
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN

Autor: de la Harpe, P. / Siegfried, P.

Kapitel: IV. RÉSOLUTIONS DES QUOTIENTS DE $C^2$ PAR UN GROUPE
CYCLIQUE FINI

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-50380
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


— 234 —

IV. RÉSOLUTIONS DES QUOTIENTS DE C2

PAR UN GROUPE CYCLIQUE FINI

IV. 1. Définitions et premiers exemples

Si X est un ensemble analytique, une résolution *) de X est la donnée

d'une variété complexe lisse X et d'une application holomorphe propre

surjective p: Y-» X ayant la propriété suivante: si A p-1 (X- Yrég),

alors X — A est dense dans X et la restriction de p est un isomorphisme

de X — A sur XTég. (Le terme n'a donc pas ici le même sens qu'à la section
1.3, où il s'agissait d'une «situation relative» où un ensemble analytique

courbe) étant plongé dans une variété plan).) Lorsque X - XIég
est réduit à un point x0, on appelle fibre exceptionnelle de la résolution le

sous-ensemble analytique p-1 (x0) de X.

Exemple 1. Soit X { (x, y, z) e C3 | x2 + y2 + z2 0 }, qui est

une surface lisse en dehors de l'origine; le changement de variables Ç ix
+ y, rj ix - y montre que X est isomorphe à A2)L'image Q de ses

points réguliers par la projection canonique h: C3 — {0} ->P2 est une
courbe projective lisse { [x, y, z] eP2 | x2 + y2 + z2 0 }. On en précise
la nature grâce à l'application homogène

cp :

C2 -> C3

(s, t) (s2+t2),i(s2-t2), St

elle factorise en un morphisme (p: P1 -+ Q qui est bijectif et qui est donc

un isomorphisme.
Considérons S { ([z], w)eP2 x C3 | weh'1 ([z]) u { 0 } } et la

restriction n: S -> C3 de la seconde projection. On montre comme en 1.3

que S est une variété lisse, qui est incidemment l'espace total du fibré
canonique sur P2. Le morphisme n est propre, induit un isomorphisme de

S — 7r_1(0) sur C3 — { 0 }, et sa «fibre exceptionnelle» est 7i_1(0)
P2; c'est par définition Yéclatement de C3 à l'origine.

x) On dit parfois « désingularisation » au lieu de « résolution ».
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Posons X { ([z], w) e S \ [z] e g }; l'application A : X-+ Q définie

par A ([z], w) [z] est la restriction à g du fibré canonique de P2. Alors

l'application p: XX qui envoie ([z], w) sur w est une résolution de X
avec fibre exceptionnelle E p-1 (0) isomorphe à P1.

Plus généralement, soit Xd un cône de degré d dans Cfe+1 ayant une

singularité isolée à l'origine, de sorte que Qd h(Xd-{0}) est lisse dans

Pk. Soient S l'espace total du fibré canonique sur Pk et n: S -> Ck+1

l'éclatement de Cfe+1 à l'origine. Posons Xd { ([z], w) e S | [z] e Qd }. Alors

la restriction p : Xd -> Xd de % est une résolution de Xd avec fibre
exceptionnelle isomorphe à Qd.

Exemple 2. Soit X { (x, y, z, t) e C4 | x2 + y
2 + z2 + £2 0 }, qui

s'écrit en d'autres coordonnées { (vu v2, w1? w2) e C4 | }
et qui est un ensemble de dimension 3 lisse en dehors de l'origine. La sous-

variété correspondante g de P 3 est une surface lisse. L'application

- f C2 x C2 -> C4
^ ' 1 ((«1, u2), (m3, tt4)) (U1M3, W2W45 «^4, u2u3)

factorise en un morphisme bijectif P1 x p1 -> g, donc en un isomor-
phisme. (La vérification de la bijectivité est un exercice facile. Le fait que
les morphismes bijectifs sont des isomorphismes, qui est élémentaire en
dimension 1, est pour les dimensions supérieures un théorème non banal:
voir par exemple [2], page 179.)

