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I 10 8 '6 4
q 8 6 4 2
s 4 3 2 1
(M)o<k<s+1 (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) 4,2,0)
(UR)o<k=s+1 | ( 0,1,2,3,4,5) 0,1,2,3,4) (0,1,2,3) 0,1,2)
(VK)o <k =s+1 ( 1,1,1,1,1,D) 1,1,1,1,1) 1,1,1,1) 1,1,

IV.3. LES RESOLUTIONS p: M, , = 4,, 00 p: M, , = X, ,

Soient & nouveau n et ¢ comme a la section 2, dont on reprend toutes
les notations.

Pour chaque ke{0,1,..,s}, désignons par R, une copie de C?,
par (i, v,) ses coordonnées canoniques, et par R; [resp. R;] I'ouvert de
ses points de premiére [resp. seconde] coordonnée non nulle. Pour
ke{l,.., s}, soit

{ Ri-y = R;
Dr-1 - , b —1y 3
-t (uk—1a”k—1)‘—>((uk—1) kvk-l s (Ug—1) 1)

c’est un isomorphisme dont linverse applique (u,v,) sur (1/v,, vkb"uk).
Notons R, ; la variété obtenue en recollant R, et R, selon ¢, déjd consi-
dérée a exemple 3 de la section 1. Soient ensuite R, ; , la variété obte ue
en recollant R, ; et R, selon @y, ..., et Ry ;o = M, ,la variété obtenue
en recollant Ry ;. -1 €t R, selon ¢ _,. Nous identifierons chaque R,
a son image dans M, ,. La variété M, , est une surface lisse dans laquelle
chaque R, est un ouvert dense (de fait un ouvert de Zariski).
Pour chaque .k € { 1, ..., 5 }, considérons la courbe

T = { (-1, 0-1) € Ry | Uy = 0} U {(up,0) € Ry |y = 0}

qui est lisse et isomorphe & P'. Notons encore ¢;, et o s; les courbes lisses
non compactes définies respectivement par { (u,,v,) € R, | ug = 0}
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et {(u,v,)eR, [ vs = 0}. Ces courbes n’ont pas d’intersection triple
et n’ont deux & deux que des intersections transverses. On vérifie faci-

lement que |
1 si k=1
<0inl0'k> = { . ‘

\ 1
Coilond _{o siv [j—k|>2

< I ; 1 si k =s
O lO e ;
Jil Tk 0 sinon

Pour chaque k€ {0, 1, ..., s }, considérons enfin les fonctions

R, - C}
fk:{ ¢

(e, V) > (1) ** () 41

R, - C
T { (ug> Vi) = ()™ (v, )M+
'. R, - C ‘
+ { (1t D) = ()™ ()41

Sik>1cetu,_,; #0, alors
NBE Ak 1 Ak"“l
S ((Pk—1(uk-—1a7’k—1)) = ((uk-1) vk-—l) "

k-1
= (uk—1)b“k—lk+1(vk—1)lk = 1 (Up—1,V—y) .

Par suite les £, définissent une fonction globale ¢&: M, ,— C. Les n, et
les {, définissent de méme #, {: M, ,— C. Notons que (" = &y*~4. 1l
suffit en effet de vérifier cette relation sur I'ouvert dense R, < M, ., et
on a pour tout (i, v) € R,: |

(C,2)" = (§ @, 0)) (1@, )™ = o) — Wv) @™ = 0.

Nous noterons p: M, , - A, , le morphisme défini par p (P) = (¢ (P),
1 (P), { (P)). ’ |

PROPOSITION 16. Le morphisme p: M, , - 4, 4 est surjectif, p 1 (0, 0, 0)
=0, VU..Va, p7{(0,0e4d,,|yeC} =p, et p~1{(x,0,0)
€d, | xeC} =0y . |

Si de plus (n, ¢) = 1, la restriction de p fournit une bijection de M, ,

— U ogsurd,,— {0}
k=1
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Preuve. 11 est immédiat que p (o, U ... U ay) = (0,0, 0).

Soit P = (x,y,z)€A,, avec y # 0. Posons u, = z[y et vy = y;

alors p (g, Vo) = (Upvd, vy, ugve) = P. Soit (u, v) €p~ ' (P) N Ry; alors
1 (U V) = @)™ (@)1 =y #£0. Si k> 1, les entiers y, et w4 sont
strictement positifs, donc u, # 0 et v, # 0, de sorte que (i, U) € R, N Ry,
Si k = 0, les équations ugvd = x, v, = ¥, Uy, = z n’ont qu’une solution
Nous avons ainsi montré que p~ ! (P) ne contient qu’un point, qui n’est
pas dans la réunion des oy, et qui est dans o, si et seulement si P = (0, y, 0).
Soit Q = (x,0,0) e 4,, avec x # 0 (rappelons que c’est un point
singulier de 4, , si ¢ # n — 1). Pour k€{0,1,..,s — 1}, les équations
W)™ @)™ =x £ 0, ()" @)™ ! = ()" ()"t =0 n’ont aucune
solution. Par contre, les équations |

@)™ =% (@)™ @) = @) (@) = 0

ont précisément 1, = (n, q) solutions. Donc y~ ! (Q) contient (#, ¢) points,
donc aucun n’est dans la réunion des oy, et qui sont tous dans o,;. M

PROPOSITION 17. On a {6} |0, > = — b pour ke {1,2,..,5}.

