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IV. RÉSOLUTIONS DES QUOTIENTS DE C2

PAR UN GROUPE CYCLIQUE FINI

IV. 1. Définitions et premiers exemples

Si X est un ensemble analytique, une résolution *) de X est la donnée

d'une variété complexe lisse X et d'une application holomorphe propre

surjective p: Y-» X ayant la propriété suivante: si A p-1 (X- Yrég),

alors X — A est dense dans X et la restriction de p est un isomorphisme

de X — A sur XTég. (Le terme n'a donc pas ici le même sens qu'à la section
1.3, où il s'agissait d'une «situation relative» où un ensemble analytique

courbe) étant plongé dans une variété plan).) Lorsque X - XIég
est réduit à un point x0, on appelle fibre exceptionnelle de la résolution le

sous-ensemble analytique p-1 (x0) de X.

Exemple 1. Soit X { (x, y, z) e C3 | x2 + y2 + z2 0 }, qui est

une surface lisse en dehors de l'origine; le changement de variables Ç ix
+ y, rj ix - y montre que X est isomorphe à A2)L'image Q de ses

points réguliers par la projection canonique h: C3 — {0} ->P2 est une
courbe projective lisse { [x, y, z] eP2 | x2 + y2 + z2 0 }. On en précise
la nature grâce à l'application homogène

cp :

C2 -> C3

(s, t) (s2+t2),i(s2-t2), St

elle factorise en un morphisme (p: P1 -+ Q qui est bijectif et qui est donc

un isomorphisme.
Considérons S { ([z], w)eP2 x C3 | weh'1 ([z]) u { 0 } } et la

restriction n: S -> C3 de la seconde projection. On montre comme en 1.3

que S est une variété lisse, qui est incidemment l'espace total du fibré
canonique sur P2. Le morphisme n est propre, induit un isomorphisme de

S — 7r_1(0) sur C3 — { 0 }, et sa «fibre exceptionnelle» est 7i_1(0)
P2; c'est par définition Yéclatement de C3 à l'origine.

x) On dit parfois « désingularisation » au lieu de « résolution ».
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Posons X { ([z], w) e S \ [z] e g }; l'application A : X-+ Q définie

par A ([z], w) [z] est la restriction à g du fibré canonique de P2. Alors

l'application p: XX qui envoie ([z], w) sur w est une résolution de X
avec fibre exceptionnelle E p-1 (0) isomorphe à P1.

Plus généralement, soit Xd un cône de degré d dans Cfe+1 ayant une

singularité isolée à l'origine, de sorte que Qd h(Xd-{0}) est lisse dans

Pk. Soient S l'espace total du fibré canonique sur Pk et n: S -> Ck+1

l'éclatement de Cfe+1 à l'origine. Posons Xd { ([z], w) e S | [z] e Qd }. Alors

la restriction p : Xd -> Xd de % est une résolution de Xd avec fibre
exceptionnelle isomorphe à Qd.

Exemple 2. Soit X { (x, y, z, t) e C4 | x2 + y
2 + z2 + £2 0 }, qui

s'écrit en d'autres coordonnées { (vu v2, w1? w2) e C4 | }
et qui est un ensemble de dimension 3 lisse en dehors de l'origine. La sous-

variété correspondante g de P 3 est une surface lisse. L'application

- f C2 x C2 -> C4
^ ' 1 ((«1, u2), (m3, tt4)) (U1M3, W2W45 «^4, u2u3)

factorise en un morphisme bijectif P1 x p1 -> g, donc en un isomor-
phisme. (La vérification de la bijectivité est un exercice facile. Le fait que
les morphismes bijectifs sont des isomorphismes, qui est élémentaire en
dimension 1, est pour les dimensions supérieures un théorème non banal:
voir par exemple [2], page 179.)

Le procédé décrit à la fin de l'exemple 1 consiste à poser

X {([z], w) eP3 x C4 | [z] eg et we h_1 ([z]) n { 0 } }

et

f X ->X
9 ' 1 ([>]> vv) h-> w

*

C'est une résolution avec fibre exceptionnelle de dimension 2 dim (Z)
- 1 isomorphe à P1 x p1.

On peut aussi considérer

Y {([z],^, w) eP1 x C2 x C2 | ïi et w dans h~x ([z]) u { 0} }

qui est l'espace total de la somme de Whitney de deux fibrés canoniques
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sur P1.Alors cr : < est aussi une résolution de avec
w) !- (Î>, w)

fibre exceptionnelle de dimension 1.

Cet exemple montre en particulier que la fibre exceptionnelle d'une

résolution p: X ->XavecX à point singulier unique ne dépend pas
seulement du germe de X en x0, mais aussi fortement de p. Toutefois,
lorsqu'on se restreint à des espaces X de dimension deux, on peut lever
cette ambiguïté: il existe en effet dans ce cas une unique « résolution minimale

» pour tout germe de surface avec singularité isolée, et la fibre
exceptionnelle d'une telle résolution en un point singulier ne dépend que du
germe de la singularité; voir [13], chapitre V.

Rappelons qu'un diviseur D dans une variété lisse M (ci-dessous
toujours connexe) est une famille Dß,nß)ßsB où les Dß sont des sous-ensembles
analytiques fermés de codimension un dans où les nß sont des entiers
rationnels, et où la famille { ß e B\Dß nest finie pour tout
compact K de M. On écrit aussi D —f. nßDß, et nous noterons I D I

ßsB
le support de D,c'est-à-dire le sous-espace topologique de M qui est réunion
des ensembles Dß pour lesquels nß # 0.

