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Si /: X -> Y est la section nulle du fibré n, (de sorte que le A de la
proposition 8 est vide), il est alors évident que / ne se relève pas, car cela

impliquerait que le revêtement E 7sing / (X) soit trivial.
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n

III. SINGULARITÉS NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.l. Les surfaces An>q et leurs normalisations

Soient n et q des entiers, avec n positif et q < n. Nous noterons An>q la
surface {(x, y, z) e C3 | zn xyn~q}.

Si n 1, les surfaces ainsi définies sont toutes lisses: l'isomorphisme
(x, y, z) (x, y, z-xy1-q) de C3 applique Aln sur l'hyperplan d'équation
z 0. De même, si q n, l'isomorphisme (x, y, z) t-> (x~zn, y, z) applique
An>„ sur l'hyperplan d'équation x 0. Nous supposerons désormais
n > 2 et q < n sauf mention expresse du contraire.

Si q n - 1, les dérivées partielles du polynôme zn — xyn~q z11 — xy
ne s'annulent simultanément qu'à l'origine, et An n_1 est lisse en dehors de

ce point (donc normale en vertu d'un théorème d'Oka rappelé en II.2).
Si q < n — 2, la surface An>q est lisse en dehors de la droite d'équations
y z 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que An q

n'est pas normale.
Soit Gn q

le groupe des isomorphismes de C 2 de la forme (s, t) (£% ^t)
où C est une racine n-ième de l'unité; c'est un groupe cyclique d'ordre n.
Nous noterons Xnq Yensemble des orbites, muni de sa structure canonique
d'ensemble analytique normal.

Si q 0, l'ensemble Xn>0 est lisse: l'application (s, t) (s, tn) passe
au quotient et définit un isomorphisme de Xn 0 sur C x (C/ (Z/nZ)) & C2.

Les espaces Xn>q et Xn>q, sont évidemment identiques si q' q (modulo n);
il suffit donc d'étudier les Xn q pour lesquels 1 < q < n (voir de plus la

proposition 13).
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Considérons le morphisme </>„>4: C2-» C3 défini par $„;4

(s", t", st"~q);sonimage est dans A„q et il définit par passage au quotient

un morphisme </>„,4: X„>4 -» Am,r Nous écrirons aussi et au lieu de

Ûn,q fin,q-

Proposition 9. Le morphisme (j>induit un homéomorphisme de 1 image

de {(5, 0 e C2|t#0} dans Z„i4 sur y, e A.,s | y é0}. Si n et

sont premiers entre eux, lui-même est un homéomorphisme de Xnq

sur An>r

Preuve. Montrons d'abord que (j> est surjectif et que l'image inverse

par 4> de tout point autre que l'origine est formée de n points.

Soit P (x,y,z)eA„<q avec y # 0. Choisissons une racine u-ième t

de y et posons szt_n+î.Alors

<$>(s, t) (zny~n+q,y, z)(x,y,

Soit (s', t')eC2avec cj>(s', t')<£(s, t). Il existe des racines u-ièmes Ç

et ri de l'unité avec s' £ s, t ' ri tet 1- Par suite 4'1 (p) a

n points.
Soit Q(x, 0, 0) e A„it avec x # 0. Choisissons une racine n-ième s

de x. Alors (j>~
1 Q){(Ca 0) e C2 | £ e C et £" 1} a w points.

Le groupe G„i4 agit librement sur {(s1, e # 0}, et même sur

C2 - {0} lorsque net qsont premiers entre eux. Il en résulte que la restriction

de ^ à l'image de {(s,t)eC2 | t#0} dans est injective dans tous

les cas, et que (j> lui-même est une bijection si (n, 1.

Montrons par exemple que $ est un homéomorphisme si - 1.

Pour tout nombre réel positif r, soient Kr l'image dans Xnq de

{(i,()eC2 | \s\ <ret| |<
et Lr l'intersection avec An>1de

{(x,y,z)eC3 | |x| < r", | y | < |z|

La restriction de </> à Kr est une bijection continue du compact Kr sur le

compact Lr ; c'est donc un homéomorphisme. Par suite, </> est un
homéomorphisme. M
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Corollaire. Si (n, q) 1, la surface Anq est topologiquement singulière

à l'origine.

