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applique un point (x, y) sur l'intersection avec S3 de l'image du chemin
C Rî -» C2

<
0 En particulier 7* est connexe et / est bien irréductible.

[t\->(t2x,t5y) ~

La transformée stricte de/ est donnée par

f(u,v) v~2(v5 +(uv)2) ii2 + v3

qui est comme / de multiplicité 2. La tangente de/ est la droite d'équation
u 0, qui est transverse à E0.

Soient alors D2 C2 et g (.x, j) x3 + j2 de sorte que g f (pas

g (x, y) x2 + y3 qui aurait comme tangente la droite d'équation x 0).

On a g («, v) u2 + v, qui est de multiplicité 1, et dont la tangente à

l'origine est bien E0.

Exemple 4. D2 C2 et f(x,y) y5 + x5y + g (x, y) avec g de

multiplicité 8 au moins. Montrons que / est réductible.

On a/ (w, v) u5 + uv + h {u, v) avec h d'ordre 3 au moins. Donc / a

deux tangentes, d'où l'assertion par les propositions 5 et 6 (jj).

II. SINGULARITÉS NORMALES DANS C3

II.l. Ensembles normaux

Si X est un ensemble analytique, Xrég désigne l'ouvert de ses points
réguliers; on sait qu'il est dense dans X. (Voir le corollaire de la proposition

1 si X est une courbe plane, l'argument de la proposition 7 ci-dessous

si X est une hypersurface dans Ck, et le théorème III. C.3 de [8] en général.)

Rappelons qu'un ensemble X est irréductible en un point p si X n'est

pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce

cas, on peut trouver un voisinage de p dont la trace sur XTég est connexe.

Réciproquement, s'il existe un bon voisinage U de P dans X dont la trace

sur Xrég est connexe, alors X est irréductible en p. (Voir la proposition 2

si X est une courbe plane, et la fin de la section III.C de [8] pour le cas

général.) Le terme de « bon voisinage » pour U signifie qu'il existe une
base de voisinages {Ua} de p dans X telle que chaque Ua - {p} soit un
rétracte par déformation de U — {/?}; voir [21].
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On appelle fonction faiblementholomorphe sur un voisinage ouvert

d'un point pdeXunefonction définie et holomorphe sur n ^rég {P}

qui est bornée sur K n XTég — {p} pour tout compact K de U; on dit que

l'espace X est normal en p si toute fonction de ce type admet un prolongement

(nécessairement unique par continuité) en une fonction holomorphe

sur U. Par exemple, X est normal en tous ses points réguliers (c'est un cas

particulier du théorème d'extension de Riemann) et n'est normal en aucun

de ses points réductibles (choisir un voisinage connexe U de p dans X et

une partition U0u U± de U n l"rég en ouverts disjoints non vides, puis

définir/comme valant 0 sur U0 et 1 sur U±). Soit (9X>P l'anneau des germes

de fonctions holomorphes au voisinage d'un point p de X; pour que X soit

normal en p, il faut et il suffit que 0XtP soit intégralement clos. (La nécessité

résulte immédiatement des définitions; pour la suffisance, voir par exemple

[18]; en général, la clôture intégrale de 0X>P coïncide avec l'anneau des

germes de fonctions faiblement holomorphes.)
C'est un corollaire facile de la proposition 3 qu'une courbe plane est

normale en un point si et seulement si elle y est lisse. Soient par exemple

alors / a un prolongement continu non holomorphe qui applique l'origine
de C2 sur 0, de sorte que y n'est pas normale à l'origine. Dans toute courbe

(plane ou non), on sait que les points normaux coïncident avec les points
lisses. L'objet de ce chapitre est d'examiner la nature des singularités des

surfaces normales dans C3.

Dans les sections suivantes, nous ferons un usage répété d'un théorème

de H. Cartan [3] : Soient M une variété lisse et G un groupe fini opérant

holomorphiquement sur M. Alors l'espace des orbites X M/G possède

une structure canonique d'ensemble analytique normal normal en

chaque point). Si n: M X est la projection canonique, U un ouvert de X,
et /: U C une application, alors / est holomorphe pour la structure en

question si et seulement si/% l'est sur
1 (U).

