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Sif: X — Y est la section nulle du fibré =, (de sorte que le 4 de la pro-
position 8 est vide), il est alors évident que f ne se reléve pas, car cela
impliquerait que le revétement £ — Y . = f(X) soit trivial.

Y

Vx

III. SINGULARITES NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.1. LES SURFACES A4,, ET LEURS NORMALISATIONS

Soient n et g des entiers, avec n positif et g << n. Nous noterons A, ,.1a
surface {(x, y,z) € C*| 2" = x)""9}.

Si n = 1, les surfaces ainsi définies sont toutes lisses: I’isomorphisme
(x, y,2) = (x, ¥, z—xy' "% de C? applique 4, sur 'hyperplan d’équation
z = 0. De méme, si ¢ = n, 'isomorphisme (x, y, z) - (x—2", y, z) applique
A,, sur T’hyperplan d’équation x = 0. Nous supposerons désormais
n > 2 et g < n sauf mention expresse du contraire.

Sig = n — 1, les dérivées partielles du polynéme z" — x)" "% = z" — xy
ne s’annulent simultanément qu’a I’origine, et 4, ,_, est lisse en dehors de
ce point (donc normale en vertu d’un théoréme d’Oka rappelé en II.2).

Si g <n — 2, la surface 4, , est lisse en dehors de la droite d’équations &

y = z = 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que 4, , n’est pas normale.

Soit G, , le groupe des isomorphismes de C? de la forme (s, ¢) > ({%, (1)
ou { est une racine n-iéme de 'unité; c’est un groupe cyclique d’ordre n.
Nous noterons X, , 'ensemble des orbites, muni de sa structure canonique
d’ensemble analytique normal.

Si g = 0, Pensemble X, o est lisse: I'application (s, z) — (s, t") passe
au quotient et définit un isomorphisme de X, , sur C x (C/ (Z/nZ)) ~ C>.
Les espaces X, , et X, .- sont évidemment identiques si ¢’ = ¢ (modulo n);
il suffit donc d’étudier les X, , pour lesquels 1 < g < n (voir de plus la
proposition 13).
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Considérons le morphisme ¢, ,: c?-C? défini  par Pn.q (5, 7)
= (s", t", st""9); son image est dans 4, , et il définit par passage au quotient

un morphisme ¢, 1 X, , = 4,4 NoUus écrirons aussi ¢ et ¢ au lieu de

hn.q €L Gn,qr

PROPOSITION 9. Le morphisme ¢ induit un homéomorphisme de I'image
de {(s, 1) e C? ] t # 0} dans X, , sur {(x,,2) €A, |y #0} Sinetgq
sont premiers entre eux, ¢ lui-méme est un homéomorphisme de X, ,

sur A, ;.

Preuve. Montrons d’abord que ¢ est surjectif et que I'image inverse

par ¢ de tout point autre que Iorigine est formée de n points.
Soit P = (x,y,z) € 4,, avec y # 0. Choisissons une racine n-iéme

de y et posons s = z¢~""4. Alors
¢(s,0) = ("y"",y,2) = (x,),2).

Soit (s, ¢") € C* avec ¢ (s',¢") = ¢ (s, 7). Il existe des racines n-iémes {

et 1 de I'unité avec s’ = (s, t" = ntet {n""% = 1. Par suite ¢~ (P) a

n points.
Soit QO = (x,0,0) € 4, , avec x # 0. Choisissons une racine n-ieéme s

de x. Alors ¢~ (Q) = {({(5,0) e C* | { e Cet (" = 1} an points.

Le groupe G, , agit librement sur {(s,2) e C? l t # 0}, et méme sur
C* — {0} lorsque n et g sont premiers entre eux. 11 en résulte que la restric-
tion de ¢ & I'image de {(s, t) € C* | t # 0} dans X, , est injective dans tous
les cas, et que ¢ lui-méme est une bijection si (1, g) = 1.

Montrons par exemple que ¢ est un homéomorphisme si (n, ¢) = 1.
Pour tout nombre réel positif r, soient K, I'image dans X, , de

{(5,) e C* || s| <r et |21] <r}
¢t L, lintersection avec 4, , de
(5, 9,2)eC || x| <, |y] <, |z| <r'trma)

La restriction de ¢ a K, est une bijection continue du compact K, sur le
compact L,; c’est donc un homéomorphisme. Par suite, ¢ est un homéo-
morphisme. &
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COROLLAIRE. Si (n,g) = 1, la surface A,,, est topologiquement singu-
liere a l’origine.

