Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN de la Harpe, P. / Siegfried, P.

Kapitel: II.2. Les singularités des surfaces normales dans \$C^3\$ sont isolées

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

On appelle fonction faiblement holomorphe sur un voisinage ouvert U d'un point p de X une fonction définie et holomorphe sur $U \cap X_{\text{rég}} - \{p\}$ qui est bornée sur $K \cap X_{\text{rég}} - \{p\}$ pour tout compact K de U; on dit que l'espace X est normal en p si toute fonction de ce type admet un prolongement (nécessairement unique par continuité) en une fonction holomorphe sur U. Par exemple, X est normal en tous ses points réguliers (c'est un cas particulier du théorème d'extension de Riemann) et n'est normal en aucun de ses points réductibles (choisir un voisinage connexe U de p dans X et une partition $U_0 \cup U_1$ de $U \cap X_{\text{rég}}$ en ouverts disjoints non vides, puis définir f comme valant 0 sur U_0 et 1 sur U_1). Soit $\emptyset_{X,p}$ l'anneau des germes de fonctions holomorphes au voisinage d'un point p de X; pour que X soit normal en p, il faut et il suffit que $\emptyset_{X,p}$ soit intégralement clos. (La nécessité résulte immédiatement des définitions; pour la suffisance, voir par exemple [18]; en général, la clôture intégrale de $\emptyset_{X,p}$ coïncide avec l'anneau des germes de fonctions faiblement holomorphes.)

C'est un corollaire facile de la proposition 3 qu'une courbe plane est normale en un point si et seulement si elle y est lisse. Soient par exemple

$$\gamma = \{(x, y) \in \mathbb{C}^2 \mid x^2 = y^3\}$$
 et $f \colon \begin{cases} \gamma - \{0\} \to \mathbb{C} \\ (x, y) \mapsto x/y \end{cases}$

alors f a un prolongement continu non holomorphe qui applique l'origine de \mathbb{C}^2 sur 0, de sorte que γ n'est pas normale à l'origine. Dans toute courbe (plane ou non), on sait que les points normaux coïncident avec les points lisses. L'objet de ce chapitre est d'examiner la nature des singularités des surfaces normales dans \mathbb{C}^3 .

Dans les sections suivantes, nous ferons un usage répété d'un théorème de H. Cartan [3]: Soient M une variété lisse et G un groupe fini opérant holomorphiquement sur M. Alors l'espace des orbites X = M/G possède une structure canonique d'ensemble analytique normal (= normal en chaque point). Si $\pi \colon M \to X$ est la projection canonique, U un ouvert de X, et $f \colon U \to \mathbb{C}$ une application, alors f est holomorphe pour la structure en question si et seulement si $f \pi$ l'est sur $\pi^{-1}(U)$.

II.2. Les singularités des surfaces normales dans \mathbb{C}^3 sont isolées

Soit $\underline{\Gamma}$ un germe de surface plongé dans \mathbb{C}^3 . On peut supposer $\underline{\Gamma}$ donné par les zéros d'un polynôme de Weierstrass. Plus précisément, il existe

- 1º) Un polycylindre D_3 dans \mathbb{C}^3 , centré à l'origine; nous noterons D_2 et D_1 ses traces sur le plan d'équation z=0 et sur la droite d'équations y=z=0.
- 2º) Un polynôme de Weierstrass $F \in \mathcal{O}(D_2)$ [z], c'est-à-dire une fonction $F \in \mathcal{O}(D_3)$ avec

$$F(x, y, z) = z^{n} + a_{1}(x, y) z^{n-1} + \dots + a_{n}(x, y)$$

pour tous $(x, y, z) \in D_3$, où les a_j sont des fonctions holomorphes dans D_2 qui s'annulent à l'origine.

La germe $\underline{\Gamma}$ est alors représenté par $\Gamma_D = \{(x, y, z) \in D_3 \mid F(x, y, z) = 0\}$. Nous écrirons plus simplement Γ si $D_3 = \mathbb{C}^3$. On peut toujours remplacer D_3 par un polycylindre plus petit; en particulier, on pourra toujours supposer que la projection canonique fournit une application surjective π de Γ_D sur D_2 . Si n=1, la surface Γ_D est lisse à l'origine; nous supposerons désormais $n \geqslant 2$.

