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Si q n — 1, nous avons vu que $ est un isomorphisme de Xn„_1
sur An>n^1; en d'autres termes que la dimension de plongement de la singularité

normale Xnn_1 est 3. On sait calculer en général la dimension de

plongement de Xnq: si (n, q) 1 et avec les notations de la section IV.2,
s

elle vaut 3 + £ En particulier, la réciproque à l'assertion
k=i

ci-dessus est aussi vraie: si (n, q) 1 et si Xn>q se plonge dans C3, alors

q n — 1. Voir [22], fin du § 3.

III.3. Classification

Soit r un germe de surface plongé dans C3. Reprenons les notations

de la section II.2; supposons que le lieu discriminant exhibe

une singularité consistant en un point double avec croisement normal — en

d'autres termes, supposons qu'on puisse choisir les coordonnées de telle

sorte que yD {(x, y) e D2 | xy 0}. Nous noterons D** l'espace

D2 — 7d et r£* son image inverse par n; la projection se restreint en un

revêtement à n feuilles 7r**: D* *. On identifie comme à la section

précédente le groupe fondamental de D* * à Z2.

Proposition 14. Il existe un polycylindre E2 dans C2, un morphisme

p**: j-** _>£** et des entiers n, q avec 0 < q < n et (n, q) 1 tels

que p** induise une injection de Fond (r£*) sur le söus-groupe de

Fond (F* *) Z2 engendré par (n, 0) et (#, 1).

Preuve. Soit C l'image de Fond(r^*) dans Z2 définie par 7i**. C'est

un sous-groupe d'indice fini de Z2 car 71** est un revêtement fini. Par suite

G contient des éléments de la forme (k, 0); soit

a inf { | fc | | (fe, 0) e G et k #0}.

On peut choisir un vecteur (è, c) formant avec (a, 0) une base de G, tel

que 0<è<aetc>0.
Soit d le plus grand commun diviseur de a et b (avec d a si b est nul).

Soient E2 { (w, v) e C2 | (wd, e Z>2 } et E%* { (u, v)sE2\uv
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L'application 7C**: (u, v) h» (wd, vc) de £** sur D** es^ un revêtement

holomorphe connexe à de feuilles, et induit une injection de Fond (E2

sur le sous-groupe de Z2 Fond (D* *) engendré par (<d, 0) et (0, c).

Ce groupe contenant G, il existe un morphisme p** rendant le

diagramme
77 * *^2

commutatif. Au niveau des groupes fondamentaux, p** induit un iso-

morphisme de Fond (r£ *) sur le sous-groupe de Z2 Fond (F* *) engendré

par (a/d, 0/c) et (bjd, c/c). M

Proposition 15. Avec les notations de la proposition 14, le germe r
normalisé de T est isomorphe au germe de Xn A au point singulier.

Preuve. Soient -»-E**comme dans la preuve précédente et

7i**: A**C** comme dans la section précédente. Soient { (x,z)
e C3 | (x, y) eE2) et n** la restriction de n*'* à A**n V. Les revêtements

p** et n'y * définissent le même sous-groupe de Fond (E* *). Il existe donc
des morphismes g et h, inverses l'un de l'autre, rendant le diagramme

9
A * * V ^ =± 7-* *

An,q n V h 1 D

commutatif. Le morphisme g est borné car n l'est et p** est propre; de

même, h est borné. Le raisonnement usuel (voir par exemple celui qui
précède la proposition 13) montre que p et A permettent de définir un

isomorphisms du normalisé de An>qn V avec rD, c'est-à-dire du gernie de

Xn
q au point singulier avec T. fl
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