Preuve. Pour tout r > 0, le complémentaire de ’origine dans L, est
homéomorphe au complémentaire du point central dans K,. 1l se rétracte
donc par déformation sur I’espace lenticulaire que définit I’action de G,,
sur une petite sphére S> centrée & I'origine de C2. (L’intérieur de L, est
donc un bon voisinage de 1’origine dans 4 A, , au sens de la section II.1.)
En particulier, le groupe fondamental du complémentaire de I’origine dans
L, n’est pas trivial. m

Remarquons que c’est aussi un corollaire immédiat de la proposition 9
que (A, ,)., est « connexe  origine»: ( L,),r x est une base de voisinages
de l’origine dans 4, , et L, N (4, ,@reg €St connexe pour tout e R¥. D’autre |
part, il est facile de vérifier que le polyndme z" — x)" ¢ est irréductible
dans ,0 [z], donc aussi dans ;0 (voir [8], lemme II.B.5). On vérifie ainsi
un cas particulier d’une affirmation énoncée a la section II.1.

ProPOSITION 10. Supposons ¢ <<n — 2. Soient c € C* et Q = (c, 0, 0)
€ 4,4 Alors le voisinage {(x,»,2) €4, ||x —c|<]|c]|} de Q dans §
Ay, est isomorphe au produit direct du disque D = {£eC || &| < 1} et
de la courbe plane y = {(y,2) e C*| z* = "7},

Preuve. Soit p: D — C la fonction holomorphe définie par p (&)
= 1+ & pour tout £ e D et p(0) = 1. Soit d une racine (n—g)-iéme de
1/c. Considérons I'application «: D x y — C3 définie par o (&, y, 2)

= (c(1+&), dy, p (&) z). Pour tout (¢, y,z) € D X 7y, on a

P z) —c(Q+H @)™ =1+ ("—y") = 0.
Par suite o définit un morphisme
Dxy-{(x,y,2)€d,,|lx—c|<]|c|}.
qui applique (0, 0, 0) sur Q et d’inverse donné par
(x,y,2)=(c"'x—=1,d7y, (p(cx - D)™'z). m

COROLLAIRE. Supposons ¢ <n — 2. Si (n, q) # 1, la surface A, , est |
topologiquement singuliére en tout point de I’axe d’équations y = z = 0.
Si(n,g) = 1, c’est une Varlete topologique au voisinage de Q qui n’est pas
normale en Q.

Preuve. Si (n,q) # 1, la courbe y a plusieurs branches & I’origine;
les intersections de petites sphéres centrées a I’origine dans C2 avec
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y — {0} ne sont donc pas connexes et A, , est bien topologiquement singu-
liere en Q. Si (n, ¢) = 1, la surface est une variété topologique au voisinage
de O en vertu du corollaire a la proposition 3. Reste a montrer que D %Xy
n’est pas normal. Cela résulte de la proposition 7, ou de I'argument direct
qui suit. .

Soient a, b € Z avec an + b(n—q) = 1, et Y: D x y— C la fonction

a b :
définie par ¥ (&, y,2) = {y z S% vz #0
0 si y=2z=

holomorphe, mais " lest car ¥ (¢, y, 2)* = y. L’anneau des germes en Q
de fonctions holomorphes n’est donc pas intégralement clos. m

. Alors { n’est pas

PROPOSITION 11. Pour tout couple (n,q) avec n > 2 et ¢ <n — 1, le
morphisme @, ,: X, , = An,q €St la normalisation de 4, , C’est un iso-

morphisme si et seulement sig = n — L.

Preuve. Cela résulte de ce qui précéde et du théoréme de Cartan rappelé
a la section II.1. =

On pourrait montrer que les surfaces 4, ;, Ay g-ns A, ;- 2n --- SONt NON
isomorphes deux a deux; par suite, X, , est la normalisation d’une infinité

d’ensembles analytiques distincts.

II1.2. LES DISCRIMINANTS DES A,, ET LES OUVERTS A"

Soient & nouveau #n et g des entiers avec n > 2 et g < n. Notons
Fe ,0[z] le polyndme z" — xy"~% A un facteur numérique prés, son
discriminant est une puissance de xy"~%. Soient en effet 4, ..., 4, ses racines,
qui sont dans une extension convenable du corps des quotients de ,0; alors

oF
Dis (F) = [15- () = [Ty~ = ([Indy) A1)

= nt (xyn—q)n ( - 1)nF (x’ v, 0)—1 — ( — 1)n-—1 n" (xyn—%n—l

(tous les produits étant sur j de 1 & n). Comme a la section II.2, désignons
par n: 4, , - C? la restriction & 4, , de la projection canonique (x, ¥, 2)
> (x, ). Nous noterons C** I’espace C? privé du lieu discriminant
y = {(x,y) e C*| xy = 0} et 4, 'image inverse par = de C**. La pro-
position 7 ou un examen direct montre que 7 se restreint en un revétement

holomorphe a » feuilles
REE L ARE o CF

L’Enseignement mathém., t. XXV, fasc. 3-4. 15
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Nous notons ci-dessous Fond (Y) le groupe fondamental d’un espace §
topologique Y; nous n’aurons i considérer que des cas ol ce groupe est |
abeélien, ce qui nous autorise a ne pas marquer de point base sur Y.