Preuve. Pour tout r>0, le complémentaire de l'origine dans Lr est
homéomorphe au complémentaire du point central dans Kr. Il se rétracte
donc par déformation sur l'espace lenticulaire que définit l'action de G„ q
sur une petite sphère S3 centrée à l'origine de C2. (L'intérieur de L, est
donc un bon voisinage de l'origine dans An q au sens de la section II. 1.)
En particulier, le groupe fondamental du complémentaire de l'origine dans
Lr n'est pas trivial.

Remarquons que c'est aussi un corollaire immédiat de la proposition 9

fiue (An,q)rég est « connexe à l'origine»: (X,)reR* est une base de voisinages
de l'origine dans An q et Lr n (An q)[ég est connexe pour tout r e R*. D'autre
part, il est facile de vérifier que le polynôme z" - xy"~q est irréductible
dans 2& [z],donc aussi dans 3& (voir [8], lemme II.B.5). On vérifie ainsi
un cas particulier d'une affirmation énoncée à la section II. 1.

Proposition 10. Supposons q< n-2. Soient e C* et (c, 0, 0)
e An<q. Alors le voisinage {(x, y,z) e An>q 11 x - c | < | c |} de Q dans

A„a est isomorphe au produit direct du disque D {£ e C | | £ | < 1} et
de la courbe plane y{(y,z) e C2 [ z" yn~9}.

Preuve. Soit p :D-yC la fonction holomorphe définie par p (ç)"
1 + £ pour tout Çe Det p(0)1. Soit d une racine ième de

1/c. Considérons l'application a: D xy C3 définie par a (Ç, y, z)
(c 0 + O, dy,p(0 z). Pour tout (£, y, z) e D x y, on a

(p (Q z)" - c 1+0 (dy)"-" (1+ 0.
Par suite a définit un morphisme

D x y->{ (x,y,z)e An>i | | x - c | < | c | }.
qui applique (0, 0, 0) sur Q et d'inverse donné par

(x,y, z)v+(c~1x-l,d~1y,(p(c~1x^-l))_1z)

Corollaire. Supposons q< n -2.Si(n, q) A 1, la surface A„ti est

topologiquement singulière en tout point de l'axe d'équations 0.
Si (n, q)1, c'est une variété topologique au voisinage de Q qui n'est pas
normale en Q.

Preuve. Si (n, q)=£ 1, la courbe y a plusieurs branches à l'origine;
les intersections de petites sphères centrées à l'origine dans C2 avec
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y - {0} ne sont donc pas connexes et A„ q
est bien topologiquement singulière

en Q. Si (n, q)1, la surface est une variété topologique au voisinage

de Q en vertu du corollaire à la proposition 3. Reste à montrer que *
n'est pas normal. Cela résulte de la proposition 7, ou de l'argument direct

qui suit.
Soient a,beZavec an + b n-q)1, et i -* C la fonction

définie par $ (£, y, z) j J
Z

g.
J Q

• Alors */> n'est pas

holomorphe, mais i/i" l'est car ij/ ({, y, z)" j. L'anneau des germes en Q

de fonctions holomorphes n'est donc pas intégralement clos.

Proposition 11. Pour tout couple (n, q) avec n>2et^<n — 1, le

morphisme (j)n}q: Xn>q -» An>q est la normalisation de An>q. Cest un

isomorphisms si et seulement si q n - 1.

Preuve. Cela résulte de ce qui précède et du théorème de Cartan rappelé

à la section II. 1.

On pourrait montrer que les surfaces An>q, Anjq-n, A„>q-2n, sont non

isomorphes deux à deux; par suite, Xn>q est la normalisation d'une infinité

d'ensembles analytiques distincts.

III.2. Les discriminants des A„a et les ouverts A**

Soient à nouveau n et q des entiers avec h > 2 et q < n. Notons

Fe20[z] le polynôme z" - xyn~q. A un facteur numérique près, son

discriminant est une puissance de xyn~q. Soient en effet A1?..., ses racines,

qui sont dans une extension convenable du corps des quotients de 2(9 ; alors

Dis (F) rKn_1 (IM") (IM1
nn(xyn-q)"(-ï)'lF(x,y,Gr1 (-1)""1 n" (x/"«)""1

(tous les produits étant sur jde 1 à n). Comme à la section II.2, désignons

par n: A„a -> C2 la restriction à Alhq de la projection canonique (x, y, z)

Nous noterons C** l'espace C2 privé du lieu discriminant

y {(x, y)eC2| xy0} et A** l'image inverse par n de C**. La pro-
position 7 ou un examen direct montre que n se restreint en un revêtement

holomorphe à n feuilles
n:** : A** -* C**

L'Enseignement mathém., t. XXV, fasc. 3-4. 15
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Nous notons ci-dessous Fond Y)legroupe fondamental d'un espace
topologique Y; nous n'aurons à considérer que des cas où ce groupe est
abélien, ce qui nous autorise à ne pas marquer de point base sur Y.

