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applique un point (x, y) sur D’intersection avec S* de ’image du chemin
R¥ - C?
te (x, t°y)
La transformée stricte de f est donnée par

En particulier y* est connexe et f est bien irréductible.

f(u,v) =172 (v° +(wv)?) = u? + 03

qui est comme f de multiplicité 2. La tangente de fest la droite d’équation

u = 0, qui est transverse a E,,. B N
Soient alors D, = C? et g (x,y) = x*> + y* de sorte que g = f (pas

g (x,») = x* + y? qui aurait comme tangente la droite d’équation x = 0).

On a g (u,v) = u® + v, qui est de multiplicité 1, et dont la tangente 2
I’origine est bien E,. :

Exemple 4. D, = C* et f(x,y) = >+ x°y +g(x,y) avec g de
multiplicité 8 au moins. Montrons que f est réductible.

Onaf(u,v) = u + uv + h(u,v) avec h d’ordre 3 au moins. Donc f a
deux tangentes, d’ol I’assertion par les propositions 5 et 6 (jj).

II. SINGULARITES NORMALES DANS C?

I1.1. ENSEMBLES NORMAUX

Si X est un ensemble analytique, X, désigne I'ouvert de ses points

ég

réguliers; on sait qu’il est dense dans X. (Voir le corollaire de la proposi- |

tion 1 si X est une courbe plane, 'argument de la proposition 7 ci-dessous
si X est une hypersurface dans C¥, et le théoréme III. C.3 de [8] en général.)

Rappelons qu’un ensemble X est irréductible en un point p si X n’est
pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce
cas, on peut trouver un voisinage de p dont la trace sur X, est connexe.
Réciproquement, s’il existe un bon voisinage U de P dans X dont la trace
sur X, est connexe, alors X est irréductible en p. (Voir la proposition 2
si X est une courbe plane, et la fin de la section III.C de [8] pour le cas
général.) Le terme de « bon voisinage » pour U signifie qu’il existe une
base de voisinages {U,} de p dans X telle que chaque U, — {p} soit un

rétracte par déformation de U — {p}; voir [21].
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On appelle fonction faiblement holomorphe sur un voisinage ouvert U
d’un point p de X une fonction définie et holomorphe sur U n X, — {P}
qui est bornée sur K n X, — {p} pour tout compact K de U; on dit que
Iespace X est normal en p si toute fonction de ce type admet un prolonge-
ment (nécessairement unique par continuité) en une fonction holomorphe
sur U. Par exemple, X est normal en tous ses points réguliers (c’est un cas
particulier du théoréme d’extension de Riemann) et n’est normal en aucun
de ses points réductibles (choisir un voisinage connexe U de p dans X et
une partition U, u U; de Un X, en ouverts disjoints non vides, puis
définir £ comme valant 0 sur U, et 1 sur U,). Soit O, 'anneau des germes
de fonctions holomorphes au voisinage d’un point p de X; pour que X soit
normal en p, il faut et il suffit que Oy , soit intégralement clos. (La nécessité
résulte immédiatement des définitions; pour la suffisance, voir par exemple
[18]; en général, la cloture intégrale de Oy , coincide avec I’anneau des
germes de fonctions faiblement holomorphes.)

C’est un corollaire facile de la proposition 3 qu’une courbe plane est
normale en un point si et seulement si elle y est lisse. Soient par exemple

y—{0} >C
(x, y)=>x[y;

alors f a un prolongement continu non holomorphe qui applique 'origine
de C2 sur 0, de sorte que 7 n’est pas normale & ’origine. Dans toute courbe
(plane ou non), on sait que les points normaux coincident avec les points
lisses. L’objet de ce chapitre est d’examiner la nature des singularités des
surfaces normales dans C>.