Le procédé décrit à la fin de l'exemple 1 consiste à poser

X {([z], w) eP3 x C4 | [z] eg et we h_1 ([z]) n { 0 } }

et

f X ->X
9 ' 1 ([>]> vv) h-> w

*

C'est une résolution avec fibre exceptionnelle de dimension 2 dim (Z)
- 1 isomorphe à P1 x p1.

On peut aussi considérer

Y {([z],^, w) eP1 x C2 x C2 | ïi et w dans h~x ([z]) u { 0} }

qui est l'espace total de la somme de Whitney de deux fibrés canoniques
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sur P1.Alors cr : < est aussi une résolution de avec
w) !- (Î>, w)

fibre exceptionnelle de dimension 1.

Cet exemple montre en particulier que la fibre exceptionnelle d'une

résolution p: X ->XavecX à point singulier unique ne dépend pas
seulement du germe de X en x0, mais aussi fortement de p. Toutefois,
lorsqu'on se restreint à des espaces X de dimension deux, on peut lever
cette ambiguïté: il existe en effet dans ce cas une unique « résolution minimale

» pour tout germe de surface avec singularité isolée, et la fibre
exceptionnelle d'une telle résolution en un point singulier ne dépend que du
germe de la singularité; voir [13], chapitre V.

Rappelons qu'un diviseur D dans une variété lisse M (ci-dessous
toujours connexe) est une famille Dß,nß)ßsB où les Dß sont des sous-ensembles
analytiques fermés de codimension un dans où les nß sont des entiers
rationnels, et où la famille { ß e B\Dß nest finie pour tout
compact K de M. On écrit aussi D —f. nßDß, et nous noterons I D I

ßsB
le support de D,c'est-à-dire le sous-espace topologique de M qui est réunion
des ensembles Dß pour lesquels nß # 0.

Soit / : M->C une fonction méromorphe non nulle. Soient Zf [resp.
Pf]l'ensemble des zéros [resp. des pôles] de/ ; on sait que ce sont des sous-

ensembles de codimension 1 dans M(ou l'ensemble vide); voir [8], VIII.B.4.
Soit (Zf,i)tsil'ensemble des composantes connexes des points réguliers
de Zf. Pour chaque ieI, soient Dt l'adhérence de ZfA dans M et nl l'ordre
du zéro de/en un point de ZfA (qui est indépendant du choix de ce point);
on sait que { ie I|| Dt| n K#4>}est fini pour tout compact K de M.
On définit de même (Pfj)JeJ puis, pour chaque jeJ, l'ensemble irréductible

Dj et l'ordre «, du pôle de/ en un point de Pfj. On appelle diviseur
de la fonction f et on note Df le diviseur - YniDj-

'

Les diviseurs de M forment pour l'addition naturelle un groupe abélien
Div (M), et ceux à supports compacts un sous-groupe Divc (M).

Si M est de dimension deux, on définit une forme d'intersection

J Div (M) x Divc (M) -> Z
{ (D,E)i->< D I Ê >

dont l'existence repose sur la dualité de Poincaré et dont nous utiliserons
les propriétés suivantes:

(j) < | > est bilinéaire;
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(jj) la restriction de < | > à Divc (M) x Divc (M) est symétrique;

(jjj) si D1 et D2 sont des courbes irréductibles lisses à intersections

transverses, D±\ D2 } est le cardinal de | D1 | n | D2 |»

(jv) si / : M -•* C est une fonction méromorphe, <( Dy | £> 0 pour
tout £ e Divc (M) ;

(v) si D est irréductible à support compact, <D | D > est l'évaluation

de la classe de Chern du diviseur D sur la classe fondamentale [D].

(vj) Soient M' une variété lisse, U [respectivement U'] un ouvert de

M [resp. de M'], et (f>: U U' un isomorphisme. Si De Div (M)
et E e Divc (M) ont leurs supports dans U, alors < (j) (D) | 0 (E) >

-<2>|£>.
Voir par exemple le § 9 de [11].