Le groupe fondamental de C** C* x C* est le groupe abélien libre
sur deux générateurs représentés par les lacets

f [0,1] -» C* f [0,1] -+ C*
ltm* (e(t),1) | -* (1,

avec e (/) exp (ilnt) pour tout t e [0, 1], Nous identifierons désormais
Fond (C**) et ces deux générateurs a Z2 et sa base canonique.

Proposition 12. Le groupe fondamental de A** est abélien libre sur
deux générateurs. Son image dans Z2 Fond (C**) définie par le revêtement

7i** est engendrée par (n, 0) et (q, 1).

Preuve. L'application <p de {u, v)eC2 | # 0} dans A** définie par
cp(u,v) (u"vq, v,uv) est un isomorphisme d'inverse (x, y, z) i-> (z/y, y).

Donc Fond (A**) est bien isomorphe à Z2, et son image par dans
Fond (C*/) est aussi l'image de Z2 Fond (C„**) dans Z2 Fond (C*/)
induite par

f { (u>v)£C2 | uv#0 } - { (x, C2| # 0 }
1 (u,v)t-> («V, v)

Remarquons que les applications g : i n'q~" et
f Al*- Ut, 1,0» (C, fj, th
{ (x, y,z) t-> (x, y yz)

S°nt ^omorphismes inverses l'un de l'autre.

Continuons à noter X„>q[respectivement X„q_„] l'espace normalisé de
An,q [resp. Anq_n], mais « oublions » provisoirement sa description comme
quotient de C2 par Gnq;comme illustration de la section II.3, nous allons
montrer que Xnqet X„<q_n sont isomorphes.

Soit (f). Xnq_n—> An q_n la normalisation; on peut considérer g comme
une application de «/:„) dans Elle est évidemment bornée,

et se prolonge en g : Xn q_„ -* Anq.Laproposition 8 alfirme que g se relève
en G: Xnq_n ~> Xnq.De même h (ou son prolongement évident An
-> An>q_n)se relève en H: Xn<q -> Comme sont inverses
l'un de l'autre une fois restreints aux ouverts non vides U *
et G (U),on a G ET-1. "'4

La proposition suivante montre qu'il y a d'autres isomorphismes entré
les XnA.
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Proposition 13. Pour tout entier positif d, les espaces Xdn>dq et Xn>q

sont isomorphes.

r A * * —> A* *
Première preuve. L'application # : j (^q^ (£V»+*, rç, 0 ^ Un

isomorphisme d'inverse h décrit par h (x, y, z) (xd, z). Le même argument

que ci-dessus montre que g, considérée comme application de

fanjq'1 (A*n%) dans .4*/, se relève et se prolonge en G: XànM -»

et que h définit de même H: XWj(Z -> avec G H

Seconde preuve. Soit <p:C2-+C2 défini par (p (i, 0 (a?, Pour

tout k e {0, 1, da - 1}, considérons e(k/dn) dans et e_{kjn)

dans G„^. Alors

(p(e(kldn)(s,t)) (e(kldri)dqs,(e(kldri)t)d)

(e (k/n)qs, e (k/n) td) e (k/n) (p (s, t)

et cp définit un morphisme cp: Xdndq -> Il est évident que <p et <p sont

surjectifs.
Montrons que 9 est injectif. Soient (w, 0 et (s, t) des points de C2 dont les

images par cp sont congrues modulo Gn q. Il existe donc k e {0, 1,..., n — 1}
tel que (w, vd) (e (£/«)* s, e (&/rc) 0). Par suite, il existe aussi j e

{0,1,..., d - 1} avec v e (j/d) e (k/dn) t. La transformation e ((jn + k)/dn)
de Gdn>dq applique alors (s, t) sur

(e ((jn + k)ldn)dqs, e ((jn + k)ldn) t)

1=8 (^Qq)e(kqln) s,e(jld)e(kldn)t) (w,0,
de sorte que (s, 0 et (w, v) sont congrus modulo Gdn dq.