Soit / : M->C une fonction méromorphe non nulle. Soient Zf [resp.
Pf]l'ensemble des zéros [resp. des pôles] de/ ; on sait que ce sont des sous-

ensembles de codimension 1 dans M(ou l'ensemble vide); voir [8], VIII.B.4.
Soit (Zf,i)tsil'ensemble des composantes connexes des points réguliers
de Zf. Pour chaque ieI, soient Dt l'adhérence de ZfA dans M et nl l'ordre
du zéro de/en un point de ZfA (qui est indépendant du choix de ce point);
on sait que { ie I|| Dt| n K#4>}est fini pour tout compact K de M.
On définit de même (Pfj)JeJ puis, pour chaque jeJ, l'ensemble irréductible

Dj et l'ordre «, du pôle de/ en un point de Pfj. On appelle diviseur
de la fonction f et on note Df le diviseur - YniDj-

'

Les diviseurs de M forment pour l'addition naturelle un groupe abélien
Div (M), et ceux à supports compacts un sous-groupe Divc (M).

Si M est de dimension deux, on définit une forme d'intersection

J Div (M) x Divc (M) -> Z
{ (D,E)i->< D I Ê >

dont l'existence repose sur la dualité de Poincaré et dont nous utiliserons
les propriétés suivantes:

(j) < | > est bilinéaire;
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(jj) la restriction de < | > à Divc (M) x Divc (M) est symétrique;

(jjj) si D1 et D2 sont des courbes irréductibles lisses à intersections

transverses, D±\ D2 } est le cardinal de | D1 | n | D2 |»

(jv) si / : M -•* C est une fonction méromorphe, <( Dy | £> 0 pour
tout £ e Divc (M) ;

(v) si D est irréductible à support compact, <D | D > est l'évaluation

de la classe de Chern du diviseur D sur la classe fondamentale [D].

(vj) Soient M' une variété lisse, U [respectivement U'] un ouvert de

M [resp. de M'], et (f>: U U' un isomorphisme. Si De Div (M)
et E e Divc (M) ont leurs supports dans U, alors < (j) (D) | 0 (E) >

-<2>|£>.
Voir par exemple le § 9 de [11].

Soit p: XXune résolution d'un ensemble Xde dimension deux avec

une unique singularité en x0; supposons que la fibre exceptionnelle soit

connexe et que ses composantes irréductibles soient des courbes lisses sans

point triple et à intersections transverses. (Les exemples ci-dessous montrent
l'intérêt de cette situation aussi bien que les résultats généraux; voir pour
ceux-ci [13], théorème 5.12.) On associe à p sa matrice d'intersection (^j):
si Eu ...,En sont les composantes irréductibles de la fibre exceptionnelle

E p-1 (x0) cz X (qui sont en nombre fini car p est propre), alors etJ
< Et | Ej Cette matrice est bien définie à conjuguaison près par une

matrice de permutation.
Dans l'exemple 1 ci-dessus, cette matrice est réduite au nombre —2;

donnons-en deux raisons.

La fibre exceptionnelle E & P1 est irréductible; c'est la section nulle

du fibré en droites À: X-> Q. Or l'isomorphisme cp\P1-+Q est défini

par l'application (p : -» Clyz9 et celle-ci s'écrit aussi (avec u is, v

-it, Ç ix+y et rj ix— y):

^uv £>nz

(u, v) t-> (v2, u2, uv)

Par suite, l'image inverse par cp du fibré X sur Q est le fibré noté 2(_2) à
la section 1.3; il résulte de la propriété (v) ci-dessus que < E | Ey — 2.

Soient d'autre part *S,(_2) comme en 1.3 et/ : £(_2> C le composé de

ft(-2): ^(-2) C3 et de la première projection x: C3-> C. Soit A la
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transformée stricte de l'axe d'équation x y 0 dans C3. Alors
Df 2A+E,d'oùpar (jv) ci-dessus

<X>/|£> 2<A|£> + <0

et par (jjj) <E\Ey -2.

Exemple 3. Soit S^k) comme à la section 1.3, avec deux cartes — disons
deux copies i£0 et de C2 — recollées selon l'isomorphisme que nous
écrirons ici

f {(w,v) gR0 | u ^ 0} -> {(u,v)eR1 \v # 0 }

| (u,v)t->(ukv} 1 /u)

Considérons d'une part les fonctions f 0, rj0, Ç0: R0 -> C définies par

Co (u>v) *7o («» *0 v Co (m, v) wz;

et d'autre part les fonctions rju Ci* Ri C définies par

CiO,^) « rj1(uiv) uvk Ci (m,v) uï^"1.

On vérifie sans peine que ces données définissent trois fonctions globales
C, 77, c* £(-*) -> c satisfaisant l'égalité Cfc Cf7fe~\ donc aussi une
application p: -> Le lecteur s'assurera à titre d'exercice que p est

une résolution de Ak l, que la matrice d'intersection se réduit au nombre

— k, et que p se relève en p: S(_k) — Xk)1. L'application p résout donc la
singularité définie par le groupe cyclique

{(Te(»)sA",(c2) I i
Si k 2, on retrouve l'exemple 1.

Citons enfin sans démonstration le théorème suivant: pour toute singularité

isolée de dimension deux et pour toute désingularisation (minimale
ou non), la matrice d'intersection associée est négative définie. Les exemples
ci-dessus offrent une première illustration de ce résultat. Voir [16], § 1.

IV.2. Trois suites numériques définies par n et q

Le contenu des paragraphes 2 et 3 se trouve dans [9].
Soient n et q des entiers avec 0 < q < n.
Posons X0 n et X± q. Définissons ensuite les entiers A2,..., bu b2,...

par l'algorithme euclidien suivant:
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