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‘IV. RESOLUTIONS DES QUOTIENTS DE C?
PAR UN GROUPE CYCLIQUE FINI

IV.1. DEFINITIONS ET PREMIERS EXEMPLES

Si X est un ensemble analytique, une résolution ') de X est la donnée
d’une variété complexe lisse X et d’une application holomorphe propre

surjective p: X — X ayant la propriété suivante: si 4 = p~1 (X — X

alors X — A est dense dans X et la restriction de p est un isomorphisme

de X — A sur X, (Le terme n’a donc pas ici le méme sens qu’a la section |
L.3, ou il s’agissait d’une « situation relative » ol un ensemble analytique
(= courbe) étant plongé dans une variété (= plan).) Lorsque X — Xieg

est réduit & un point x,, on appelle fibre exceptionnelle de la résolution le

sous-ensemble analytique p~1 (x,) de X.

Exemple 1. Soit X = {(x,»,2)eC?|x?>+ y*+ 22 =0}, qui est
une surface lisse en dehors de I'origine; le changement de variables ¢ = ix
+ y, n = ix — y montre que X est isomorphe a4 4, ;. L’image Q de ses
points réguliers par la projection canonique A: C*> — {0} — P2 est une
courbe projective lisse { [x, v, z] € P2 |‘x2 + y? + z?> = 0 }. On en précise
la nature grice a I’application homogéne

C2—>C3

e (L o)

~

elle factorise en un morphisme ¢: P! — Q qui est bijectif et qui est donc
un isomorphisme. |

Considérons S = {([z], w)eP? x C*|weh ' ([Z)U{0}} et la
restriction n: S — C? de la seconde projection. On montre comme en I1.3]
que S est une variété lisse, qui est incidemment I’espace total du fibré cano-
nique sur P%. Le morphisme m est propre, induit un isomorphisme de
S—7n"1() sur C*~ {0}, et sa «fibre exceptionnelle» est #~* (0)
= P?; C’est par définition I’éclatement de C> a l’origine.

1) On dit parfois « désingularisation » au lieu de « résolution ».
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Posons X = {([z], w)e S | [zZ1€ @ }; P'application A: X — O - définie
par A ([z], w) = [z] est la restriction & Q du fibré canonique de P2. Alors

I’application p: Xo X qui envoie ([z], w) sur w est une résolution de X
avec fibre exceptionnelle E = p~* (0) isomorphe & P*.

Plus généralement, soit X¢ un cone de degré d dans C**' ayant une
singularité isolée & I’origine, de sorte que Q¢ = h (X?—{0}) est lisse dans
P*. Soient S I’espace total du fibré canonique sur P* et n: § — C*** Iécla-

tement de C**! & Porigine. Posons X4 = {(lz}, w) e S| [z21 € @*}. Alors

la restriction p: X4 —» X? de m est une résolution de X* avec fibre excep-
tionnelle isomorphe & Q%

Exemple 2. Soit X = {(x,,2z,t)eC*|x* + y2 +z> + > =0}, qui
gécrit en d’autres coordonnées { (vq,v,, Wy, wy) € C*| v wy = v,wy }
et qui est un ensemble de dimension 3 lisse en dehors de I’origine. La sous-
variété correspondante Q de P? est une surface lisse. L’application

o { CZ X CZ — C4
Q:
((up u,), (us, u4)) > (UgUs, Uplly, Ugliy, Uslls)

factorise en un morphisme bijectif P! x P! - Q, donc en un isomor-
phisme. (La vérification de la bijectivité est un exercice facile. Le fait que
les morphismes bijectifs sont des isomorphismes, qui est €lémentaire en
dimension 1, est pour les dimensions supérieures un théoréme non banal:
voir par exemple [2], page 179.)