Nous noterons γ_D l'ensemble analytique $\{(x, y) \in D_2 \mid \text{Dis } (F)(x, y) = 0\}$. Nous allons voir que ce *lieux discriminant* définit un germe $\underline{\gamma}$ de courbe plane qui joue un rôle important dans l'étude de $\underline{\Gamma}$.

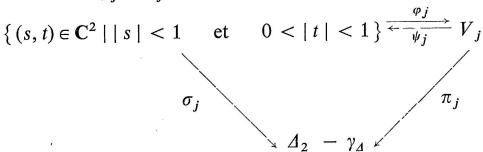
Proposition 7. Le lieux discriminant est une courbe passant par l'origine. Si D_3 est suffisamment petit, alors $\gamma_D^* = \gamma_D - \{0\}$ est lisse et π fournit par restriction un revêtement holomorphe $\Gamma_D - \pi^{-1}(\gamma_D) \to D_2 - \gamma_D$ à n feuilles. De plus, si Γ est normal, alors $\Gamma_D^* = \Gamma_D - \{0\}$ est lisse.

Preuve. Les mêmes arguments que ceux de la preuve de la proposition 1 montrent: d'abord que Dis (F) est une fonction holomorphe dans D_2 qui s'annule à l'origine, et qui est non nulle — donc que γ_D est une courbe plane passant par l'origine et qu'on peut supposer γ_D^* lisse; ensuite que π se restreint en une projection de revêtement de $\Gamma_D - \pi^{-1}$ (γ_D) sur $D_2 - \gamma_D$.

Soient alors $(x_0, y_0) \in \gamma_D^*$ et Δ_2 un voisinage de (x_0, y_0) dans D_2 tel que γ_A soit lisse. Notons Δ_3 l'ouvert $\{(x, y, z) \in D_3 \mid (x, y) \in \Delta_2\}$. On peut supposer qu'on s'est donné des coordonnées (ξ, η) sur un voisinage de Δ_2 telles que Δ_2 soit le polycylindre défini par $|\xi| < 1$ et $|\eta| < 1$ et telles que $\gamma_A = \{(\xi, \eta) \in \Delta_2 \mid \eta = 0\}$. Nous noterons π_A la restriction de π à Γ_A . La première partie de la preuve montre que la restriction de π_A à $V = \{(\xi, \eta, z) \in \Gamma_A \mid \eta \neq 0\}$ est un revêtement holomorphe à n feuilles.

Soient $V_1, ..., V_k$ les composantes connexes de V. Pour chaque $j \in \{1, ..., k\}$, notons $\pi_j \colon V_j \to \Delta_2 - \gamma_A$ la restriction de π_A à V_j ; c'est un revêtement holomorphe connexe à n_j feuilles (la somme des n_j vaut n).

L'application σ_j de $\{(s,t) \in \mathbb{C}^2 \mid |s| < 1 \text{ et } 0 < |t| < 1\}$ dans $\Delta_2 - \gamma_\Delta$ donnée par $\sigma_j(s,t) = (s,t^{n_j})$ est un revêtement du même type. Le groupe fondamental de $\Delta_2 - \gamma_\Delta$ étant \mathbb{Z} , il existe des isomorphismes analytiques inverses l'un de l'autre φ_j et ψ_j rendant le diagramme



commutatif. Soient \overline{V}_j l'adhérence de V_j dans Δ_3 (elle est dans Γ_Δ), $\overline{\pi}_j$ la restriction de π_Δ à \overline{V}_j (qui est aussi l'unique extension continue de π_j à \overline{V}_j) et $B = \{(s,t) \in \mathbb{C}^2 \mid |s| < 1 \text{ et } |t| < 1\}$. Le théorème d'extension de Riemann implique que φ_j admet un prolongement holomorphe $\overline{\varphi}_j$: $B \to \overline{V}_j$. Nous montrons plus bas que \overline{V}_j est ouvert dans Γ_Δ ; en particulier \overline{V}_j est un ensemble normal. Le même théorème de Riemann implique que ψ_j admet un prolongement à $(\overline{V}_j)_{\text{rég}}$, et la définition de la normalité implique que celui-ci s'étend en $\overline{\psi}_j$: $\overline{V}_j \to B$. Les morphismes $\overline{\varphi}_j$ et $\overline{\psi}_j$ sont encore inverses l'un de l'autre; par suite \overline{V}_j est isomorphe à B et Γ_Δ est lisse.

