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On appelle fonction faiblement holomorphe sur un voisinage ouvert U
d’un point p de X une fonction définie et holomorphe sur U n X, — {P}
qui est bornée sur K n X, — {p} pour tout compact K de U; on dit que
Iespace X est normal en p si toute fonction de ce type admet un prolonge-
ment (nécessairement unique par continuité) en une fonction holomorphe
sur U. Par exemple, X est normal en tous ses points réguliers (c’est un cas
particulier du théoréme d’extension de Riemann) et n’est normal en aucun
de ses points réductibles (choisir un voisinage connexe U de p dans X et
une partition U, u U; de Un X, en ouverts disjoints non vides, puis
définir £ comme valant 0 sur U, et 1 sur U,). Soit O, 'anneau des germes
de fonctions holomorphes au voisinage d’un point p de X; pour que X soit
normal en p, il faut et il suffit que Oy , soit intégralement clos. (La nécessité
résulte immédiatement des définitions; pour la suffisance, voir par exemple
[18]; en général, la cloture intégrale de Oy , coincide avec I’anneau des
germes de fonctions faiblement holomorphes.)

C’est un corollaire facile de la proposition 3 qu’une courbe plane est
normale en un point si et seulement si elle y est lisse. Soient par exemple

y—{0} >C
(x, y)=>x[y;

alors f a un prolongement continu non holomorphe qui applique 'origine
de C2 sur 0, de sorte que 7 n’est pas normale & ’origine. Dans toute courbe
(plane ou non), on sait que les points normaux coincident avec les points
lisses. L’objet de ce chapitre est d’examiner la nature des singularités des
surfaces normales dans C>.

Dans les sections suivantes, nous ferons un usage répété d’un théoréme
de H. Cartan [3]: Soient M une variété lisse et G un groupe fini opérant
holomorphiquement sur M. Alors I'espace des orbites X = M/G possede
une structure canonique d’ensemble analytique normal (= normal en
chaque point). Si n: M — X est la projection canonique, U un ouvert de X,
et f: U — C une application, alors f est holomorphe pour la structure en
question si et seulement si f 7 I’est sur =~ (U).

y = {(x,»)eC*|x* =y} et f: {

11.2. LES SINGULARITES DES SURFACES NORMALES DANS C3 SONT ISOLEES

Soit I' un germe de surface plongé dans C3. On peut supposer I’
donné par les zéros d’un polyndme de Weierstrass. Plus précisément, il
¢xiste
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10) Un polycylindre D, dans C?, centré a 1’origine; nous noterons D,
et D, ses traces sur le plan d’équation z = 0 et sur la droite d’équa-
tionsy = z = Q.

20) Un polynéme de Weierstrass F € 0 (D) [z], c’est-2-dire une fonction
Fe0(D;) avec

F(x,y,2) = 2" +a; (x, ) 21 + ... + a,(x,¥)

pour tous (x, y, z) € D3, ou les a; sont des fonctions holomorphes
dans D, qui s’annulent a I’origine.

La germe I est alors représenté par I', = {(x, », 2) € D3 | F(x,y,z) = 0}.
Nous écrirons plus simplement I' si D3 = C?>. On peut toujours remplacer
D, par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit une application surjective ©
de I', sur D,. Sin = 1, la surface I'j, est lisse a I’origine; nous supposerons
désormais n > 2.

Nous noterons 7y, l’ensemble analytique {(x,y) € D, | Dis (F) (x, y)
= 0}. Nous allons voir que ce lieux discriminant définit un germe y de
courbe plane qui joue un réle important dans I’étude de I

PropoSITION 7. Le lieux discriminant est une courbe passant par
’origine. Si Dj est suffisamment petit, alors vp = 7p — {0} estlisseetn
fournit par restriction un revétement holomorphe I', — ™~ Y(yp) = D, — yp
a n feuilles. De plus, si I" est normal, alors I’ 5 = I'p — {0} est lisse.

Preuve. Les mémes arguments que ceux de la preuve de la proposition 1
montrent: d’abord que Dis (F) est une fonction holomorphe dans D, qui
s’annule & Porigine, et qui est non nulle — donc que y, est une courbe
plane passant par I’origine et qu’on peut supposer v lisse; ensuite que 7 |
se restreint en une projection de revétement de I', — = * (yp) sur D, — yp.

Soient alors (Xq, ¥o) € 75 €t 4, un voisinage de (x,, yo) dans D, tel
que 7, soit lisse. Notons 4 3 'ouvert {(x, y,2) € D, | (x,y) € 4,}. On peut
supposer qu’on s’est donné des coordonnées (¢, #7) sur un voisinage de 4,
telles que A, soit le polycylindre défini par | & | < 1et|n| < 1 et telles que
4 ={¢& ned, | n = 0}. Nous noterons m, la restriction de = a I
La premiére partic de la preuve montre que la restriction de 7y a
V=A{¢&nz2ely [ n # 0} est un revétement holomorphe & n feuilles.