Le groupe fondamental de C** = C* x C* est le groupe abélien libre
sur deux générateurs représentés par les lacets

[0,1] —» C* . [0,1] - C*
tmeon (e

avec e(¢) = exp (i2nt) pour tout ¢ € [0, 1]. Nous identifierons désormais
Fond (C*¥) et ces deux générateurs 3 Z2 et sa base canonique.

ProposITION 12. Le groupe fondamental de A4* . est abélien libre sur §
deux générateurs. Son image dans Z? = Fond (C**) définie par le revéte-
ment 7** est engendrée par (n, 0) et (g, 1).

Preuve. L’application ¢ de {u, v) € C? | uv # 0} dans 4.} . définie par
¢ (u,v) = ("% v, uv) est un isomorphisme d’inverse (x, y, z) - /y, ).
Donc Fond (4,,*) est bien isomorphe & Z2, et son image par n** dans
Fond (C},*) est aussi I'image de Z2 = Fond (C.*) dans Z2 = Fond (C}*) |
induite par '

{W@,0)eC?|uv # 0} > {(x,y) e C2 [xy # 0}
{ (u, v) = (W™, v) L
(ot
(€, 1, (&, m, /),

sont des isomorphismes inverses ’'un de Iautre.

Remarquons que les applications g:
k% &k
. { Anaq e Ansq_n
(X, ¥, 2) = (x, y, yz)
Continuons a noter X, 4, [respectivement X,,,-n] Pespace normalisé de
A,,q [resp. 4, ,_,], mais « oublions » provisoirement sa description comme B
n,q p n’q hl> - |
quotient de C? par G,,4; comme illustration de la section I1.3, nous allons
montrer que X,,,q et X,,,q_,, sont isomorphes. |
Soit ¢: X, ,_, = A, ._1a normalisation , on peut considérer g comme
n,g—n n,g—n )

une application de ¢~ * (4,,%,) dans 4%, Elle est évidemment bornée,

et se prolongeeng: X, ,_, — A,,q- La proposition 8 affirme que g se reléve
en G: X, ,_,— X, ,. De méme % (ou son prolongement évident An g
~ A, ,-,) se reléve en H: Xog = X, q—n. Comme G et H sont inverses
'un de Iautre une fois restreints aux ouverts non vides U = ¢~ (ArE,
et G(U),ona G = H™ L, |

La proposition suivante montre qu’il y a d’autres isomorphismes entre
les X, ,.
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PROPOSITION 13. Pour tout entier positif d, les espaces Xy, 44 €t Xy 4
sont isomorphes.
| Adn dg Art;c
&)= n,0)
isomorphisme d’inverse 4 décrit par & (x, y, z) = (x%, y, z). Le méme argu-
ment que ci-dessus montre que g, considérée comme application de
banag” - (Adnag) dans ALF, se reléve et se prolonge en G: Xy, 40 = &g
et que & définit de méme H: X, , - Xy, 4 avec G = H™ L

Premiére preuve. L’application g : { est un

Seconde preuve. Soit (p C? » C? défini par ¢ (s 1) = (s, t%. Pour
tout ke{0,1,..,dn — 1} considérons e (k/dn) dans Gy, ., et e (k/n)
dans G, ,. Alors

¢ (e (kjdn) (s, ) = (e (kjdn)"s, (e (k/dn) £)%)
— (e (Kfnyis, e (kjn) ) = e(kfn) ¢ (s, 1)

et @ définit un morphisme ¢: X, 4, > X, ,. 11 est évident que ¢ et ¢ sont
surjectifs.
Montrons que ¢ est injectif. Soient (u, v) et (s, ¢) des points de C? dont les

~

images par ¢ sont congrues modulo G, .. Il existe donc k € {0, 1, ..., n — 1}
tel que (u,v%) = (e (k/n)®s, e(k/n)t%). Par suite, il existe aussi je
{0,1,...,d — 1} avecv = e (j/d) e (k/dn) t. La transformation e ((jntk)/dn)
de G;,.4, applique alors (s, 7) sur

(e((jn + k)/dn)dqs,\g ((jn +k)/dn) t)
= (e(jq) e(kq/n) s, e(jld) e (k[dn)t) = (u,v),

de sorte que (s, ¢) et (4, v) sont congrus modulo Gy, 4,.