Dans les sections suivantes, nous ferons un usage répété d’un théoréme
de H. Cartan [3]: Soient M une variété lisse et G un groupe fini opérant
holomorphiquement sur M. Alors I'espace des orbites X = M/G possede
une structure canonique d’ensemble analytique normal (= normal en
chaque point). Si n: M — X est la projection canonique, U un ouvert de X,
et f: U — C une application, alors f est holomorphe pour la structure en
question si et seulement si f 7 I’est sur =~ (U).

y = {(x,»)eC*|x* =y} et f: {

11.2. LES SINGULARITES DES SURFACES NORMALES DANS C3 SONT ISOLEES

Soit I' un germe de surface plongé dans C3. On peut supposer I’
donné par les zéros d’un polyndme de Weierstrass. Plus précisément, il
¢xiste
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10) Un polycylindre D, dans C?, centré a 1’origine; nous noterons D,
et D, ses traces sur le plan d’équation z = 0 et sur la droite d’équa-
tionsy = z = Q.

20) Un polynéme de Weierstrass F € 0 (D) [z], c’est-2-dire une fonction
Fe0(D;) avec

F(x,y,2) = 2" +a; (x, ) 21 + ... + a,(x,¥)

pour tous (x, y, z) € D3, ou les a; sont des fonctions holomorphes
dans D, qui s’annulent a I’origine.

La germe I est alors représenté par I', = {(x, », 2) € D3 | F(x,y,z) = 0}.
Nous écrirons plus simplement I' si D3 = C?>. On peut toujours remplacer
D, par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit une application surjective ©
de I', sur D,. Sin = 1, la surface I'j, est lisse a I’origine; nous supposerons
désormais n > 2.

Nous noterons 7y, l’ensemble analytique {(x,y) € D, | Dis (F) (x, y)
= 0}. Nous allons voir que ce lieux discriminant définit un germe y de
courbe plane qui joue un réle important dans I’étude de I

PropoSITION 7. Le lieux discriminant est une courbe passant par
’origine. Si Dj est suffisamment petit, alors vp = 7p — {0} estlisseetn
fournit par restriction un revétement holomorphe I', — ™~ Y(yp) = D, — yp
a n feuilles. De plus, si I" est normal, alors I’ 5 = I'p — {0} est lisse.

Preuve. Les mémes arguments que ceux de la preuve de la proposition 1
montrent: d’abord que Dis (F) est une fonction holomorphe dans D, qui
s’annule & Porigine, et qui est non nulle — donc que y, est une courbe
plane passant par I’origine et qu’on peut supposer v lisse; ensuite que 7 |
se restreint en une projection de revétement de I', — = * (yp) sur D, — yp.

Soient alors (Xq, ¥o) € 75 €t 4, un voisinage de (x,, yo) dans D, tel
que 7, soit lisse. Notons 4 3 'ouvert {(x, y,2) € D, | (x,y) € 4,}. On peut
supposer qu’on s’est donné des coordonnées (¢, #7) sur un voisinage de 4,
telles que A, soit le polycylindre défini par | & | < 1et|n| < 1 et telles que
4 ={¢& ned, | n = 0}. Nous noterons m, la restriction de = a I
La premiére partic de la preuve montre que la restriction de 7y a
V=A{¢&nz2ely [ n # 0} est un revétement holomorphe & n feuilles.

Soient Vi, ..., V; les composantes connexes de V. Pour chaque
je{l, ...k}, notons m;: V; > A, — y,la restriction de m4 a V;; c’est un
revétement holomorphe connexe a n; feuilles (la somme des n; vaut n).
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L’application o; de {(s,#) e C*||s]| <1 et 0< | 2| < 1} dans 4, — 7,
donnée par o; (s, ) = (s, t"7) est un revétement du méme type. Le groupe
fondamental de 4, — vy, étant Z, il existe des isomorphismes analytiques
inverses 'un de lautre ¢; et /; rendant le diagramme

0
{(5,H)eC*||s] <1 et O<|t] <1} =V
N /
AN /
AN /
\AZ _"’YA/

commutatif. Soient V; 'adhérence de V; dans 4; (elle est dans I’ 4), T; la
restriction de 7, & V; (qui est aussi I'unique extension continue de 7; a
V)et B={(s¢)eC*||s|<1et]|t]<1} Le théoréme d’extension
de Riemann implique que ¢; admet un prolongement holomorphe @;:
B — V. Nous montrons plus bas que V; est ouvert dans I'4; en particulier
V; est un ensemble normal. Le méme théoréme de Riemann implique
que ¥; admet un prolongement a (V). et la définition de la normalite
implique que celui-ci s’étend en ¥;: ¥V; > B. Les morphismes @; et i/; sont
encore inverses I'un de l'autre; par suite V;est isomorphe & B et I' est
lisse.