II.2. Les singularités des surfaces normales dans C3 sont isolées

Soit r un germe de surface plongé dans C3. On peut supposer T
donné par les zéros d'un polynôme de Weierstrass. Plus précisément, il
existe
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1°) Un polycylindre D3 dans C3, centré à l'origine; nous noterons D2

et Djl ses traces sur le plan d'équation z 0 et sur la droite d'équations

y z 0.

2°) Un polynôme de Weierstrass Fe (9 (D2) [z], c'est-à-dire une fonction

Fe (9 (D3) avec

F(x, y, z) zn + a±(x9y) zn_1 + + an(x9y)

pour tous (x, y, z) e D3, où les a,- sont des fonctions holomorphes
dans D2 qui s'annulent à l'origine.

La germe r est alors représenté par FD {(x, y, z) e D3 \ F(x, y, z) 0}.

Nous écrirons plus simplement r si D3 C3. On peut toujours remplacer

D3 par un polycylindre plus petit; en particulier, on pourra toujours

supposer que la projection canonique fournit une application surjective %

de FB sur D2. Si n 1, la surface FD est lisse à l'origine; nous supposerons
désormais n > 2.

Nous noterons yD l'ensemble analytique {(x, y) e D2 | Dis (F) (x, y)

0}. Nous allons voir que ce lieux discriminant définit un germe y de

courbe plane qui joue un rôle important dans l'étude de T.

Proposition 7. Le lieux discriminant est une courbe passant par

l'origine. Si D3 est suffisamment petit, alors y% yD - {0} est lisse et %

fournit par restriction un revêtement holomorphe rD ~ n~1 (yD) ^ D2 - yD

à n feuilles. De plus, si T est normal, alors rB rD - {0} est lisse.

Preuve. Les mêmes arguments que ceux de la preuve de la proposition 1

montrent: d'abord que Dis (F) est une fonction holomorphe dans D2 qui

s'annule à l'origine, et qui est non nulle — donc que yD est une courbe

plane passant par l'origine et qu'on peut supposer y % lisse; ensuite que %

se restreint en une projection de revêtement de FD ~ n'1 (y#} sur D2 - yD.

Soient alors (x0, y0) e y*D et À2 un voisinage de (x0,y0) dans Di tel

que yÂ soit lisse. Notons A 3 l'ouvert {(x, y, z) e D3 | (x, y) e A2}. On peut

supposer qu'on s'est donné des coordonnées (£, rj) sur un voisinage de A2

telles que A 2 soit le polycylindre défini par | £ | < 1 et | rj | < 1 et telles que

yA rj) e A 2\rj 0}. Nous noterons nA la restriction de % à TA.

La première partie de la preuve montre que la restriction de %A à

V {(£, r\9 z) eFÂ | rç # 0} est un revêtement holomorphe à n feuilles.

Soient Vl9...9Vk les composantes connexes de V. Pour chaque

j e {1,..., k}9 notons nf Vs A2 - yA la restriction de nA à Vf9 c'est un

revêtement holomorphe connexe à tîj feuilles (la somme des nj vaut n).
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L'application cj de {(s, t) e C2 | | s1 < 1 et 0 < | t1 < 1} dans À2 ~ 1a

donnée par Oj (s, t) (s, tni) est un revêtement du même type. Le groupe

fondamental de A2 - yA étant Z, il existe des isomorphismes analytiques

inverses l'un de l'autre cpj et xj/j rendant le diagramme
<pj

{(s,t)eC2\\s\ <1 et 0 < \ t\ < 1} —*— Vj

\
\ A2 - yÀ /

commutatif. Soient Vj l'adhérence de Vj dans A3 (elle est dans rA), iïj la

restriction de nA à Vj (qui est aussi l'unique extension continue de tzj à

Vj) et B {(s-, t) e C2 | | s \ < 1 et | t \ < 1}. Le théorème d'extension

de Riemann implique que cpj admet un prolongement holomorphe cpj:

B -> Vj. Nous montrons plus bas que Vj est ouvert dans FA \ en particulier

Vj est un ensemble normal. Le même théorème de Riemann implique

que ij/j admet un prolongement à Vj)Tég, et la définition de la normalité

implique que celui-ci s'étend en \//j : Vj B. Les morphismes (pj et xj/j sont

encore inverses l'un de l'autre; par suite Vj est isomorphe à B et FA est

lisse.

