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Le schéma de Dynkin, qui a un sommet muni de Pentier b, = — { oy | o >
pour chaque composante irréductible oy, de la fibre exceptionnelle, et une
aréte liant les sommets définis par o; et o, si (0| o) # O, est

b, b, by b,
o—o —o—..—© (@ =P")

Si ¢ = n — 1, la matrice { 6;| 0} >y ;s est la matrice de Cartan 4, _;.

Preuve. L’existence de p résulte de la proposition 8; les autres affirma-
tions de ce qui préccde. M

IV.4. RELATION AVEC LES ECLATEMENTS

Soit 7: S —» C? Péclatement de C? 4 I'origine, comme en I.3. Consi-
dérons ici T = C X S et 7: T — C3 l'application id X = qui est 1’écla-
tement de C3 le long de la droite d’équations y = z = 0. On munit T
comme en 1.3 d’un atlas & deux cartes y;: T'; — C3 (j=0,1), avec les
changements de cartes donnés par

C X C* X C = l//o('I‘omTl) '—)lpl (TomTl) - C X C* X C
x,y,2) > (x,1/y, yz)
et par I'isomorphisme inverse. L’application 7 s’écrit dans les cartes
{03 =Y (T)) » C°
To "

(x,9,2) > (x,2,y2)
et

T_{C3=¢1(T1)—’ c’
o (x,,2) > (x,2,2)

La transformée stricte de 4, , = {(x,y,2) € C? |z" = xy""1} apparait
dans une carte comme la surface lisse ‘

{(x,y,Z)Elllo(TO)lyan =X}
et dans ’autre comme '
{(x: ya Z) 611[/1 (Tl) l Zq = xyn-q} ~ Aq,Zq—n &

Au niveau des normalisés, I’éclatement permet donc de « remplacer »
Xuyqopar X, ; avec 0 <A <get A= (2+r)qg— n pour un entier positif
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convenable 7 (nous avons utilisé ici les remarques qui précédent la propo-
sition 13). Avec les notations de la section 2, on a précisément A = Ay
et 2 +r=b,.

En cherchant & itérer I’argument jusqu’a trouver une surface lisse,
on aurait précisément i considérer les suites numériques de la section 2.

V. LICOSAEDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.1. LE CAS DE L’ICOSAEDRE

Soient 4: C* — {0} » P! = S? la projection canonique et : SU (2)
— 80O (3) le revétement universel (3 deux feuillets) du groupe des auto-
morphismes analytiques isométriques de P! (= du groupe des rotations
de la sphére). Soient G le sous-groupe de SO (3) des rotations qui laissent |
invariant un icosaddre régulier inscrit dans S2, et G = 61 (G); nous
noterons encore ¢ la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S* ont aussi 60 points 3 trois exceptions prés
qui sont

Porbite & = {ay,..,a;,} des sommets de I’icosaédre
Porbite & = { by, ..., b, } des barycentres de ses faces

Porbite € = {c¢;, ..., c30 } des milieux de ses arétes.

Le groupe G agit linéairement dans C?; ses orbites ont toutes 120 points,
a la seule exception de I’origine.

Le quotient X;,, = C%/G est un ensemble analytique, normal par
le théoréme de Cartan; il a un unique point non lisse, que nous noterons-
X, et qui est 'image canonique de ’origine de C2. Nous renvoyons a [12], |
chapitre II, § 13 et/ou a [15], théoréme 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application poly-

némiale ¢: C* —» C* qui fournit par passage au quotient un isomorphisme
¢ de X, sur la surface de C* a singularité unique

Ay = {(6,7,2)€C* | 2° = x? + y*}.
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