Montrons enfin que \overline{V}_j est ouvert dans Γ_{Δ} . Soit $p \in \overline{V}_j - V_j$. Comme Γ_{Δ} est normal, il est irréductible en p et il existe un voisinage U de p dans Γ_{Δ} avec $U' = U \cap (\Gamma_{\Delta})_{\text{rég}}$ connexe. Toujours en vertu du même théorème de Riemann, l'ouvert $U'' = \{(\xi, \eta, z) \in U' \mid \eta \neq 0\}$ est connexe (voir [8], corollaire I.C.4). Montrons que U'' est dans V_j . Si k = 1, il n'y a rien à vérifier. Si k > 1, supposons au contraire $U'' \not = V_j$; alors il existe $i \neq j$ avec $U'' \cap V_i$ non vide. Mais $U'' \cap V_j$ n'est pas vide non plus, d'où l'absurdité puisque V_j et V_i sont des composantes connexes distinctes de V. Donc U'' est bien dans V_j , et U' est dans \overline{V}_j ; par suite $U \subset \overline{V}_j$. Ceci montre que \overline{V}_i est ouvert dans Γ_{Δ} et achève la preuve.

COROLLAIRE. Les singularités des surfaces normales dans C³ sont isolées.

On sait que le corollaire est vrai pour toute surface, plongée ou non dans \mathbb{C}^3 . Un théorème d'Oka affirme que la réciproque du corollaire est vraie; plus généralement, une hypersurface de \mathbb{C}^k dont le lieu singulier est de codimension au moins 2 dans l'hypersurface est un espace normal; voir [19], pages 139-140.

Il n'y a pas d'analogue ici au corollaire de la proposition 3, même pour les surfaces normales; cela résulte par exemple des surfaces étudiées au chapitre III. De fait, un théorème fondamental de Mumford affirme que les singularités analytiques se détectent par le seul groupe fondamental. Plus précisément, soient X une portion de surface plongée dans \mathbb{C}^k et x_0 un point de X; on suppose que $X - \{x_0\}$ est lisse. Soit S une petite sphère centrée en x_0 . L'intersection $X \cap S$ est une variété différentiable (si le rayon de la sphère est suffisament petit) de dimension réelle 3; il est facile de voir que le type topologique de cette variété ne dépend pas du rayon de la sphère. Le théorème de Mumford affirme que le groupe fondamental de $X \cap S$ est trivial si et seulement si x_0 est un point lisse de X [16].

II.3. SUR LA NORMALISATION

On appelle normalisation d'un ensemble analytique X la donnée d'un ensemble normal X et d'un morphisme propre fini surjectif $v \colon X \to X$ ayant la propriété suivante: si $A = v^{-1} (X - X_{rég})$, alors X - A est dense dans X et la restriction de V est un isomorphisme de X - A sur $X_{rég}$. Il est facile de montrer que deux normalisations d'un même ensemble sont isomorphes au sens convenable. C'est par contre un résultat très profond que tout espace possède une normalisation (voir [5], appendice au chapitre 2, et [18]); remarquons seulement que nous l'avons essentiellement montré dans le cas très particulier des courbes planes. Nous utiliserons à plusieurs reprises le résultat suivant, qui dit qu'on peut parfois « normaliser les morphismes » (voir par exemple [5], page 2.28).

PROPOSITION 8. Soient X et Y des ensembles analytiques, $v_X \colon \tilde{X} \to X$ et $v_Y \colon \tilde{Y} \to Y$ leurs normalisations, et $f \colon X \to Y$ une application holomorphe telle que $A = f^{-1}(Y_{\text{rég}})$ soit dense dans X. Alors il existe une application holomorphe $f \colon \tilde{X} \to \tilde{Y}$ telle que $v_Y f = f v_X$.

Preuve. Soit $\tilde{A} = v_X^{-1}(A)$. Comme A est dense dans X, il en est de même de $A \cap X_{\text{rég}}$, et $v_X^{-1}(A \cap X_{\text{rég}})$ est dense dans $v_X^{-1}(X_{\text{rég}})$ lui-même dense dans X; donc A est dense dans X.