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n 10 8 6 4

Q 8 6 4 2

s 4 3 2 1

(Wo^k^s + i (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) (4,2,0)

(y-k)o^fk^s+i 0,1,2,3,4,5) (0,1,2,3,4) (0,1,2,3) (0,1,2)

(v/c)0^Jt^s+ 1 1,1,1,1,1,1) (1,1,1,1,1) (1,1,1,1) (1,1,1)

IV.3. Les résolutions p: Mn q -> An>q ou p: Mn>q *- 2^

Soient à nouveau n et q comme à la section 2, dont on reprend toutes
les notations.

Pour chaque k g { 0, 1,..., s }, désignons par Rk une copie de C2,

par (uk, vk) ses coordonnées canoniques, et par Rk [resp. R^] l'ouvert de

ses points de première [resp. seconde] coordonnée non nulle. Pour
k e { 1,..., s }, soit

f R*-i - K

c'est un isomorphisme dont l'inverse applique (uk, sur
Notons P0>1 la variété obtenue en recollant et selon 0, déjà considérée

à l'exemple 3 de la section 1. Soient ensuite 01>2 la variété obte ue
en recollant P0jl et R2 selon cpuetP0;1 s Mnq la variété obtenue
en recollant Po,i,...,s-i Rs selon Nous identifierons chaque Rk
à son image dans Mnq.Lavariété Mn<q est une surface lisse dans laquelle
chaque Rk est un ouvert dense (de fait un ouvert de Zariski).

Pour chaque k e{ 1,s }, considérons la courbe

Gk {(uk_1,vk_1)eRk_t\vk_l0} u { 0}
qui est lisse et isomorphe à P1. Notons encore oin et afi les courbes lisses
non compactes définies respectivement par { (u0, v0) e P0 | m0 ® }
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et { (us, vs) e Rs | vs — 0 }. Ces courbes n'ont pas d'intersection triple
et n'ont deux à deux que des intersections transverses. On vérifie
facilement que

1 si k 1
<°to K>

< °j i <**>'

<ff/; K>

0 sinon
1 si |jf - | 1

0 si | j| > 2

1 si k s

0 sinon

f/c :

nu

Pour chaque k e {0,1,s }, considérons enfin les fonctions

Ru c

-» C

Rk -> c4:
Si > 1 et x 0, alors

4 (%-1 («4-i, »4 -1)) (K-i)'Jfc w*_ l)Ah
1 \Vn

'4-1
(«4-l)** *+1(W4-l)* 4-l(«*-l,»4-l).

Par suite les 4 définissent une fonction globale C. Les tjk et
les 4 définissent de même tj, £: M„A -+ C. Notons que Ç" 47n~4. Il
suffit en effet de vérifier cette relation sur l'ouvert dense R0 <= M„ q, et
on a pour tout (u, v) eR0 :

(Ç(u,v))n ~(Ç(u,v))(ri(u,»))"-«(uvf 0.
Nous noterons p: Mnq A„ q

le morphisme défini par p (P) (£(P),
n(P),UP)).

Proposition 16. Le morphisme p : -> est surjectif, p-1 (Ö, 0,0)
- ffi U u as,p-1 { (0, j, 0) 6 J„>4 | 6 C } et p-1 { (x, 0, 0)
6 A„>q| x e C } afi.

Si de plus n, q)1, la restriction de p fournit une bijection de
S

- u aksur A„>q - { 0 }.
fc l
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Preuve. Il est immédiat que p {ax u u crs) (0, 0, 0).

Soit P (x, y, z) e An>q avec y ^ 0. Posons u0 z/y et

alors p (i/Q, v0) (wX> ^o> wo^o) Soit *>*) GP_1 (p) n alors

*7 (%>^) (ukYk(vkYk+1 y ¥= 0. Si k > 1, les entiers et pk+1 sont

strictement positifs, donc uk =£ 0 et vk =£ 0, de sorte que (uk, vk) e Rk n R0.
Si k 0, les équations i/Jvg x, v0 j>, u0v0 z n'ont qu'une solution
Nous avons ainsi montré que p-1 (P) ne contient qu'un point, qui n'est

pas dans la réunion des ak, et qui est dans ain si et seulement si P (0, y, 0).

Soit Q (x, 0,0)eAnq avec x # 0 (rappelons que c'est un point
singulier de An>q si q # n — 1). Pour k e { 0,1,..., £ — 1 }, les équations
(uk)Xk (vk)Xk+1 X # 0, (Wfcrw+1 (ukYk (Vk)vk+1 0 n'ont aucune
solution. Par contre, les équations

(usy° x (usys(vsys+1 (tOvw+1 o

ont précisément Xs {n, q) solutions. Donc y"1 (Q) contient (n, q) points,
donc aucun n'est dans la réunion des ok, et qui sont tous dans afi.