Le procédé décrit a la fin de ’exemple 1 consiste a poser

)}z{([z],w)eP3xC4|[z]eQ et weh'l([z])m{O}}

. )N( - X
. ([z], w) = w~
(est une résolution avec fibre exceptionnelle de dimension 2 = dim (X)

~ 1 isomorphe & P! x P1,
On peut aussi considérer

et

Y = {([z],v,w)eP' x C* x C* | v et w dans h™'([z])uU {0}}

qui est I’espace total de la somme de Whitney de deux fibrés canoniques

e e e I B e e e B e e el A
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f’——) X
([z],v, w) = (v, w)

fibre exceptionnelle de dimension 1.
Cet exemple montre en particulier que la fibre exceptionnelle d’une

sur P1. Alors ¢ : { est aussi une résolution de X avec

résolution p: X — X avec X & point singulier unique x, ne dépend pas
seulement du germe de X en x,, mais aussi fortement de p. Toutefois,
lorsqu’on se restreint & des espaces X de dimension deux, on peut lever
cette ambiguité: il existe en effet dans ce cas une unique « résolution mini-
male » pour tout germe de surface avec singularité isolée, et la fibre excep-
tionnelle d’une telle résolution en un point singulier ne dépend que du
germe de la singularité; voir [13], chapitre V.

Rappelons qu’un diviseur D dans une variété lisse M (ci-dessous tou- |
jours connexe) est une famille (Dg, ng)gep OU les Dy sont des sous-ensembles |
analytiques fermés de codimension un dans M, ou les ng sont des entiers
rationnels, et ol la famille { e B | Dy K # ¢} est finie pour tout

compact K de M. On écrit aussi D = ) ngDg, €t nous noterons l D, ,
peB

le support de D, c’est-a-dire le sous-espace topologique de M qui est réunion §

des ensembles Dy pour lesquels 7, # 0.

Soit f': M — C une fonction méromorphe non nulle. Soient Z + [resp.
P,] 'ensemble des zéros [resp. des pdles] de £ ; on sait que ce sont des sous-
ensembles de codimension 1 dans M (ou I’ensemble vide); voir [8], VIIL.B.4.
Soit (Z; ;);r 'ensemble des composantes connexes des points réguliers
de Z,. Pour chaque i € I, soient D, ’adhérence de Z ¢.idans M et n; ’ordre
du zéro de f'en un point de Z, ; (qui est indépendant du choix de ce point);
on sait que {iel|| D;| nK s ¢} est fini pour tout compact K de M.
On définit de méme (P, ;);.; puis, pour chaque j € J, I’ensemble irréduc- J§
tible D; et ’ordre n; du péle de f en un point de Py ;. On appelle diviseur
de la fonction f et on note D le diviseur Y n,D; — Y'n;D;. ]

Les diviseurs de M forment pour I’addition naturelle un groupe abélien
Div (M), et ceux & supports compacts un sous-groupe Div, (M).

Si M est de dimension deux, on définit une forme d’intersection

{Div(M) x Div, (M) > Z
(D,E)—~<D|E)

dont I’existence repose sur la dualité de Poincaré et dont nous utiliserons
les propriétés suivantes:

() <|D est bilinéaire;
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(jj) la restriction de ¢ | S 4 Div, (M) % Div, (M) est symétrique;
(jij) si D, et D, sont des courbes irréductibles lisses a intersections
transverses, { D | D, ) est le cardinal de | D, || D,

(jv) sif:M - C est une fonction méromorphe, { Dy |E > = 0 pour
tout E € Div, (M);

(v) si D est irréductible & support compact, <D | D > est ’évaluation
de la classe de Chern du diviseur D sur la classe fondamentale [D].

(vj) Soient M’ une variété lisse, U [respectivement U '] un ouvert de
M [resp. de M '], et ¢: U — U’ un isomorphisme. Si D € Div (M)
et E € Div, (M) ont leurs supports dans U, alors { ¢ (D) | ¢ (E)>
= (D|E).

Voir par exemple le § 9 ‘de [11].

Soit p: X —» X une résolution d’un ensemble X de dimension deux avec
une unique singularité en x,; supposons que la fibre exceptionnelle soit
connexe et que ses composantes irréductibles soient des courbes lisses sans
point triple et & intersections transverses. (Les exemples ci-dessous montrent
intérét de cette situation aussi bien que les résultats généraux; voir pour
ceux-ci [13], théoréme 5.12.) On associe & p sa matrice d’intersection (e; ;):
si Eq, ..., E, sont les composantes irréductibles de la fibre exceptionnelle

E=p~1(x,) = X (qui sont en nombre fini car p est propre), alors e; ;
= { E; [ E; . Cette matrice est bien définie a conjuguaison prés par une
matrice de permutation.

Dans I’exemple 1 ci-dessus, cette matrice est réduite au nombre —2;
donnons-en deux raisons.