Soit p: XXune résolution d'un ensemble Xde dimension deux avec

une unique singularité en x0; supposons que la fibre exceptionnelle soit

connexe et que ses composantes irréductibles soient des courbes lisses sans

point triple et à intersections transverses. (Les exemples ci-dessous montrent
l'intérêt de cette situation aussi bien que les résultats généraux; voir pour
ceux-ci [13], théorème 5.12.) On associe à p sa matrice d'intersection (^j):
si Eu ...,En sont les composantes irréductibles de la fibre exceptionnelle

E p-1 (x0) cz X (qui sont en nombre fini car p est propre), alors etJ
< Et | Ej Cette matrice est bien définie à conjuguaison près par une

matrice de permutation.
Dans l'exemple 1 ci-dessus, cette matrice est réduite au nombre —2;

donnons-en deux raisons.

La fibre exceptionnelle E & P1 est irréductible; c'est la section nulle

du fibré en droites À: X-> Q. Or l'isomorphisme cp\P1-+Q est défini

par l'application (p : -» Clyz9 et celle-ci s'écrit aussi (avec u is, v

-it, Ç ix+y et rj ix— y):

^uv £>nz

(u, v) t-> (v2, u2, uv)

Par suite, l'image inverse par cp du fibré X sur Q est le fibré noté 2(_2) à
la section 1.3; il résulte de la propriété (v) ci-dessus que < E | Ey — 2.

Soient d'autre part *S,(_2) comme en 1.3 et/ : £(_2> C le composé de

ft(-2): ^(-2) C3 et de la première projection x: C3-> C. Soit A la
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transformée stricte de l'axe d'équation x y 0 dans C3. Alors
Df 2A+E,d'oùpar (jv) ci-dessus

<X>/|£> 2<A|£> + <0

et par (jjj) <E\Ey -2.

Exemple 3. Soit S^k) comme à la section 1.3, avec deux cartes — disons
deux copies i£0 et de C2 — recollées selon l'isomorphisme que nous
écrirons ici

f {(w,v) gR0 | u ^ 0} -> {(u,v)eR1 \v # 0 }

| (u,v)t->(ukv} 1 /u)

Considérons d'une part les fonctions f 0, rj0, Ç0: R0 -> C définies par

Co (u>v) *7o («» *0 v Co (m, v) wz;

et d'autre part les fonctions rju Ci* Ri C définies par

CiO,^) « rj1(uiv) uvk Ci (m,v) uï^"1.

On vérifie sans peine que ces données définissent trois fonctions globales
C, 77, c* £(-*) -> c satisfaisant l'égalité Cfc Cf7fe~\ donc aussi une
application p: -> Le lecteur s'assurera à titre d'exercice que p est

une résolution de Ak l, que la matrice d'intersection se réduit au nombre

— k, et que p se relève en p: S(_k) — Xk)1. L'application p résout donc la
singularité définie par le groupe cyclique

{(Te(»)sA",(c2) I i
Si k 2, on retrouve l'exemple 1.

Citons enfin sans démonstration le théorème suivant: pour toute singularité

isolée de dimension deux et pour toute désingularisation (minimale
ou non), la matrice d'intersection associée est négative définie. Les exemples
ci-dessus offrent une première illustration de ce résultat. Voir [16], § 1.

IV.2. Trois suites numériques définies par n et q

Le contenu des paragraphes 2 et 3 se trouve dans [9].
Soient n et q des entiers avec 0 < q < n.
Posons X0 n et X± q. Définissons ensuite les entiers A2,..., bu b2,...

par l'algorithme euclidien suivant:
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A2 blX1 — A0 avec b>2 et 0 < A2 At

A3 fi2A2 — Ai avec ^2 > 2 et 0 < A3 < A2

Soit s le plus grand entier pour lequel As soit non nul, de sorte que

As fi5_i 2S_! - As_2 avec fi5_i >0 et 0 < As < As_i

0 fis As-

On vérifie sans peine que As est le plus grand commun diviseur de et

ce qui s'écrit As (n,q). On définit As+1 0. On peut remarquer que les

équations ci-dessus s'écrivent aussi

nA2q,A3

- »î — y » •••>
^ q À2

Às-2 *
1

D'où

&s-r -T^= b.-i ~
As-1 As-1

W
I.- h

4
b2 -

1

bs

ce que certains auteurs notent plus économiquement

- bl~llb2 - -1 /fis-
q _/ _/

On définit ensuite les suites (pk)k_0 s+i et (vA=o s+ i Par

M0 0 v0 1

Mi 1 Vi 1

M2 &i Mi - j"o v2 fi3 vx - v0

Ms fis-ift-i-A-2
fis + l fis^s - /V-l

Vs fis-l Vs-1 - Vs_2

Vs-ti bsvs- vs_i
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Lemme. Pour tout ke{0,1,...,j}ona:
(a) 4 + (n-q)fik nvk