Montrons enfin que Vj est ouvert dans rA. Soit p e Vj - Vj. Comme

rA est normal, il est irréductible en p et il existe un voisinage U de p dans

rA avec U' U n (Tj)rég connexe. Toujours en vertu du même théorème
de Riemann, l'ouvert U" {(£, rj, z) e U' \ rj # 0} est connexe (voir [8],

corollaire I.C.4). Montrons que U" est dans Vj. Si k 1, il n'y a rien à

vérifier. Si k > 1, supposons au contraire U" cj= Vj\ alors il existe i # j
avec U" n Vt non vide. Mais U" n Vj n'est pas vide non plus, d'où
l'absurdité puisque Vj et Vt sont des composantes connexes distinctes de V.

Donc U" est bien dans Vj9 et U' est dans Vj \ par suite U c: Vj. Ceci montre
que Vj est ouvert dans FA et achève la preuve. B

Corollaire. Les singularités des surfaces normales dans C3 sont
isolées.

On sait que, le corollaire est vrai pour toute surface, plongée ou non
dans C3. Un théorème d'Oka affirme que la réciproque du corollaire est

vraie; plus généralement, une hypersurface de Ck dont le lieu singulier est
de codimension au moins 2 dans l'hypersurface est un espace normal;
voir [19], pages 139-140.
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Il n'y a pas d'analogue ici au corollaire de la proposition 3, même pour
les surfaces normales; cela résulte par exemple des surfaces étudiées au

chapitre III. De fait, un théorème fondamental de Mumford affirme que
les singularités analytiques se détectent par le seul groupe fondamental.
Plus précisément, soient X une portion de surface plongée dans Ck et x0
un point de X; on suppose que X — {x0} est lisse. Soit S une petite sphère

centrée en x0. L'intersection X n S est une variété différentiable (si le

rayon de la sphère est suffisament petit) de dimension réelle 3 ; il est facile
de voir que le type topologique de cette variété ne dépend pas du rayon de

la sphère. Le théorème de Mumford affirme que le groupe fondamental
de X n S est trivial si et seulement si x0 est un point lisse de X [16].

II.3. Sur la normalisation

On appelle normalisation d'un ensemble analytique X la donnée d'un

ensemble normal X et d'un morphisme propre fini surjectif v : X -» X ayant

la propriété suivante: si A v"1 (X- Xrég), alors X - A est dense dans X

et la restriction de v est un isomorphisme de X — A sur XTég. Il est facile de

montrer que deux normalisations d'un même ensemble sont isomorphes

au sens convenable. C'est par contre un résultat très profond que tout

espace pbssède une normalisation (voir [5], appendice au chapitre 2, et

[18]); remarquons seulement que nous l'avons essentiellement montré
dans le cas très particulier des courbes planes. Nous utiliserons à plusieurs

reprises le résultat suivant, qui dit qu'on peut parfois «normaliser les

morphismes » (voir par exemple [5], page 2.28).

Proposition 8. Soient X et Y des ensembles analytiques, vx: X -> X

et vY: Y-+ Y leurs normalisations, et /: X -» Y une application
holomorphe telle que A f'1 (Lrég) soit dense dans X. Alors il existe une

application holomorphe /: X -» Y telle que vYf fvx.

Preuve. Soit A vx_1 (A). Comme A est dense dans X, il en est de

même de A n XTég, et vz_1 (AnXrég) est dense dans vx_1 (Xrég) lui-même

dense dans X; donc A est dense dans X.



— 225 —

La restriction de fvxapplique A dans Ytég et se relève donc en F.