La fibre exceptionnelle E ~ P! est irréductible; c’est la section nulle

du fibré en droites A: i’ — Q. Or lisomorphisme ¢: P! - Q est défini

. : ~ 2 3 . r s . .
par Papplication ¢: C; = C;,,, et celle-ci s’écrit aussi (avec u = is, v

= —it, ¢ = ixtyetn = ix—y):

2 3
Cuv —> Cénz
(u,v) — (v, u?, uv)

Par suite, I'image inverse par ¢ du fibré A sur Q est le fibré noté 4._,, a
Ja section 1.3; il résulte de la propriété (v) ci-dessus que { E | Ey = —2.

Soient d’autre part S _,) comme en 1.3 et f: S;_,, = C le composé de
T~2): S(~2 — C*> et de la premiére projection x;C3* — C. Soit 4 la
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transformée stricte de 1’axe d’équation x = y = 0 dans C3. Alors
D; = 24+ E, d’ou par (jv) ci-dessus

<DflE> = 2(A|E) +<E|E>
et par (jjj) CE|E) =

Exemple 3. Soit S_;, comme 2 la section 1.3, avec deux cartes — disons
deux copies R, et R; de C? — recollées selon I’isomorphisme que nous
écrirons ici

{(,0)eRy|u #0} > {(u,v)eR, |v # 0}
{ (u,v) = (u*v, 1/u)

Considérons d’une part les fonctions &, 74, {o: Ry = C définies par

60 (u,v) = u*p Mo (u,’l')) = ¥ CO (u,'U) = uv

et d’autre part les fonctions &, #,, {;: R, — C définies par

G0 =u ) = wt f(,0) = whl

On vérifie sans peine que ces données définissent trois fonctions globales |§
& 1, {18y — C satisfaisant I’égalité (¥ = £7*~1, donc aussi une appli-
cation p: Sy — 4 ;. Le lecteur s’assurera a tltre d’exercice que p est
une résolution de 4, {, que la matrice d’intersection se réduit au nombre

—k, et que p se reléve en /; : S(—x = X;,1. L’application ; résout donc la
singularité définie par le groupe cyclique

e(jlk) 0 5
{( 0 e(,-,k)>€A“‘(C)

Si k = 2, on retrouve ’exemple 1. |
Citons enfin sans démonstration le théoréme suivant: pour toute singu- |
larité isolée de dimension deux et pour toute désingularisation (minimale [§
ou non), la matrice d’intersection associée est négative définie. Les exemples
ci-dessus offrent une premiére illustration de ce résultat. Voir [16], § 1.

j=0,...,k—1}.

IV.2. TROIS SUITES NUMERIQUES DEFINIES PAR 7 ET ¢

Le contenu des paragraphes 2 et 3 se trouve dans [9].

Soient n et g des entiers avec 0 < g < n.

Posons A, = netd; = g. Définissons ensuite les entiers 1,, ..., by, b, ...
par P'algorithme euclidien suivant:
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).2 = blﬂ"l - 2,0 avece b1/>/ 2 et 0 < 2,
Ay = byd, — Ay avec by >2 et 0<4;< A,

Soit s le plus grand entier pour lequel A, soit non nul, de sorte que

A‘S = bs—l A’s—l - ls_z avece bs_1 > 0 et O < }«s < As—'l
0 = bs /18 - A’s—l N
On vérifie sans peine que A, est le plus grand commun diviseur de » et g,

ce qui s’écrit A, = (n, g). On définit A, = 0. On peut remarquer que les
équations ci-dessus s’écrivent aussi

A A
E = bl - ) _q_ = bz -2 ’ ’
q q AZ 12
s A, 1
NP Sy .
)’s—l s ls-—l i bs
D’ou
n 1
— b1 — -
q b, —
1
b

ce que certains auteurs notent plus économiquement

© = b =15, = = 1B,

On définit ensuite les suites (u)r=o,...,s+1 € (Vk=o, ..., s+ PAr
Ko =0 Vo = ]
uul = 1 Vl_ = 1
My = Dbypuy — to v, =Dbivi =

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Hs = bs-—l Us—1 — Hs-2 - Vs = bs—lvs—l — Vs—2

Hsy1 = bs.us — Us—1 Vs41 = bsvs - Vs-1
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Lemme. Pour tout k€ {0, 1, ..., s} on a:

@ A+@m—qum =ny
(®) Aethesr — Ms1 i = n

©  Mer1Vi — MpVesr = 1.