Montrons enfin que V; est ouvert dans I',. Soit p € V; — V;. Comme
I'; est normal, il est irréductible en p et il existe un voisinage U de p dans
I'yavec U' = U n (I'y), connexe. Toujours en vertu du méme théoréme
de Riemann, Pouvert U" = {(£, n,2z) e U’ | n # 0} est connexe (voir [8],
corollaire 1.C.4). Montrons que U” est dans V. Si k = 1, il n’y a rien 2
vérifier. Si k > 1, supposons au contraire U” ¢ V;; alors il existe i # j
avec U” N V; non vide. Mais U" n V'; n’est pas vide non plus, d’ou I’ab-
surdité puisque V; et V; sont des composantes connexes distinctes de V.
Donc U” est bien dans V;, et U’ est dans V;; par suite U< V. Ceci montre
que V; est ouvert dans I', et achéve la preuve. B

COROLLAIRE. Les singularités des surfaces normales dans C® sont
isolées.

On sait que. le corollaire est vrai pour toute surface, plongée ou non
dans C3. Un théoréme d’Oka affirme que la réciproque du corollaire est
vraie; plus généralement, une hypersurface de C* dont le lieu singulier est
de codimension au moins 2 dans I’hypersurface est un espace normal;
voir [19], pages 139-140.
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Il n’y a pas d’analogue ici au corollaire de la proposition 3, méme pour
les surfaces normales; cela résulte par exemple des surfaces étudifes au
chapitre III. De fait, un théoréme fondamental de Mumford affirme que
les singularités analytiques se détectent par le seul groupe fondamental.
Plus précisément, soient X une portion de surface plongée dans C* et x, §
un point de X; on suppose que X — {x,} est lisse. Soit S une petite sphére
centrée en x,. L’intersection X n .S est une variété différentiable (si le
rayon de la sphére est suffisament petit) de dimension réelle 3; il est facile |
de voir que le type topologique de cette variété ne dépend pas du rayon de
la sphére. Le théoréme de Mumford affirme que le groupe fondamental
de X N S est trivial si et seulement si x, est un point lisse de X [16].

- T1.3. SUR LA NORMALISATION

On appelle normalisation d’'un ensemble analytique X la donnée d’un

ensemble normal X et d’'un morphisme propre fini surjectif v: X — X ayant
la propriété suivante: si 4 = v~ (X— X,,,), alors X — A est dense dans X

et la restriction de v est un isomorphisme de X — A4 sur X,,. Il est facile de
montrer que deux normalisations d’un méme ensemble sont isomorphes
au sens convenable. C’est par contre un résultat trés profond que tout
espace posséde une normalisation (voir [5], appendice au chapitre 2, et
[18]); remarquons seulement que nous l’avons essentiellement montré
dans le cas trés particulier des courbes planes. Nous utiliserons a plusieurs
reprises le résultat suivant, qui dit qu’on peut parfois « normaliser les
morphismes » (voir par exemple [5], page 2.28).

PrROPOSITION 8. Soient X et Y des ensembles analytiques, vy: X —» X

et vy: Y - Y leurs normalisations, et f: X — Y une application holo-
morphe telle que 4 = f~* (Y,,) soit dense dans X. Alors il existe une

application holomorphe f~ X - Y telle que vy f~ = fvy.

Preuve. Soit A = vy~ ! (4). Comme A4 est dense dans X, il en est de
méme de 4 N X, et vy~ ' (AN X,,,) est dense dans vy~ ' (Xps,) lui-méme

~

dense dans A; ; donc /I est dense dans X.
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La restriction de fvy applique A dans Yieq ©t SE reléve donc en F:
A - v, 1 (Y- Si K est un compact de X, alors (fvx) (AnK) = L

=(fvy) (K) qui est compact; F (AnK) est donc relativement compact dans ¥
puisque v, est propre. Par suite, I'image par F de tout compact est relative-
ment compacte, ce qui veut précisément dire que F est bornée.