A vy~1 yrég). Si K est un compact de alors c L

— (fox) K)qui est compact ; F (AnK)est donc relativement compact dans Y

puisque vy est propre. Par suite, l'image par F de tout compact est relativement

compacte, ce qui veut précisément dire que F est bornée.

L'ensemble X- Aest contenu dans un sous-ensemble analytique

propre de XcarX- Aest dans/-1 (Y—Ytég). Comme X est normal, se

prolonge en un morphisme fo X—* Y. Il est évident que f est 1 unique

morphisme satisfaisant vy/ fvx.Sans l'hypothèse que A est dense dans X, il n'y a en général ni existence

ni unicité. En effet, soient d'abord Xun ensemble normal, S {(x, y) e C2|

xy 0} et / l'application de X sur le point double de S. Alors est

réunion disjointe de deux droites, l'image inverse par vs du point double

est formée de deux points, et/a plusieurs relèvements.

Ensuite, l'exemple ci-dessous montre qu'il peut n'exister aucune «

normalisée ». Soient T un tore de dimension complexe un, a une involution

sans point fixe de Tet Xletore T\a.Sur le fibré trivial x C,

considérons la relation d'équivalence

L'espace quotient Y est muni naturellement d'une structure de fibré

analytique 7i : Y-*X;siU est un ouvert trivialisant de X pour ce fibré, alors

n'1 (U) U x S avec S comme dans l'exemple précédent.

L'ensemble analytique X est lisse, donc normal; l'ensemble Fsing

Y- Yri„ est de codimension un dans Y (en particulier Y n'est pasreg

normal) et Y se fibre sur X avec pour fibre la réunion disjointe de deux

droites. Soit E vy-1 fFsing). Alors Y — E est homéomorphe à 7rég,

donc est connexe (car 7rég est l'image par L T de l'ensemble L — T x {0}

qui est connexe); comme il est dense dans Y, celui-ci est aussi connexe. Par

suite E est connexe, car c'est un rétracte de Y, et la restriction de vY à E
est le revêtement connexe à deux feuilles de Fsing.

et z z

et z z' 0
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Si /: X -> Y est la section nulle du fibré n, (de sorte que le A de la
proposition 8 est vide), il est alors évident que / ne se relève pas, car cela

impliquerait que le revêtement E 7sing / (X) soit trivial.

Y

f -

1

X ; Y
n

III. SINGULARITÉS NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.l. Les surfaces An>q et leurs normalisations

Soient n et q des entiers, avec n positif et q < n. Nous noterons An>q la
surface {(x, y, z) e C3 | zn xyn~q}.

Si n 1, les surfaces ainsi définies sont toutes lisses: l'isomorphisme
(x, y, z) (x, y, z-xy1-q) de C3 applique Aln sur l'hyperplan d'équation
z 0. De même, si q n, l'isomorphisme (x, y, z) t-> (x~zn, y, z) applique
An>„ sur l'hyperplan d'équation x 0. Nous supposerons désormais
n > 2 et q < n sauf mention expresse du contraire.

Si q n - 1, les dérivées partielles du polynôme zn — xyn~q z11 — xy
ne s'annulent simultanément qu'à l'origine, et An n_1 est lisse en dehors de

ce point (donc normale en vertu d'un théorème d'Oka rappelé en II.2).
Si q < n — 2, la surface An>q est lisse en dehors de la droite d'équations
y z 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que An q

n'est pas normale.
Soit Gn q

le groupe des isomorphismes de C 2 de la forme (s, t) (£% ^t)
où C est une racine n-ième de l'unité; c'est un groupe cyclique d'ordre n.
Nous noterons Xnq Yensemble des orbites, muni de sa structure canonique
d'ensemble analytique normal.

Si q 0, l'ensemble Xn>0 est lisse: l'application (s, t) (s, tn) passe
au quotient et définit un isomorphisme de Xn 0 sur C x (C/ (Z/nZ)) & C2.

Les espaces Xn>q et Xn>q, sont évidemment identiques si q' q (modulo n);
il suffit donc d'étudier les Xn q pour lesquels 1 < q < n (voir de plus la

proposition 13).
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