De plus
n
0 =pp <py <. <pigyy =
(n,9)
&L
n—gq
L=<y <o <<vgyy = — .
(n,q)

Preuve. Les relations (a), (b) et (c) sont banales si k = O et si k = 1. |
Pour k > 2, elles résultent des calculs élémentaires suivants:

Merr + (M= sy = bl — by + (0 —q) (b — 1)
= bk()”k"'(n—'Q):uk) — (A—1 +(n—q) y-1) = bynv, — nv,_4

== nvk+1 (k=]., ceny S);

y His2 — Agin M1 = Aty (bk+1ﬂk+1 — 1) — (bk+i/1k+1 —A) Hy 41
= b1 — hrrtn (k=1,...,s—1);

Pr+2 Virr — Mee1 Vit = Brs1lier 1 — M) Ves1 — Moews (br+1Vis1 =)

= 1 Ve — vy (k=1,..,5-1).

En particulier, comme A, ; = 0,0na 0 + (n—q) .4, = nveyq et Aggy

n n N n—gq
—_ e vs — e
A (n,q) T ()

pour kK =1,..,5 0n a

_— b P J—
=n, Ao gy ; =

Perr — M = (=D — ey > 1 — ey > ... =y —fo >0
et
Vk+1 _vk>...>vl —V0>O.

ce qui achéve la preuve. N
Nous reviendrons a .plusieurs reprises sur les exemples décrits dans le
tableau suivant:

. Enfin, comme 5, >2 |




I 10 8 '6 4
q 8 6 4 2
s 4 3 2 1
(M)o<k<s+1 (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) 4,2,0)
(UR)o<k=s+1 | ( 0,1,2,3,4,5) 0,1,2,3,4) (0,1,2,3) 0,1,2)
(VK)o <k =s+1 ( 1,1,1,1,1,D) 1,1,1,1,1) 1,1,1,1) 1,1,

IV.3. LES RESOLUTIONS p: M, , = 4,, 00 p: M, , = X, ,

Soient & nouveau n et ¢ comme a la section 2, dont on reprend toutes
les notations.

Pour chaque ke{0,1,..,s}, désignons par R, une copie de C?,
par (i, v,) ses coordonnées canoniques, et par R; [resp. R;] I'ouvert de
ses points de premiére [resp. seconde] coordonnée non nulle. Pour
ke{l,.., s}, soit

{ Ri-y = R;
Dr-1 - , b —1y 3
-t (uk—1a”k—1)‘—>((uk—1) kvk-l s (Ug—1) 1)

c’est un isomorphisme dont linverse applique (u,v,) sur (1/v,, vkb"uk).
Notons R, ; la variété obtenue en recollant R, et R, selon ¢, déjd consi-
dérée a exemple 3 de la section 1. Soient ensuite R, ; , la variété obte ue
en recollant R, ; et R, selon @y, ..., et Ry ;o = M, ,la variété obtenue
en recollant Ry ;. -1 €t R, selon ¢ _,. Nous identifierons chaque R,
a son image dans M, ,. La variété M, , est une surface lisse dans laquelle
chaque R, est un ouvert dense (de fait un ouvert de Zariski).
Pour chaque .k € { 1, ..., 5 }, considérons la courbe

T = { (-1, 0-1) € Ry | Uy = 0} U {(up,0) € Ry |y = 0}

qui est lisse et isomorphe & P'. Notons encore ¢;, et o s; les courbes lisses
non compactes définies respectivement par { (u,,v,) € R, | ug = 0}
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et {(u,v,)eR, [ vs = 0}. Ces courbes n’ont pas d’intersection triple
et n’ont deux & deux que des intersections transverses. On vérifie faci-

lement que |
1 si k=1
<0inl0'k> = { . ‘

\ 1
Coilond _{o siv [j—k|>2

< I ; 1 si k =s
O lO e ;
Jil Tk 0 sinon

Pour chaque k€ {0, 1, ..., s }, considérons enfin les fonctions

R, - C}
fk:{ ¢

(e, V) > (1) ** () 41

R, - C
T { (ug> Vi) = ()™ (v, )M+
'. R, - C ‘
+ { (1t D) = ()™ ()41

Sik>1cetu,_,; #0, alors
NBE Ak 1 Ak"“l
S ((Pk—1(uk-—1a7’k—1)) = ((uk-1) vk-—l) "

k-1
= (uk—1)b“k—lk+1(vk—1)lk = 1 (Up—1,V—y) .