Par suite (p est bijectif. On peut montrer comme dans la preuve de la
proposition 9 que (p est un homéomorphisme. Comme cp

~1 est un morphisme
sauf a priori au point singulier et comme Xn>q est normal, cp~1 est un
morphisme en tout point et cp est un isomorphisme. B

Nous laissons au lecteur le soin de vérifier que l'automorphisme (w, y)
(v9 u) de C2 définit, lorsque qqr 1 (modulo n), un isomorphisme de

Xn>q sur Xn>q>. On peut montrer qu'il n'existerai d'autres isomorphismes
que ceux écrits jusqu'ici: si Xn q et Xn>>q, sont isomorphes avec (n, q)
~ (n\ q') 15 alors n nf et q q' ou qq' 1 (modulo n); voir [21],
théorème 2.
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Si q n — 1, nous avons vu que $ est un isomorphisme de Xn„_1
sur An>n^1; en d'autres termes que la dimension de plongement de la singularité

normale Xnn_1 est 3. On sait calculer en général la dimension de

plongement de Xnq: si (n, q) 1 et avec les notations de la section IV.2,
s

elle vaut 3 + £ En particulier, la réciproque à l'assertion
k=i

ci-dessus est aussi vraie: si (n, q) 1 et si Xn>q se plonge dans C3, alors

q n — 1. Voir [22], fin du § 3.

III.3. Classification

Soit r un germe de surface plongé dans C3. Reprenons les notations

de la section II.2; supposons que le lieu discriminant exhibe

une singularité consistant en un point double avec croisement normal — en

d'autres termes, supposons qu'on puisse choisir les coordonnées de telle

sorte que yD {(x, y) e D2 | xy 0}. Nous noterons D** l'espace

D2 — 7d et r£* son image inverse par n; la projection se restreint en un

revêtement à n feuilles 7r**: D* *. On identifie comme à la section

précédente le groupe fondamental de D* * à Z2.

Proposition 14. Il existe un polycylindre E2 dans C2, un morphisme

p**: j-** _>£** et des entiers n, q avec 0 < q < n et (n, q) 1 tels

que p** induise une injection de Fond (r£*) sur le söus-groupe de

Fond (F* *) Z2 engendré par (n, 0) et (#, 1).

Preuve. Soit C l'image de Fond(r^*) dans Z2 définie par 7i**. C'est

un sous-groupe d'indice fini de Z2 car 71** est un revêtement fini. Par suite

G contient des éléments de la forme (k, 0); soit

a inf { | fc | | (fe, 0) e G et k #0}.

On peut choisir un vecteur (è, c) formant avec (a, 0) une base de G, tel

que 0<è<aetc>0.
Soit d le plus grand commun diviseur de a et b (avec d a si b est nul).

Soient E2 { (w, v) e C2 | (wd, e Z>2 } et E%* { (u, v)sE2\uv
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L'application 7C**: (u, v) h» (wd, vc) de £** sur D** es^ un revêtement

holomorphe connexe à de feuilles, et induit une injection de Fond (E2

sur le sous-groupe de Z2 Fond (D* *) engendré par (<d, 0) et (0, c).

Ce groupe contenant G, il existe un morphisme p** rendant le

diagramme
77 * *^2

commutatif. Au niveau des groupes fondamentaux, p** induit un iso-

morphisme de Fond (r£ *) sur le sous-groupe de Z2 Fond (F* *) engendré

par (a/d, 0/c) et (bjd, c/c). M

Proposition 15. Avec les notations de la proposition 14, le germe r
normalisé de T est isomorphe au germe de Xn A au point singulier.

Preuve. Soient -»-E**comme dans la preuve précédente et

7i**: A**C** comme dans la section précédente. Soient { (x,z)
e C3 | (x, y) eE2) et n** la restriction de n*'* à A**n V. Les revêtements

p** et n'y * définissent le même sous-groupe de Fond (E* *). Il existe donc
des morphismes g et h, inverses l'un de l'autre, rendant le diagramme

9
A * * V ^ =± 7-* *

An,q n V h 1 D

commutatif. Le morphisme g est borné car n l'est et p** est propre; de

même, h est borné. Le raisonnement usuel (voir par exemple celui qui
précède la proposition 13) montre que p et A permettent de définir un

isomorphisms du normalisé de An>qn V avec rD, c'est-à-dire du gernie de

Xn
q au point singulier avec T. fl
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