L’ensemble ); — 2 est contenu dans un sous-ensemble analytique
propre de Xcar X — A est dans £~ (Y~ Y,e). Comme X est normal, F se
prolonge en un morphisme fN X - Y. 1l est évident que f est I'unique

morphisme satisfaisant vy f = fvy. B
Sans Phypothése que 4 est dense dans X, il n’y a en général ni existence
ni unicité. En effet, soient d’abord X un ensemble normal, S = {(x, y) € C?|

xy = 0} et f Papplication de X sur le point double de S. Alors S est
réunion disjointe de deux droites, I'image inverse par vg du point double
est formée de deux points, et f'a plusieurs relévements.

Ensuite, ’exemple ci-dessous montre qu’il peut n’exister aucune « nor-
malisée ». Soient T un tore de dimension complexe un, ¢ une involution
sans point fixe de T et X le tore T)o. Sur le fibré trivial L = T X C, consi-
dérons la relation d’équivalence

14

sia=a et z = z'
z

(a,z) ~(a’',2') {

ou sia=0(a) e z

L’espace quotient ¥ est muni naturellement d’une structure de fibré ana-
Iytique ©: ¥ — X; si U est un ouvert trivialisant de X" pour ce fibre, alors
11 (U) = U x S avec S comme dans I’exemple précédent.

L’ensemble analytique X est lisse, donc normal; l’ensemble Y,

= Y — Y,, est de codimension un dans Y (en particulier ¥ n’est pas

normal) et Y se fibre sur X avec pour fibre la réunion disjointe de deux

. . _ f— 1 i r \
droites. Soit E = vy~ ' (Yg,). Alors Y — E est homéomorphe a Y,
donc est connexe (car Y, est 'image par L — Y del’ensemble L — T' x {0}
qui est connexe); comme il est dense dans Y, celui-ci est aussi connexe. Par
suite E est connexe, car c’est un rétracte de Y, et la restriction de vy 2 E
est le revétement connexe a deux feuilles de Y.
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Sif: X — Y est la section nulle du fibré =, (de sorte que le 4 de la pro-
position 8 est vide), il est alors évident que f ne se reléve pas, car cela
impliquerait que le revétement £ — Y . = f(X) soit trivial.

Y

Vx

III. SINGULARITES NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.1. LES SURFACES A4,, ET LEURS NORMALISATIONS

Soient n et g des entiers, avec n positif et g << n. Nous noterons A, ,.1a
surface {(x, y,z) € C*| 2" = x)""9}.

Si n = 1, les surfaces ainsi définies sont toutes lisses: I’isomorphisme
(x, y,2) = (x, ¥, z—xy' "% de C? applique 4, sur 'hyperplan d’équation
z = 0. De méme, si ¢ = n, 'isomorphisme (x, y, z) - (x—2", y, z) applique
A,, sur T’hyperplan d’équation x = 0. Nous supposerons désormais
n > 2 et g < n sauf mention expresse du contraire.

Sig = n — 1, les dérivées partielles du polynéme z" — x)" "% = z" — xy
ne s’annulent simultanément qu’a I’origine, et 4, ,_, est lisse en dehors de
ce point (donc normale en vertu d’un théoréme d’Oka rappelé en II.2).

Si g <n — 2, la surface 4, , est lisse en dehors de la droite d’équations &

y = z = 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que 4, , n’est pas normale.

Soit G, , le groupe des isomorphismes de C? de la forme (s, ¢) > ({%, (1)
ou { est une racine n-iéme de 'unité; c’est un groupe cyclique d’ordre n.
Nous noterons X, , 'ensemble des orbites, muni de sa structure canonique
d’ensemble analytique normal.

Si g = 0, Pensemble X, o est lisse: I'application (s, z) — (s, t") passe
au quotient et définit un isomorphisme de X, , sur C x (C/ (Z/nZ)) ~ C>.
Les espaces X, , et X, .- sont évidemment identiques si ¢’ = ¢ (modulo n);
il suffit donc d’étudier les X, , pour lesquels 1 < g < n (voir de plus la
proposition 13).




	II. SINGULARITÉS NORMALES DANS $C^3$
	II.1. Ensembles normaux
	II.2. Les singularités des surfaces normales dans $C^3$ sont isolées
	II.3. Sur la normalisation