Par suite @ est bijectif. On peut montrer comme dans la preuve de la
proposition 9 que ¢ est un homéomorphisme. Comme ¢~ ! est un morphisme
sauf a priori au point singulier et comme X, , est normal, @~ 1 est un
morphisme en tout point et ¢ est un isomorphisme. & '

Nous laissons au lecteur le soin de vérifier que ’automorphisme (u, v)
> (v, u) de C?* définit, lorsque gq’ = 1 (modulo ), un isomorphisme de
X4q sur X, . On peut montrer qu’il n’existe pas d’autres isomorphismes
que ceux écrits jusqu’ici: si X, , et X, , sont isomorphes avec (n, q)
=(m'yq) = 1,alorsn = n' et q = q’ ou qq' = 1 (modulo n); voir [21],
théoréme 2.
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Si ¢ = n — 1, nous avons vu que ¢ est un isomorphisme de X, ,_,
sur A, ,—; en d’autres termes que la dimension de plongement de la singu-
larité normale X, ,_, est 3. On sait calculer en général la dimension de
plongement de X, ,: si (n, g) = 1 et avec les notations de la section IV.2, |

elle vaut 3 + ) (b,—2). En particulier, la réciproque & I’assertion
k=1

ci-dessus est aussi vraie: si (n,g) = 1 et si X, , se plonge dans C3, alors
q = n — 1. Voir [22], fin du § 3.

I11.3. CLASSIFICATION

Soit I' un germe de surface plongé dans C3. Reprenons les nota-
tions de la section II.2; supposons que le lieu discriminant exhibe
une singularité consistant en un point double avec croisement normal — en-
d’autres termes, supposons qu’on puisse choisir les coordonnées de telle
sorte que yp = {(x,y)e D, |xy = 0}. Nous noterons D;* Iespace
D, — ypet I't* son image inverse par 7; la projection se restreint en un
revétement 2 » feuilles 7**: I'h* — D, *. On identifie comme 2 la section
précédente le groupe fondamental de DS * & Z>2.

PROPOSITION 14. 11 existe un polycylindre E, dans C2, un morphisme
p**:I'k* 5 EF™ et des entiers n, ¢ avec 0 <g <n et (n,g) =1 tels
que p** induise une injection de Fond (I';*) sur le sous-groupe de
Fond (E*) = Z? engendré par (n, 0) et (g, 1). |

Preuve. Soit G 1'image de Fond (I'},*) dans Z?* définie par n**. Clest
un sous-groupe d’indice fini de Z? car n** est un revétement fini. Par suite
G contient des éléments de la forme (k, 0); soit

a =inf{|k| | (k,00eG et k#0}.

On peut choisir un vecteur (b, ¢) formant avec (g, 0) une base de G, tel

que 0 <b<aetc>0. |
Soit d le plus grand commun diviseur de a et b (avec d =a si b est nul).

Soient E, = {(u,v) eC*| @’ v)eD,} et Ef* = {(w,v)€E,|uv #0}.
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L’application x**: (u,v) = (%, v°) de E; * sur D}* est un revétement
holomorphe connexe & dc feuilles, et induit une injection de Fond (E5™)
sur le sous-groupe de Z2 = Fond (D5 *) engendré par (d,0) et (0, ¢).
Ce groupe contenant G, il existe un morphisme p** rendant le dia-
gramme

ES*

* 3k * %k
I'p D, ™

commutatif. Au niveau des groupes fondamentaux, p** induit un iso-
morphisme de Fond (I'j *) sur le sous-groupe de Z* = Fond (E; *) engendré
par (a/d, 0/c) et (b/d, c/[c). H

PrOPOSITION 15. Avec les notations de la proposition 14, le germe I’
normalisé de I' est isomorphe au germe de X, , au point singulier.

Preuve. Soient p**: 'y * —» E; * comme dans la preuve précédente et

n**: An ¥ — C** comme dans la section précédente. Soient V' = {(x,, 2)
eC?|(x,y) € E, } et my * la restriction de n** & A, " N V. Les revétements
p** et i * définissent le méme sous-groupe de Fond (E; *). Il existe donc
des morphismes g et 4, inverses I'un de ’autre, rendant le diagramme

g
AXEn P e=——7F—TI3*
| AN /
Y /

commutatif. Le morphisme g est borné car n 'est et p** est propre; de
méme, A~ est borné. Le raisonnement usuel (voir par exemple celui qui
précéde la proposition 13) montre que g et 4 permettent de définir un iso-

morphisme du normalisé de 4, , NV avec I'j, c’est-a-dire du germe de

X, 4 au point singulier avec I'. ®
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