1, } ol chaque g; est

une droite de C? passant par I’origine. La transformée stricte o/ de o
consiste en 12 « droites » disjointes de S; comme nous I’avons déja fait B

ci-dessus (pour définir « € E/G), on peut identifier o N E & ER

Soit @ un polynéme homogéne de degré 120 sur C2 invariant par G
et s’annulant sur 7. (Un tel polynéme s’obtient en multipliant un poly-
néme de degré 1 nul sur a, par ses transformés par G.) Soit f = ¢ . =,

qui s’annule sur E et sur les transformés strictes a; des a;; plus précisément §

12 .
D, =nE+ ) 104,
=1

J=

ou n est un entier que I’on calcule ci-dessous. La fonction S est invariante
par G, donc définit une fonction holomorphe F sur S/G. La «droite »

a/G est 'image par p de chacune des « droites » a;. La fonction F s’annule

donc sur E/G et sur a/G avec
n

Dp = - (E[G) +12(a/G) .

Enfin, la fonction annoncée F est la composition Fp,.

Deuxieme étape : calcul du diviseur de F. ' /

Considérons a nouveau sur C2 les coordonnées (x, y) telles que a,
soit ’axe d’équation y = 0 et tel que les éléments du groupe d’isotropie

- 0
G,, soient représentés par (co B 1> avec w'® = 1. Alors ¢ (x,y)
w

11

=y ] (=242)'° avec les 1, des nombres complexes distincts
k=1
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(exercice facile: 'un d’entre eux est nul). Puis, avec 7, et m; comme ala
section 1.3, fo = @no:¥o(Se) > C et fy =on:y;(Sy) —> C sont

donnés par
11

fou,v) = ¢ (v,uv) = u'®0?® [T (1=4w)'°
k

=1

11
f1(u,v) = o(uv,v) = 9120 H (u—)uk)lo )
k=1

Comme E; = ¢, (S;nE) = {(u,v) eC*|v =0} (j = 0, 1), les diviseurs
de f et de F sont -
12 A ~
D, =120E+ ) 10g; Dr = E/G + 12(a/G).
j=1 :
Troisiéme étape : calcul du diviseur de Fau voisinage de p; ! ().
Soit H,: X;,g — C lapplication définie par le polyndme s'°¢'2°
sur C2. Rappelons des sections précédentes que 1’on a

C* > (s,5)

}J ’ ¢ > A L ;
M > Ko s A g

0,8 9,¢
N 3 — (s,2,5) f
et que
¢ [{(x,0,00}] = {(5,0)}/Gros ¢ '[{(0,¥,00}] = {(0,0}/Gyo
;_1 [{ (s, 0) }/Gm,s] = Oy ;—1 [{ 0,9 }/G10,8] = Oip

p? [{ (0,0)}/G1o5] =0, V0,U05U0,.
Par suite

/ DHa = [{ (Sa O) }/Gm,s] + 12 [{ (0: t) }/GIO,S]

et le diviseur de H,p = &n'? est D, + 12 D,
Si F, est la restriction de F & U,, il résulte de I’expression de Dy que
F,x,~1 et la restriction de H, & V, ont méme diviseur, donc que D7 au

voisinage de p; ' («) correspond 2 D, + 12 D,. En recopiant dans la preuve
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de la proposition 17 et avec les notations introduites peu avant la propo-
sition 18, on voit que D% est donné dans le voisinage de p; ! (&) par

10 Cing + 8 01 + 60'2’“ + 405, + 204,

+12(01,+205,+303,+40,,+50,)
ou encore par ;
6004 + 500, , +

ou les points représentent un diviseur dont le support est disjoint de | T, |

Qifatriéme étape : calcul de D% au voisinage de p; ' () et de it (y).

On peut choisir U de telle sorte qu’il ne reﬁcontre pas ;/ G. Le diviseur
de la restriction F; de F a Uy coincide alors avec (E/G) n Uy,

Soit Hy: X5 4 — C Papplication définie par le polyndme £12° sur CZ2.
Rappelons que

d:-La {”/L—)

\;\:{A;’”ﬁfaf) |
» X = [, — grd:j

6 /]
\\ s . A (f}Z)r) }

X
“

Par sulte le diviseur de Hy est 20 [{ (0, 7) }/Gg 4] et le diviseur de Hﬁp
= 17 % est 20 D,. On voit donc que D% est donné dans le voisinage de

" (B) par

20(61,54+20,45+30y) = 600, + 400, + 200, ;.