Par suite les £, définissent une fonction globale ¢&: M, ,— C. Les n, et
les {, définissent de méme #, {: M, ,— C. Notons que (" = &y*~4. 1l
suffit en effet de vérifier cette relation sur I'ouvert dense R, < M, ., et
on a pour tout (i, v) € R,: |

(C,2)" = (§ @, 0)) (1@, )™ = o) — Wv) @™ = 0.

Nous noterons p: M, , - A, , le morphisme défini par p (P) = (¢ (P),
1 (P), { (P)). ’ |

PROPOSITION 16. Le morphisme p: M, , - 4, 4 est surjectif, p 1 (0, 0, 0)
=0, VU..Va, p7{(0,0e4d,,|yeC} =p, et p~1{(x,0,0)
€d, | xeC} =0y . |

Si de plus (n, ¢) = 1, la restriction de p fournit une bijection de M, ,

— U ogsurd,,— {0}
k=1
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Preuve. 11 est immédiat que p (o, U ... U ay) = (0,0, 0).

Soit P = (x,y,z)€A,, avec y # 0. Posons u, = z[y et vy = y;

alors p (g, Vo) = (Upvd, vy, ugve) = P. Soit (u, v) €p~ ' (P) N Ry; alors
1 (U V) = @)™ (@)1 =y #£0. Si k> 1, les entiers y, et w4 sont
strictement positifs, donc u, # 0 et v, # 0, de sorte que (i, U) € R, N Ry,
Si k = 0, les équations ugvd = x, v, = ¥, Uy, = z n’ont qu’une solution
Nous avons ainsi montré que p~ ! (P) ne contient qu’un point, qui n’est
pas dans la réunion des oy, et qui est dans o, si et seulement si P = (0, y, 0).
Soit Q = (x,0,0) e 4,, avec x # 0 (rappelons que c’est un point
singulier de 4, , si ¢ # n — 1). Pour k€{0,1,..,s — 1}, les équations
W)™ @)™ =x £ 0, ()" @)™ ! = ()" ()"t =0 n’ont aucune
solution. Par contre, les équations |

@)™ =% (@)™ @) = @) (@) = 0

ont précisément 1, = (n, q) solutions. Donc y~ ! (Q) contient (#, ¢) points,
donc aucun n’est dans la réunion des oy, et qui sont tous dans o,;. M

PROPOSITION 17. On a {6} |0, > = — b pour ke {1,2,..,5}.

Preuve. Les diviseurs définis par les fonctions &, n et { sont respecti-
vement

D, = noy, +qoy + ... + Lo + .... +(n,q) o0,
’ n

D = 61+ oo + Mo+ oo + U0y + —— 0 gy
n 1 Uy, O u & ) f

n—q
D, O + 0'1+....—|-Vk0'k+----+VSO'S+@0'fi

Si on écrit provisoirement ¢, pour g, et o, 4 pour o, la premiére de ces
formules et les calculs précédant la proposition 16 montrent qu’on a

0 = <D§!Uk> = -1 Oy |0'k> + )'k<o-k|0'k> + 11 Opt1t lo'k>
d’ou
<°'k|0k> = (—1/4) (s1+ A1) = = b

pour tout k € { 1, ..., s }. On pourrait aussi utiliser

0 = <Dn|ak>$<o'kl0-k> = (= 1/m) (s +—1) = — by
ou

0 = <Dc|0k>=><0klo'k> = (—1/vp) (Vi1 +Vmq) = —b. ®m
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On peut remarquer qu’il n’existe aucun prolongement de la forme d’in- |
tersection a Div (M) x Div (M) qui jouisse encore des propriétés () a
(v) du § 1. En effet, on aurait alors par exemple

0 = <D§|0in> = n<o'in|6in> +q=><0'in|0'in> = —g/n
0 =(D,|o,) =11
0 = <D§|Gin> = <O.inlo-in> +<O-1lo-in>:<o-inlam> =—1

ce qui est plusieurs fois absurde.

CoROLLAIRE.. La matrice d’intersection {o; | Ok D1 éjv,k s est définie §
négative. Si ¢ = n — 1, c’est la matrice de Cartan 4,_ ;.

Remarque. Le déterminant de A4,_, est en valeur absolue I’ordre du
groupe d’homologie H, (X, ,—; — {0}, Z); voir [16], page 11.

