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Le schéma de Dynkin, qui a un sommet muni de l'entier bk— — < ok j Qk >

pour chaque composante irréductible ak de la fibre exceptionnelle, et une

arête liant les sommets définis par Gj et ok si < Gj | ak > =# 0, est

bi bx ^3 K

Si q n - 1, la matrice < Gj | Gk )iest la matrice de Cartan

Preuve. L'existence de p résulte de la proposition 8; les autres affirmations

de ce qui précède.

IV.4. Relation avec les éclatements

Soit n : S-> C2 l'éclatement de C2 à l'origine, comme en 1.3. Considérons

ici T C x S et i:T -+ C3 l'application id x % qui est Y

éclatement de C3 le long de la droite d'équations y z 0. On munit T
comme en 1.3 d'un atlas à deux cartes xj/j: Tj C3 (j 0, 1), avec les

changements de cartes donnés par

C x C* x C ^(TonTi) xl/1(T0nT1) C x C* x C

(x, y, z) t-> (x, 1/v, yz)

et par l'isomorphisme inverse. L'application t s'écrit dans les cartes

C3 <Ao (T0)- C3

(x,y, z) h^(x, z,yz)t0:

et

C3 C3

(x, y, z) i-> (x, yz, z)

La transformée stricte de Anq { (x, y, z) g C3 | zn xyn~q } apparaît
dans une carte comme la surface lisse

{(x,y, z)eil/0(T0)\ynzqx}
et dans l'autre comme

{(x, y,z)e I^ (TJ | z« xyn~q } » AqM.n.

Au niveau des normalisés, l'éclatement permet donc de « remplacer »

Xniq par XqjX avec 0 < X < q et X (2 + r) q - n pour un entier positif
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convenable r(nous avons utilisé ici les remarques qui précèdent la proposition

13). Avec les notations de la section 2, on a précisément
et 2 + rbt.

En cherchant à itérer l'argument jusqu'à trouver une surface lisse,
on aurait précisément à considérer les suites numériques de la section 2.

V. L'ICOSAÈDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.l. Le cas de l'icosaedre

Soient h:C2— { 0 } -> P1 S2 la projection canonique et S: (2)
SO (3) le revêtement universel (à deux feuillets) du groupe des auto-

morphismes analytiques isométriques de du groupe des rotations
de la sphère). Soient Gle sous-groupe de SO (3) des rotations qui laissent
invariant un icosaèdre régulier inscrit dans S2, et S'1 (G); nous
noterons encore <5 la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S2 ont aussi 60 points à trois exceptions près
qui sont

l'orbite $£_ { at,..., al2 } des sommets de l'icosaèdre

l'orbite 3# { bu b20} des barycentres de ses faces

l'orbite P' {c1,...,c30 } des milieux de ses arêtes.

Le groupe Gagit linéairement dans C2; ses orbites ont toutes 120 points,
à la seule exception de l'origine.

Le quotient XicoC 2IGest un ensemble analytique, normal par
le theoreme de Cartan ; il a un unique point non lisse, que nous noterons
x0 et qui est l'image canonique de l'origine de C2. Nous renvoyons à [12],
chapitre II, § 13 et/ou à [15], théorème 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application

polynomial (j):C2 — C3 qui fournit par passage au quotient un isomorphisme
0 de Xico sur la surface de C3 à singularité unique

Ac {(x, y, z)eC3| z5 x2 + }
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