(b) 4ùt+i 4+IÄ n

(c) Hk+iVk -Wk+i 1 •

De plus

et

0 Ho </il < < J«s+1
"

(n, q)

a.„1 V0 < < < Vs + 1

Cn,q)

Preuve. Les relations (a), (b) et (c) sont banales si 0 et si 1.
Pour k>2,elles résultent des calculs élémentaires suivants:

4+i + (n-q)fik+1 bkXk- 4_1 + (n-q) (&fcAù-/4-i)
bk(lk+(n— <ÙHk) — (Xk_k+(n— q)pkbknvk

nvk+1(k l,...,s);

4+IÄ+2 -4+2Ä+1 4+1(^+1^+1 -4) -(4+i4+i-4)Ä+I
ä 4ft+i - 4+1Ä (fc l,..., s —1);

A+2Vt+l -Ä+l^i+l (4+1Ä+1 -a) Vft+1 - Ä+i(4+1Vt+1 -V*)
ßk+iVk - Hkvk+1 l,...,s-l).

En particulier, comme 2S+1 0, on a 0 + («-9) /is+1 «vs+1 et 2s/is+1

n,d'où [is+1 — - et vs+1 Enfin, comme > 24 (m,«) (n,
pour k1,..., j, on a

Pk+l/Ù: (bk1) k-k — 1 Hk ßk-1 ••• ùl — Ù0 ^ 0
et

V*+1 - vt > > vt - v0 > 0

ce qui achève la preuve. H
Nous reviendrons à .plusieurs reprises sur les exemples décrits dans le

tableau suivant:
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n 10 8 6 4

Q 8 6 4 2

s 4 3 2 1

(Wo^k^s + i (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) (4,2,0)

(y-k)o^fk^s+i 0,1,2,3,4,5) (0,1,2,3,4) (0,1,2,3) (0,1,2)

(v/c)0^Jt^s+ 1 1,1,1,1,1,1) (1,1,1,1,1) (1,1,1,1) (1,1,1)

IV.3. Les résolutions p: Mn q -> An>q ou p: Mn>q *- 2^

Soient à nouveau n et q comme à la section 2, dont on reprend toutes
les notations.

Pour chaque k g { 0, 1,..., s }, désignons par Rk une copie de C2,

par (uk, vk) ses coordonnées canoniques, et par Rk [resp. R^] l'ouvert de

ses points de première [resp. seconde] coordonnée non nulle. Pour
k e { 1,..., s }, soit

f R*-i - K

c'est un isomorphisme dont l'inverse applique (uk, sur
Notons P0>1 la variété obtenue en recollant et selon 0, déjà considérée

à l'exemple 3 de la section 1. Soient ensuite 01>2 la variété obte ue
en recollant P0jl et R2 selon cpuetP0;1 s Mnq la variété obtenue
en recollant Po,i,...,s-i Rs selon Nous identifierons chaque Rk
à son image dans Mnq.Lavariété Mn<q est une surface lisse dans laquelle
chaque Rk est un ouvert dense (de fait un ouvert de Zariski).

Pour chaque k e{ 1,s }, considérons la courbe

Gk {(uk_1,vk_1)eRk_t\vk_l0} u { 0}
qui est lisse et isomorphe à P1. Notons encore oin et afi les courbes lisses
non compactes définies respectivement par { (u0, v0) e P0 | m0 ® }
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et { (us, vs) e Rs | vs — 0 }. Ces courbes n'ont pas d'intersection triple
et n'ont deux à deux que des intersections transverses. On vérifie
facilement que

1 si k 1
<°to K>

< °j i <**>'

<ff/; K>

0 sinon
1 si |jf - | 1

0 si | j| > 2

1 si k s

0 sinon

f/c :

nu

Pour chaque k e {0,1,s }, considérons enfin les fonctions

Ru c

-» C

Rk -> c4:
Si > 1 et x 0, alors

4 (%-1 («4-i, »4 -1)) (K-i)'Jfc w*_ l)Ah
1 \Vn

'4-1
(«4-l)** *+1(W4-l)* 4-l(«*-l,»4-l).