Preuve. La matrice d’intersection est

- —b, 1 0 0 0 0 |
1 —b, 1 0 0 O
0 1 —b; 1 0 O
0 0 0 0 1 —bs |
Si D, est son k-iéme mineur principal, on a D, = — b,D,_; — D,_,.

Il résulte de critéres standards (voir par exemple [6], § 36, exercice 33)
que la matrice d’intersection est négative définie. Si ¢ =n — 1, on a
s = n — 1 et par induction D; = dét(4,-;) = (—1)'z». m

Nous résumons les informations obtenues jusqu’ici dans le résultat
suivant.

THEOREME A. Le morphisme p se reléve en une désingularisation

; r My = Xy
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Le schéma de Dynkin, qui a un sommet muni de Pentier b, = — { oy | o >
pour chaque composante irréductible oy, de la fibre exceptionnelle, et une
aréte liant les sommets définis par o; et o, si (0| o) # O, est

b, b, by b,
o—o —o—..—© (@ =P")

Si ¢ = n — 1, la matrice { 6;| 0} >y ;s est la matrice de Cartan 4, _;.

Preuve. L’existence de p résulte de la proposition 8; les autres affirma-
tions de ce qui préccde. M

IV.4. RELATION AVEC LES ECLATEMENTS

Soit 7: S —» C? Péclatement de C? 4 I'origine, comme en I.3. Consi-
dérons ici T = C X S et 7: T — C3 l'application id X = qui est 1’écla-
tement de C3 le long de la droite d’équations y = z = 0. On munit T
comme en 1.3 d’un atlas & deux cartes y;: T'; — C3 (j=0,1), avec les
changements de cartes donnés par

C X C* X C = l//o('I‘omTl) '—)lpl (TomTl) - C X C* X C
x,y,2) > (x,1/y, yz)
et par I'isomorphisme inverse. L’application 7 s’écrit dans les cartes
{03 =Y (T)) » C°
To "

(x,9,2) > (x,2,y2)
et

T_{C3=¢1(T1)—’ c’
o (x,,2) > (x,2,2)

La transformée stricte de 4, , = {(x,y,2) € C? |z" = xy""1} apparait
dans une carte comme la surface lisse ‘

{(x,y,Z)Elllo(TO)lyan =X}
et dans ’autre comme '
{(x: ya Z) 611[/1 (Tl) l Zq = xyn-q} ~ Aq,Zq—n &

Au niveau des normalisés, I’éclatement permet donc de « remplacer »
Xuyqopar X, ; avec 0 <A <get A= (2+r)qg— n pour un entier positif
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convenable 7 (nous avons utilisé ici les remarques qui précédent la propo-
sition 13). Avec les notations de la section 2, on a précisément A = Ay
et 2 +r=b,.

En cherchant & itérer I’argument jusqu’a trouver une surface lisse,
on aurait précisément i considérer les suites numériques de la section 2.

V. LICOSAEDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.1. LE CAS DE L’ICOSAEDRE

Soient 4: C* — {0} » P! = S? la projection canonique et : SU (2)
— 80O (3) le revétement universel (3 deux feuillets) du groupe des auto-
morphismes analytiques isométriques de P! (= du groupe des rotations
de la sphére). Soient G le sous-groupe de SO (3) des rotations qui laissent |
invariant un icosaddre régulier inscrit dans S2, et G = 61 (G); nous
noterons encore ¢ la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S* ont aussi 60 points 3 trois exceptions prés
qui sont

Porbite & = {ay,..,a;,} des sommets de I’icosaédre
Porbite & = { by, ..., b, } des barycentres de ses faces

Porbite € = {c¢;, ..., c30 } des milieux de ses arétes.

Le groupe G agit linéairement dans C?; ses orbites ont toutes 120 points,
a la seule exception de I’origine.

Le quotient X;,, = C%/G est un ensemble analytique, normal par
le théoréme de Cartan; il a un unique point non lisse, que nous noterons-
X, et qui est 'image canonique de ’origine de C2. Nous renvoyons a [12], |
chapitre II, § 13 et/ou a [15], théoréme 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application poly-

némiale ¢: C* —» C* qui fournit par passage au quotient un isomorphisme
¢ de X, sur la surface de C* a singularité unique

Ay = {(6,7,2)€C* | 2° = x? + y*}.
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