Soient Vi, ..., V; les composantes connexes de V. Pour chaque
je{l, ...k}, notons m;: V; > A, — y,la restriction de m4 a V;; c’est un
revétement holomorphe connexe a n; feuilles (la somme des n; vaut n).
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L’application o; de {(s,#) e C*||s]| <1 et 0< | 2| < 1} dans 4, — 7,
donnée par o; (s, ) = (s, t"7) est un revétement du méme type. Le groupe
fondamental de 4, — vy, étant Z, il existe des isomorphismes analytiques
inverses 'un de lautre ¢; et /; rendant le diagramme

0
{(5,H)eC*||s] <1 et O<|t] <1} =V
N /
AN /
AN /
\AZ _"’YA/

commutatif. Soient V; 'adhérence de V; dans 4; (elle est dans I’ 4), T; la
restriction de 7, & V; (qui est aussi I'unique extension continue de 7; a
V)et B={(s¢)eC*||s|<1et]|t]<1} Le théoréme d’extension
de Riemann implique que ¢; admet un prolongement holomorphe @;:
B — V. Nous montrons plus bas que V; est ouvert dans I'4; en particulier
V; est un ensemble normal. Le méme théoréme de Riemann implique
que ¥; admet un prolongement a (V). et la définition de la normalite
implique que celui-ci s’étend en ¥;: ¥V; > B. Les morphismes @; et i/; sont
encore inverses I'un de l'autre; par suite V;est isomorphe & B et I' est
lisse.

Montrons enfin que V; est ouvert dans I',. Soit p € V; — V;. Comme
I'; est normal, il est irréductible en p et il existe un voisinage U de p dans
I'yavec U' = U n (I'y), connexe. Toujours en vertu du méme théoréme
de Riemann, Pouvert U" = {(£, n,2z) e U’ | n # 0} est connexe (voir [8],
corollaire 1.C.4). Montrons que U” est dans V. Si k = 1, il n’y a rien 2
vérifier. Si k > 1, supposons au contraire U” ¢ V;; alors il existe i # j
avec U” N V; non vide. Mais U" n V'; n’est pas vide non plus, d’ou I’ab-
surdité puisque V; et V; sont des composantes connexes distinctes de V.
Donc U” est bien dans V;, et U’ est dans V;; par suite U< V. Ceci montre
que V; est ouvert dans I', et achéve la preuve. B

COROLLAIRE. Les singularités des surfaces normales dans C® sont
isolées.

On sait que. le corollaire est vrai pour toute surface, plongée ou non
dans C3. Un théoréme d’Oka affirme que la réciproque du corollaire est
vraie; plus généralement, une hypersurface de C* dont le lieu singulier est
de codimension au moins 2 dans I’hypersurface est un espace normal;
voir [19], pages 139-140.
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Il n’y a pas d’analogue ici au corollaire de la proposition 3, méme pour
les surfaces normales; cela résulte par exemple des surfaces étudifes au
chapitre III. De fait, un théoréme fondamental de Mumford affirme que
les singularités analytiques se détectent par le seul groupe fondamental.
Plus précisément, soient X une portion de surface plongée dans C* et x, §
un point de X; on suppose que X — {x,} est lisse. Soit S une petite sphére
centrée en x,. L’intersection X n .S est une variété différentiable (si le
rayon de la sphére est suffisament petit) de dimension réelle 3; il est facile |
de voir que le type topologique de cette variété ne dépend pas du rayon de
la sphére. Le théoréme de Mumford affirme que le groupe fondamental
de X N S est trivial si et seulement si x, est un point lisse de X [16].

- T1.3. SUR LA NORMALISATION

On appelle normalisation d’'un ensemble analytique X la donnée d’un

ensemble normal X et d’'un morphisme propre fini surjectif v: X — X ayant
la propriété suivante: si 4 = v~ (X— X,,,), alors X — A est dense dans X

et la restriction de v est un isomorphisme de X — A4 sur X,,. Il est facile de
montrer que deux normalisations d’un méme ensemble sont isomorphes
au sens convenable. C’est par contre un résultat trés profond que tout
espace posséde une normalisation (voir [5], appendice au chapitre 2, et
[18]); remarquons seulement que nous l’avons essentiellement montré
dans le cas trés particulier des courbes planes. Nous utiliserons a plusieurs
reprises le résultat suivant, qui dit qu’on peut parfois « normaliser les
morphismes » (voir par exemple [5], page 2.28).

PrROPOSITION 8. Soient X et Y des ensembles analytiques, vy: X —» X

et vy: Y - Y leurs normalisations, et f: X — Y une application holo-
morphe telle que 4 = f~* (Y,,) soit dense dans X. Alors il existe une

application holomorphe f~ X - Y telle que vy f~ = fvy.

Preuve. Soit A = vy~ ! (4). Comme A4 est dense dans X, il en est de
méme de 4 N X, et vy~ ' (AN X,,,) est dense dans vy~ ' (Xps,) lui-méme

~

dense dans A; ; donc /I est dense dans X.
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