De méme, il est donné au voisinage de p; ! (y) par

30(oy,+200) = 600, + 300, .

Derniére étape : calcul de Iauto-intersection de o .

En résumé:

Df == 600'0 + 5004,1 + 4002,ﬁ + 300'), + ooe
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ol les points représentent un diviseur dont le support est disjoint de | 0o l
De I’équation { Di | oo ) =0, on déduit alors

60< ao|00» + 50 +40 +30 =0

et la proposition. H

Remarques. On aurait pu partir d’'un polynéme ¢’ invariant par G
et nul sur 4. On aurait alors obtenu les diviseurs associés & 712 sur My, g,
En?° sur My 4 et n°° sur M, ,, d’olt un diviseur associé a une fonction F’
de la forme ‘
Dg = 600y + 4804, + 420,45 + 300, + ...

et une équation ‘
60< 00|00 +48 +42 +30 =0

On aurait enfin pu partir d’'un polynéme ¢” nul sur €, d’ou des divi-
seurs associés & 7% sur M, o g, n2° sur My 4 et én>° sur M, , et une équa-
tion

60<{a|0p> + 48 +40 +32 = 0.

CorOLLAIRE. Le schéma de Dynkin associé a la résolution ngp;: M;,,
- X, st
-2
L

oe—o—0—0—0 00— (exP)
-2 =2 =2 =2 =2 =2 =2

et la matrice d’intersection associée est la matrice de Cartan Ej .

V. 2. LE CAS DES AUTRES POLYEDRES REGULIERS ¢

Nous noterons dans cette section G, [respectivement G, G,;, D,]
le sous-groupe de SO (3) des rotations qui laissent invariant un icosaédre
régulier [resp. octaédre régulier, tétraédre régulier, polygone plan régulier
a n > 3 sommets] inscrit dans S? et G,,, [resp. Goers Giges D,] son image
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inverse par 6~ ! dans SU (2). La section précédente est ’étude de I’espace
Xico = C?/G,,, qui a un unique point singulier et qu’on a dit étre isomorphe
a la surface

iy = {(x,7,2)e C* | 2° = x> + )},

Soit X, le quotient de C? par G, 11 est isomorphe a la surface
Aoct = {(xays Z)EC3 , Zz = x(xZ _'y3)} .

On peut en construire, comme pour le cas précédent, une désingularisation
M, — X,.. Les calculs du chapitre IV relatifs 2 Xs,6 Xo,4 €t Xy, et
un calcul analogue & celui de la proposition 18 montrent que le diagramme
de Dynkin associé est

-2
L

X

*—0—0—0—0—+o (@ ~ P

-2 =2 =2 =2 =2 =2

et que la matrice d’intersection est la matrice de Cartan E 7.

' Contrairement a G,,,, le groupe G, n’est pas parfait. Son groupe
dérivé est G, et son abélianisé Z,. Le quotient X, de C? par G
= (G,er» G,.;) est isomorphe 2 la surface

tét

Ay = {(x,,2)eC’ l zt = x% + y3} .
(Pour I'isomorphisme, voir [12], chap. II, § 12 et [15], § 4.) On trouve aussi
Ay = {(x",y",2)eC|y? = x"(x'—z')},

ce qui correspond au changement de coordonnées x = x’ — z%2,y = -y’ | |
z = z'[2. On obtient cette fois M, » X,,,, o M, se fabrique en recollant
deux copies de Mg , et une copie de M, ,. Le diagramnie de Dynkin
associé est ‘

-2

o

o—0—0——0—o (@ ~ PY
-2 =2 =2 =2 =2

et la matrice d’intersection est la matrice de Cartan E.
L’analogue du théoréme A de la section IV.3 s’énonce donc comme
suit.
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TuforEME E. Les désingularisations des ensembles analytiques a
singularité unique C2?/G, ou G est I'un des trois groupes polyédraux binaires
Gico> Goers Gy, définissent les schémas de Dynkin Eg, E; et Eg.

Le dernier théoréme résume la situation qu’on obtiendrait en étudiant
le cas des groupes diédraux binaires (voir [1]).

TuEorREME D. Soient n > 3 et X, ’ensemble analytique quotient de
C? par le groupe diédral binaire D, (2 4n éléments). On obtient une désin-
gularisation M, — X,, o M, se fabrique en recollant deux copies de
M, , et une copie de X,, ,. Le schéma de Dynkin associ€ est

et la matrice d’intersection est la matrice de Cartan D,
On trouvera des renseignements complémentaires dans bien d’autres
articles parmi lesquels nous citerons [10] et [20].
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