Par suite les 4 définissent une fonction globale C. Les tjk et
les 4 définissent de même tj, £: M„A -+ C. Notons que Ç" 47n~4. Il
suffit en effet de vérifier cette relation sur l'ouvert dense R0 <= M„ q, et
on a pour tout (u, v) eR0 :

(Ç(u,v))n ~(Ç(u,v))(ri(u,»))"-«(uvf 0.
Nous noterons p: Mnq A„ q

le morphisme défini par p (P) (£(P),
n(P),UP)).

Proposition 16. Le morphisme p : -> est surjectif, p-1 (Ö, 0,0)
- ffi U u as,p-1 { (0, j, 0) 6 J„>4 | 6 C } et p-1 { (x, 0, 0)
6 A„>q| x e C } afi.

Si de plus n, q)1, la restriction de p fournit une bijection de
S

- u aksur A„>q - { 0 }.
fc l
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Preuve. Il est immédiat que p {ax u u crs) (0, 0, 0).

Soit P (x, y, z) e An>q avec y ^ 0. Posons u0 z/y et

alors p (i/Q, v0) (wX> ^o> wo^o) Soit *>*) GP_1 (p) n alors

*7 (%>^) (ukYk(vkYk+1 y ¥= 0. Si k > 1, les entiers et pk+1 sont

strictement positifs, donc uk =£ 0 et vk =£ 0, de sorte que (uk, vk) e Rk n R0.
Si k 0, les équations i/Jvg x, v0 j>, u0v0 z n'ont qu'une solution
Nous avons ainsi montré que p-1 (P) ne contient qu'un point, qui n'est

pas dans la réunion des ak, et qui est dans ain si et seulement si P (0, y, 0).

Soit Q (x, 0,0)eAnq avec x # 0 (rappelons que c'est un point
singulier de An>q si q # n — 1). Pour k e { 0,1,..., £ — 1 }, les équations
(uk)Xk (vk)Xk+1 X # 0, (Wfcrw+1 (ukYk (Vk)vk+1 0 n'ont aucune
solution. Par contre, les équations

(usy° x (usys(vsys+1 (tOvw+1 o

ont précisément Xs {n, q) solutions. Donc y"1 (Q) contient (n, q) points,
donc aucun n'est dans la réunion des ok, et qui sont tous dans afi.

Proposition 17. On a < ak | ak — — bk pour k e { 1, 2,..., s }.

Preuve. Les diviseurs définis par les fonctions £, rj et Ç sont respectivement

Dç — nain + + + + + (n, g)<rs

n w
Dn — o*! + ....+ pk ak + ....+ crs + cr/£

+ <Tl + + Gk + + vs crs + afi(n,q)

Si on écrit provisoirement a0 pour ain et as+1 pour afi, la première de ces
formules et les calculs précédant la proposition 16 montrent qu'on a

o < Dç | ak \ ak-11 ak> + K &k | Gk + K+1 < °"/c+i | Gk

d'où

(jk\ &k y (~ îMfe) (^/c+i+^fe-i) ~ bk

pour tout k e s). On pourrait aussi utiliser

0 < A, | 0* > => < o* | o* > — ~ 1/P*) (f*k+i +Pk-1) —

ou

0 < Dç | tffc > => < or* | (7* > - 1/Vft) (vÄ+1 + - bk.
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On peut remarquer qu'il n'existe aucun prolongement de la forme
d'intersection à Div(M) x Div(M) qui jouisse encore des propriétés (j) à

(v) du § 1. En effet, on aurait alors par exemple

0 < Of | <Jin> n< <rin | (Jin>+ q=> < <jin|> - qjn

0 <D,| ainy1!!!

0 < D;|C7in>< ain|<Tta > + < ^! | o-in > ^> < trin | o-,„ > -1

ce qui est plusieurs fois absurde.

Corollaire.. La matrice d'intersection | es* définie

négative. Si q « - 1, c'est la matrice de Cartan An_1.