Proposition 17. On a < ak | ak — — bk pour k e { 1, 2,..., s }.

Preuve. Les diviseurs définis par les fonctions £, rj et Ç sont respectivement

Dç — nain + + + + + (n, g)<rs

n w
Dn — o*! + ....+ pk ak + ....+ crs + cr/£

+ <Tl + + Gk + + vs crs + afi(n,q)

Si on écrit provisoirement a0 pour ain et as+1 pour afi, la première de ces
formules et les calculs précédant la proposition 16 montrent qu'on a

o < Dç | ak \ ak-11 ak> + K &k | Gk + K+1 < °"/c+i | Gk

d'où

(jk\ &k y (~ îMfe) (^/c+i+^fe-i) ~ bk

pour tout k e s). On pourrait aussi utiliser

0 < A, | 0* > => < o* | o* > — ~ 1/P*) (f*k+i +Pk-1) —

ou

0 < Dç | tffc > => < or* | (7* > - 1/Vft) (vÄ+1 + - bk.
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On peut remarquer qu'il n'existe aucun prolongement de la forme
d'intersection à Div(M) x Div(M) qui jouisse encore des propriétés (j) à

(v) du § 1. En effet, on aurait alors par exemple

0 < Of | <Jin> n< <rin | (Jin>+ q=> < <jin|> - qjn

0 <D,| ainy1!!!

0 < D;|C7in>< ain|<Tta > + < ^! | o-in > ^> < trin | o-,„ > -1

ce qui est plusieurs fois absurde.

Corollaire.. La matrice d'intersection | es* définie

négative. Si q « - 1, c'est la matrice de Cartan An_1.

Remarque. Le déterminant de An_1 est en valeur absolue l'ordre du

groupe d'homologie H1 1 - { 0 }, Z); voir [16], page 11.

Preuve. La matrice d'intersection est

-b1 1 0 0 0 0

1 -b2 1 0 0 0

0 1 —• b2 1 0 0

_
0 0 0 0 1 -bs

_

Si Dk est son k-ième mineur principal, on a Ds — bsI)s-1 — Ds_ 2.

Il résulte de critères standards (voir par exemple [6], § 36, exercice 33)

que la matrice d'intersection est négative définie. Si q n — 1, on a

s n — 1 et par induction Z>s dét 04n_i) (~l)s/z.

Nous résumons les informations obtenues jusqu'ici dans le résultat

suivant.

Theoreme A. Le morphisme p se relève en une désingularisation

P • Mn>q —> Xn,q •
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Le schéma de Dynkin, qui a un sommet muni de l'entier bk— — < ok j Qk >

pour chaque composante irréductible ak de la fibre exceptionnelle, et une

arête liant les sommets définis par Gj et ok si < Gj | ak > =# 0, est

bi bx ^3 K

Si q n - 1, la matrice < Gj | Gk )iest la matrice de Cartan

Preuve. L'existence de p résulte de la proposition 8; les autres affirmations

de ce qui précède.

IV.4. Relation avec les éclatements

Soit n : S-> C2 l'éclatement de C2 à l'origine, comme en 1.3. Considérons

ici T C x S et i:T -+ C3 l'application id x % qui est Y

éclatement de C3 le long de la droite d'équations y z 0. On munit T
comme en 1.3 d'un atlas à deux cartes xj/j: Tj C3 (j 0, 1), avec les

changements de cartes donnés par

C x C* x C ^(TonTi) xl/1(T0nT1) C x C* x C

(x, y, z) t-> (x, 1/v, yz)

et par l'isomorphisme inverse. L'application t s'écrit dans les cartes

C3 <Ao (T0)- C3

(x,y, z) h^(x, z,yz)t0:

et

C3 C3

(x, y, z) i-> (x, yz, z)

La transformée stricte de Anq { (x, y, z) g C3 | zn xyn~q } apparaît
dans une carte comme la surface lisse

{(x,y, z)eil/0(T0)\ynzqx}
et dans l'autre comme

{(x, y,z)e I^ (TJ | z« xyn~q } » AqM.n.

Au niveau des normalisés, l'éclatement permet donc de « remplacer »

Xniq par XqjX avec 0 < X < q et X (2 + r) q - n pour un entier positif
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