Preuve. Les diviseurs définis par les fonctions &, n et { sont respecti-
vement

D, = noy, +qoy + ... + Lo + .... +(n,q) o0,
’ n

D = 61+ oo + Mo+ oo + U0y + —— 0 gy
n 1 Uy, O u & ) f

n—q
D, O + 0'1+....—|-Vk0'k+----+VSO'S+@0'fi

Si on écrit provisoirement ¢, pour g, et o, 4 pour o, la premiére de ces
formules et les calculs précédant la proposition 16 montrent qu’on a

0 = <D§!Uk> = -1 Oy |0'k> + )'k<o-k|0'k> + 11 Opt1t lo'k>
d’ou
<°'k|0k> = (—1/4) (s1+ A1) = = b

pour tout k € { 1, ..., s }. On pourrait aussi utiliser

0 = <Dn|ak>$<o'kl0-k> = (= 1/m) (s +—1) = — by
ou

0 = <Dc|0k>=><0klo'k> = (—1/vp) (Vi1 +Vmq) = —b. ®m
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On peut remarquer qu’il n’existe aucun prolongement de la forme d’in- |
tersection a Div (M) x Div (M) qui jouisse encore des propriétés () a
(v) du § 1. En effet, on aurait alors par exemple

0 = <D§|0in> = n<o'in|6in> +q=><0'in|0'in> = —g/n
0 =(D,|o,) =11
0 = <D§|Gin> = <O.inlo-in> +<O-1lo-in>:<o-inlam> =—1

ce qui est plusieurs fois absurde.

CoROLLAIRE.. La matrice d’intersection {o; | Ok D1 éjv,k s est définie §
négative. Si ¢ = n — 1, c’est la matrice de Cartan 4,_ ;.

Remarque. Le déterminant de A4,_, est en valeur absolue I’ordre du
groupe d’homologie H, (X, ,—; — {0}, Z); voir [16], page 11.

Preuve. La matrice d’intersection est

- —b, 1 0 0 0 0 |
1 —b, 1 0 0 O
0 1 —b; 1 0 O
0 0 0 0 1 —bs |
Si D, est son k-iéme mineur principal, on a D, = — b,D,_; — D,_,.

Il résulte de critéres standards (voir par exemple [6], § 36, exercice 33)
que la matrice d’intersection est négative définie. Si ¢ =n — 1, on a
s = n — 1 et par induction D; = dét(4,-;) = (—1)'z». m

Nous résumons les informations obtenues jusqu’ici dans le résultat
suivant.

THEOREME A. Le morphisme p se reléve en une désingularisation

; r My = Xy
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Le schéma de Dynkin, qui a un sommet muni de Pentier b, = — { oy | o >
pour chaque composante irréductible oy, de la fibre exceptionnelle, et une
aréte liant les sommets définis par o; et o, si (0| o) # O, est

b, b, by b,
o—o —o—..—© (@ =P")

Si ¢ = n — 1, la matrice { 6;| 0} >y ;s est la matrice de Cartan 4, _;.

Preuve. L’existence de p résulte de la proposition 8; les autres affirma-
tions de ce qui préccde. M

IV.4. RELATION AVEC LES ECLATEMENTS

Soit 7: S —» C? Péclatement de C? 4 I'origine, comme en I.3. Consi-
dérons ici T = C X S et 7: T — C3 l'application id X = qui est 1’écla-
tement de C3 le long de la droite d’équations y = z = 0. On munit T
comme en 1.3 d’un atlas & deux cartes y;: T'; — C3 (j=0,1), avec les
changements de cartes donnés par

C X C* X C = l//o('I‘omTl) '—)lpl (TomTl) - C X C* X C
x,y,2) > (x,1/y, yz)
et par I'isomorphisme inverse. L’application 7 s’écrit dans les cartes
{03 =Y (T)) » C°
To "

(x,9,2) > (x,2,y2)
et

T_{C3=¢1(T1)—’ c’
o (x,,2) > (x,2,2)

La transformée stricte de 4, , = {(x,y,2) € C? |z" = xy""1} apparait
dans une carte comme la surface lisse ‘

{(x,y,Z)Elllo(TO)lyan =X}
et dans ’autre comme '
{(x: ya Z) 611[/1 (Tl) l Zq = xyn-q} ~ Aq,Zq—n &

Au niveau des normalisés, I’éclatement permet donc de « remplacer »
Xuyqopar X, ; avec 0 <A <get A= (2+r)qg— n pour un entier positif
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