Remarque. Le déterminant de An_1 est en valeur absolue l'ordre du

groupe d'homologie H1 1 - { 0 }, Z); voir [16], page 11.

Preuve. La matrice d'intersection est

-b1 1 0 0 0 0

1 -b2 1 0 0 0

0 1 —• b2 1 0 0

_
0 0 0 0 1 -bs

_

Si Dk est son k-ième mineur principal, on a Ds — bsI)s-1 — Ds_ 2.

Il résulte de critères standards (voir par exemple [6], § 36, exercice 33)

que la matrice d'intersection est négative définie. Si q n — 1, on a

s n — 1 et par induction Z>s dét 04n_i) (~l)s/z.

Nous résumons les informations obtenues jusqu'ici dans le résultat

suivant.

Theoreme A. Le morphisme p se relève en une désingularisation

P • Mn>q —> Xn,q •



— 245 —

Le schéma de Dynkin, qui a un sommet muni de l'entier bk— — < ok j Qk >

pour chaque composante irréductible ak de la fibre exceptionnelle, et une

arête liant les sommets définis par Gj et ok si < Gj | ak > =# 0, est

bi bx ^3 K

Si q n - 1, la matrice < Gj | Gk )iest la matrice de Cartan

Preuve. L'existence de p résulte de la proposition 8; les autres affirmations

de ce qui précède.

IV.4. Relation avec les éclatements

Soit n : S-> C2 l'éclatement de C2 à l'origine, comme en 1.3. Considérons

ici T C x S et i:T -+ C3 l'application id x % qui est Y

éclatement de C3 le long de la droite d'équations y z 0. On munit T
comme en 1.3 d'un atlas à deux cartes xj/j: Tj C3 (j 0, 1), avec les

changements de cartes donnés par

C x C* x C ^(TonTi) xl/1(T0nT1) C x C* x C

(x, y, z) t-> (x, 1/v, yz)

et par l'isomorphisme inverse. L'application t s'écrit dans les cartes

C3 <Ao (T0)- C3

(x,y, z) h^(x, z,yz)t0:

et

C3 C3

(x, y, z) i-> (x, yz, z)

La transformée stricte de Anq { (x, y, z) g C3 | zn xyn~q } apparaît
dans une carte comme la surface lisse

{(x,y, z)eil/0(T0)\ynzqx}
et dans l'autre comme

{(x, y,z)e I^ (TJ | z« xyn~q } » AqM.n.

Au niveau des normalisés, l'éclatement permet donc de « remplacer »

Xniq par XqjX avec 0 < X < q et X (2 + r) q - n pour un entier positif
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convenable r(nous avons utilisé ici les remarques qui précèdent la proposition

13). Avec les notations de la section 2, on a précisément
et 2 + rbt.

En cherchant à itérer l'argument jusqu'à trouver une surface lisse,
on aurait précisément à considérer les suites numériques de la section 2.

V. L'ICOSAÈDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.l. Le cas de l'icosaedre

Soient h:C2— { 0 } -> P1 S2 la projection canonique et S: (2)
SO (3) le revêtement universel (à deux feuillets) du groupe des auto-

morphismes analytiques isométriques de du groupe des rotations
de la sphère). Soient Gle sous-groupe de SO (3) des rotations qui laissent
invariant un icosaèdre régulier inscrit dans S2, et S'1 (G); nous
noterons encore <5 la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S2 ont aussi 60 points à trois exceptions près
qui sont

l'orbite $£_ { at,..., al2 } des sommets de l'icosaèdre

l'orbite 3# { bu b20} des barycentres de ses faces

l'orbite P' {c1,...,c30 } des milieux de ses arêtes.

Le groupe Gagit linéairement dans C2; ses orbites ont toutes 120 points,
à la seule exception de l'origine.

Le quotient XicoC 2IGest un ensemble analytique, normal par
le theoreme de Cartan ; il a un unique point non lisse, que nous noterons
x0 et qui est l'image canonique de l'origine de C2. Nous renvoyons à [12],
chapitre II, § 13 et/ou à [15], théorème 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application

polynomial (j):C2 — C3 qui fournit par passage au quotient un isomorphisme
0 de Xico sur la surface de C3 à singularité unique

Ac {(x, y, z)eC3| z5 x2 + }
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