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transformée stricte de 1’axe d’équation x = y = 0 dans C3. Alors
D; = 24+ E, d’ou par (jv) ci-dessus

<DflE> = 2(A|E) +<E|E>
et par (jjj) CE|E) =

Exemple 3. Soit S_;, comme 2 la section 1.3, avec deux cartes — disons
deux copies R, et R; de C? — recollées selon I’isomorphisme que nous
écrirons ici

{(,0)eRy|u #0} > {(u,v)eR, |v # 0}
{ (u,v) = (u*v, 1/u)

Considérons d’une part les fonctions &, 74, {o: Ry = C définies par

60 (u,v) = u*p Mo (u,’l')) = ¥ CO (u,'U) = uv

et d’autre part les fonctions &, #,, {;: R, — C définies par

G0 =u ) = wt f(,0) = whl

On vérifie sans peine que ces données définissent trois fonctions globales |§
& 1, {18y — C satisfaisant I’égalité (¥ = £7*~1, donc aussi une appli-
cation p: Sy — 4 ;. Le lecteur s’assurera a tltre d’exercice que p est
une résolution de 4, {, que la matrice d’intersection se réduit au nombre

—k, et que p se reléve en /; : S(—x = X;,1. L’application ; résout donc la
singularité définie par le groupe cyclique

e(jlk) 0 5
{( 0 e(,-,k)>€A“‘(C)

Si k = 2, on retrouve ’exemple 1. |
Citons enfin sans démonstration le théoréme suivant: pour toute singu- |
larité isolée de dimension deux et pour toute désingularisation (minimale [§
ou non), la matrice d’intersection associée est négative définie. Les exemples
ci-dessus offrent une premiére illustration de ce résultat. Voir [16], § 1.

j=0,...,k—1}.

IV.2. TROIS SUITES NUMERIQUES DEFINIES PAR 7 ET ¢

Le contenu des paragraphes 2 et 3 se trouve dans [9].

Soient n et g des entiers avec 0 < g < n.

Posons A, = netd; = g. Définissons ensuite les entiers 1,, ..., by, b, ...
par P'algorithme euclidien suivant:
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).2 = blﬂ"l - 2,0 avece b1/>/ 2 et 0 < 2,
Ay = byd, — Ay avec by >2 et 0<4;< A,

Soit s le plus grand entier pour lequel A, soit non nul, de sorte que

A‘S = bs—l A’s—l - ls_z avece bs_1 > 0 et O < }«s < As—'l
0 = bs /18 - A’s—l N
On vérifie sans peine que A, est le plus grand commun diviseur de » et g,

ce qui s’écrit A, = (n, g). On définit A, = 0. On peut remarquer que les
équations ci-dessus s’écrivent aussi

A A
E = bl - ) _q_ = bz -2 ’ ’
q q AZ 12
s A, 1
NP Sy .
)’s—l s ls-—l i bs
D’ou
n 1
— b1 — -
q b, —
1
b

ce que certains auteurs notent plus économiquement

© = b =15, = = 1B,

On définit ensuite les suites (u)r=o,...,s+1 € (Vk=o, ..., s+ PAr
Ko =0 Vo = ]
uul = 1 Vl_ = 1
My = Dbypuy — to v, =Dbivi =

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Hs = bs-—l Us—1 — Hs-2 - Vs = bs—lvs—l — Vs—2

Hsy1 = bs.us — Us—1 Vs41 = bsvs - Vs-1
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Lemme. Pour tout k€ {0, 1, ..., s} on a:

@ A+@m—qum =ny
(®) Aethesr — Ms1 i = n

©  Mer1Vi — MpVesr = 1.

De plus
n
0 =pp <py <. <pigyy =
(n,9)
&L
n—gq
L=<y <o <<vgyy = — .
(n,q)

Preuve. Les relations (a), (b) et (c) sont banales si k = O et si k = 1. |
Pour k > 2, elles résultent des calculs élémentaires suivants:

Merr + (M= sy = bl — by + (0 —q) (b — 1)
= bk()”k"'(n—'Q):uk) — (A—1 +(n—q) y-1) = bynv, — nv,_4

== nvk+1 (k=]., ceny S);

y His2 — Agin M1 = Aty (bk+1ﬂk+1 — 1) — (bk+i/1k+1 —A) Hy 41
= b1 — hrrtn (k=1,...,s—1);

Pr+2 Virr — Mee1 Vit = Brs1lier 1 — M) Ves1 — Moews (br+1Vis1 =)

= 1 Ve — vy (k=1,..,5-1).

En particulier, comme A, ; = 0,0na 0 + (n—q) .4, = nveyq et Aggy

n n N n—gq
—_ e vs — e
A (n,q) T ()

pour kK =1,..,5 0n a

_— b P J—
=n, Ao gy ; =

Perr — M = (=D — ey > 1 — ey > ... =y —fo >0
et
Vk+1 _vk>...>vl —V0>O.

ce qui achéve la preuve. N
Nous reviendrons a .plusieurs reprises sur les exemples décrits dans le
tableau suivant:

. Enfin, comme 5, >2 |




I 10 8 '6 4
q 8 6 4 2
s 4 3 2 1
(M)o<k<s+1 (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) 4,2,0)
(UR)o<k=s+1 | ( 0,1,2,3,4,5) 0,1,2,3,4) (0,1,2,3) 0,1,2)
(VK)o <k =s+1 ( 1,1,1,1,1,D) 1,1,1,1,1) 1,1,1,1) 1,1,

IV.3. LES RESOLUTIONS p: M, , = 4,, 00 p: M, , = X, ,

Soient & nouveau n et ¢ comme a la section 2, dont on reprend toutes
les notations.

Pour chaque ke{0,1,..,s}, désignons par R, une copie de C?,
par (i, v,) ses coordonnées canoniques, et par R; [resp. R;] I'ouvert de
ses points de premiére [resp. seconde] coordonnée non nulle. Pour
ke{l,.., s}, soit

{ Ri-y = R;
Dr-1 - , b —1y 3
-t (uk—1a”k—1)‘—>((uk—1) kvk-l s (Ug—1) 1)

c’est un isomorphisme dont linverse applique (u,v,) sur (1/v,, vkb"uk).
Notons R, ; la variété obtenue en recollant R, et R, selon ¢, déjd consi-
dérée a exemple 3 de la section 1. Soient ensuite R, ; , la variété obte ue
en recollant R, ; et R, selon @y, ..., et Ry ;o = M, ,la variété obtenue
en recollant Ry ;. -1 €t R, selon ¢ _,. Nous identifierons chaque R,
a son image dans M, ,. La variété M, , est une surface lisse dans laquelle
chaque R, est un ouvert dense (de fait un ouvert de Zariski).
Pour chaque .k € { 1, ..., 5 }, considérons la courbe

T = { (-1, 0-1) € Ry | Uy = 0} U {(up,0) € Ry |y = 0}

qui est lisse et isomorphe & P'. Notons encore ¢;, et o s; les courbes lisses
non compactes définies respectivement par { (u,,v,) € R, | ug = 0}
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