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transformée stricte de l'axe d'équation x y 0 dans C3. Alors
Df 2A+E,d'oùpar (jv) ci-dessus

<X>/|£> 2<A|£> + <0

et par (jjj) <E\Ey -2.

Exemple 3. Soit S^k) comme à la section 1.3, avec deux cartes — disons
deux copies i£0 et de C2 — recollées selon l'isomorphisme que nous
écrirons ici

f {(w,v) gR0 | u ^ 0} -> {(u,v)eR1 \v # 0 }

| (u,v)t->(ukv} 1 /u)

Considérons d'une part les fonctions f 0, rj0, Ç0: R0 -> C définies par

Co (u>v) *7o («» *0 v Co (m, v) wz;

et d'autre part les fonctions rju Ci* Ri C définies par

CiO,^) « rj1(uiv) uvk Ci (m,v) uï^"1.

On vérifie sans peine que ces données définissent trois fonctions globales
C, 77, c* £(-*) -> c satisfaisant l'égalité Cfc Cf7fe~\ donc aussi une
application p: -> Le lecteur s'assurera à titre d'exercice que p est

une résolution de Ak l, que la matrice d'intersection se réduit au nombre

— k, et que p se relève en p: S(_k) — Xk)1. L'application p résout donc la
singularité définie par le groupe cyclique

{(Te(»)sA",(c2) I i
Si k 2, on retrouve l'exemple 1.

Citons enfin sans démonstration le théorème suivant: pour toute singularité

isolée de dimension deux et pour toute désingularisation (minimale
ou non), la matrice d'intersection associée est négative définie. Les exemples
ci-dessus offrent une première illustration de ce résultat. Voir [16], § 1.

IV.2. Trois suites numériques définies par n et q

Le contenu des paragraphes 2 et 3 se trouve dans [9].
Soient n et q des entiers avec 0 < q < n.
Posons X0 n et X± q. Définissons ensuite les entiers A2,..., bu b2,...

par l'algorithme euclidien suivant:
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A2 blX1 — A0 avec b>2 et 0 < A2 At

A3 fi2A2 — Ai avec ^2 > 2 et 0 < A3 < A2

Soit s le plus grand entier pour lequel As soit non nul, de sorte que

As fi5_i 2S_! - As_2 avec fi5_i >0 et 0 < As < As_i

0 fis As-

On vérifie sans peine que As est le plus grand commun diviseur de et

ce qui s'écrit As (n,q). On définit As+1 0. On peut remarquer que les

équations ci-dessus s'écrivent aussi

nA2q,A3

- »î — y » •••>
^ q À2

Às-2 *
1

D'où

&s-r -T^= b.-i ~
As-1 As-1

W
I.- h

4
b2 -

1

bs

ce que certains auteurs notent plus économiquement

- bl~llb2 - -1 /fis-
q _/ _/

On définit ensuite les suites (pk)k_0 s+i et (vA=o s+ i Par

M0 0 v0 1

Mi 1 Vi 1

M2 &i Mi - j"o v2 fi3 vx - v0

Ms fis-ift-i-A-2
fis + l fis^s - /V-l

Vs fis-l Vs-1 - Vs_2

Vs-ti bsvs- vs_i
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Lemme. Pour tout ke{0,1,...,j}ona:
(a) 4 + (n-q)fik nvk

(b) 4ùt+i 4+IÄ n

(c) Hk+iVk -Wk+i 1 •

De plus

et

0 Ho </il < < J«s+1
"

(n, q)

a.„1 V0 < < < Vs + 1

Cn,q)

Preuve. Les relations (a), (b) et (c) sont banales si 0 et si 1.
Pour k>2,elles résultent des calculs élémentaires suivants:

4+i + (n-q)fik+1 bkXk- 4_1 + (n-q) (&fcAù-/4-i)
bk(lk+(n— <ÙHk) — (Xk_k+(n— q)pkbknvk

nvk+1(k l,...,s);

4+IÄ+2 -4+2Ä+1 4+1(^+1^+1 -4) -(4+i4+i-4)Ä+I
ä 4ft+i - 4+1Ä (fc l,..., s —1);

A+2Vt+l -Ä+l^i+l (4+1Ä+1 -a) Vft+1 - Ä+i(4+1Vt+1 -V*)
ßk+iVk - Hkvk+1 l,...,s-l).

En particulier, comme 2S+1 0, on a 0 + («-9) /is+1 «vs+1 et 2s/is+1

n,d'où [is+1 — - et vs+1 Enfin, comme > 24 (m,«) (n,
pour k1,..., j, on a

Pk+l/Ù: (bk1) k-k — 1 Hk ßk-1 ••• ùl — Ù0 ^ 0
et

V*+1 - vt > > vt - v0 > 0

ce qui achève la preuve. H
Nous reviendrons à .plusieurs reprises sur les exemples décrits dans le

tableau suivant:
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n 10 8 6 4

Q 8 6 4 2

s 4 3 2 1

(Wo^k^s + i (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) (4,2,0)

(y-k)o^fk^s+i 0,1,2,3,4,5) (0,1,2,3,4) (0,1,2,3) (0,1,2)

(v/c)0^Jt^s+ 1 1,1,1,1,1,1) (1,1,1,1,1) (1,1,1,1) (1,1,1)

IV.3. Les résolutions p: Mn q -> An>q ou p: Mn>q *- 2^

Soient à nouveau n et q comme à la section 2, dont on reprend toutes
les notations.

Pour chaque k g { 0, 1,..., s }, désignons par Rk une copie de C2,

par (uk, vk) ses coordonnées canoniques, et par Rk [resp. R^] l'ouvert de

ses points de première [resp. seconde] coordonnée non nulle. Pour
k e { 1,..., s }, soit

f R*-i - K

c'est un isomorphisme dont l'inverse applique (uk, sur
Notons P0>1 la variété obtenue en recollant et selon 0, déjà considérée

à l'exemple 3 de la section 1. Soient ensuite 01>2 la variété obte ue
en recollant P0jl et R2 selon cpuetP0;1 s Mnq la variété obtenue
en recollant Po,i,...,s-i Rs selon Nous identifierons chaque Rk
à son image dans Mnq.Lavariété Mn<q est une surface lisse dans laquelle
chaque Rk est un ouvert dense (de fait un ouvert de Zariski).

Pour chaque k e{ 1,s }, considérons la courbe

Gk {(uk_1,vk_1)eRk_t\vk_l0} u { 0}
qui est lisse et isomorphe à P1. Notons encore oin et afi les courbes lisses
non compactes définies respectivement par { (u0, v0) e P0 | m0 ® }
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