Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN
Autor: de la Harpe, P. / Siegfried, P.
Kapitel: I.3. Eclatement et irréductibilité

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Proposition 5. Si $\underline{\gamma}$ a plusieurs tangentes, alors \underline{f} est réductible.

Preuve. Comme

$$f(x, y) = y^n + a_1(x) y^{n-1} + \dots + a_n(x) = \sum_{j=n}^{\infty} h_j(x, y)$$

l'ordre du zéro de a_i à l'origine est au moins i (i=1,...,n). Nous écrirons

$$f(x, y) - h_n(x, y) = b_1(x) y^{n-1} + b_2(x) y^{n-2} + \dots + b_n(x)$$

et $b_i(x) = x^{i+1} c_i(x)$, où c_i représente un germe holomorphe à l'origine (i=1, ..., n).

Si u et v décrivent de petits voisinages de l'origine dans \mathbb{C} , la fonction $(u, v) \mapsto f(v, uv)$ est divisible par v^n . Définissons $\tilde{f} \in {}_2\mathcal{O}$ par $\tilde{f}(u, v) = v^{-n} f(v, uv)$; on a donc

$$\widetilde{f(u,v)} = h_n(1,u) + vc_1(v)u^{n-1} + vc_2(v)u^{n-2} + \dots + vc_n(v).$$

L'évaluation Ev: ${}_{1}\mathcal{O} \to \mathbf{C}$ associe au polynôme $\widetilde{f} \in {}_{1}\mathcal{O}[u]$ le polynôme $u \mapsto h_{n}(1, u)$ de $\mathbf{C}[u]$.

Si $\underline{\gamma}$ a plusieurs tangentes, il résulte de la proposition 4 que \widetilde{f} est un produit dans ${}_{1}\mathcal{O}[u]$ de polynômes unitaires \widetilde{g} et \widetilde{h} de degrés respectifs r < n et s < n. Définissons alors g et h dans ${}_{1}\mathcal{O}[y]$ par $g(x, y) = x^{r}\widetilde{g}(y/x, x)$ et $h(x, y) = x^{s}\widetilde{h}(y/x, x)$. Alors f = gh et \underline{f} est réductible.

La signification géométrique de \widetilde{f} dans la preuve ci-dessus sera éclairée au numéro suivant.

Par exemple, le polynôme réductible xy définit une courbe ayant deux tangentes à l'origine. La réciproque à la proposition 5 n'est pas vraie car le polynôme réductible $x(x^2-y^3)$ définit une courbe n'ayant qu'une tangente à l'origine.

I.3. ECLATEMENT ET IRRÉDUCTIBILITÉ

Pour tout entier positif k, nous noterons h la projection canonique de $\mathbb{C}^{k+1} - \{0\}$ sur l'espace projectif P^k ; nous écrirons $(\omega_0, ..., \omega_k)$ les coordonnées d'un vecteur de \mathbb{C}^{k+1} et $[z_0, ..., z_k]$ les coordonnées homogènes d'un point de P^k . Introduisons la variété

$$S_{(-k)} = \left\{ ([z_0, z_1], w) \in P^1 \times \mathbb{C}^{k+1} \mid w \in h^{-1} ([z_0^k, z_0^{k-1} z_1, ..., z_1^k]) \cup \{0\} \right\}$$

et la restriction $\pi_{(-k)}$ à $S_{(-k)}$ de la seconde projection du produit $P^1 \times \mathbb{C}^{k+1}$. Nous écrirons aussi $\pi: S \to \mathbb{C}^2$ lorsque k = 1; cette application est alors par définition l'éclatement de \mathbb{C}^2 à l'origine.

Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont à prendre dans $\{0, 1\}$.

Posons $U_j = \{(z_0, z_1) \in \mathbb{C}^2 - \{0\} \mid z_j \neq 0\}$ et $U_j = h(U_j)$. Soit $\widetilde{\varphi}_j \colon \widetilde{U}_j \to \mathbb{C}$ l'application qui associe à (z_0, z_1) le quotient z_1/z_0 si j = 0 et le quotient z_0/z_1 si j = 1; elle passe au quotient et définit une bijection $\varphi_j \colon U_j \to \mathbb{C}$. Les changements de cartes de l'atlas analytique ainsi défini sur P^1 sont

$$\begin{cases} \mathbf{C}^* = \varphi_0 (U_0 \cap U_1) \to \varphi_1 (U_0 \cap U_1) = \mathbf{C}^* \\ u \mapsto u^{-1} \end{cases}$$

et l'isomorphisme inverse.

Considérons ensuite la restriction $\lambda_{(-k)}: S_{(-k)} \to P^1$ de la première projection du produit $P^1 \times \mathbb{C}^{k+1}$. Posons $S_{(-k),j} = \lambda_{(-k)}^{-1}(U_j)$ et soient $\psi_j: S_{(-k),j} \to \mathbb{C}^2$ les bijections définies par $\psi_0([z], \omega) = (\varphi_0([z]), \omega_0)$ et $\psi_1([z], \omega) = (\varphi_1([z]), \omega_k)$; les applications inverses sont respectivement

$$(u,v) \mapsto ([1,u], (v,uv,...,u^kv))$$

et

$$(u,v) \mapsto (\lceil u, 1 \rceil, (u^k v, u^{k-1} v, ..., v)).$$

Les changements de cartes de l'atlas analytique ainsi défini sur $S_{(-k)}$ sont

$$\begin{cases} \mathbf{C}^* \times \mathbf{C} = \psi_0(S_{(-k),0} \cap S_{(-k),1}) \to \psi_1(S_{(-k),0} \cap S_{(-k),1}) = \mathbf{C}^* \times \mathbf{C} \\ (u,v) \mapsto (u^{-1}, u^k v) \end{cases}$$

et l'isomorphisme inverse.

La variété $S_{(-k)}$ est donc l'espace total d'un fibré holomorphe en droites de projection $\lambda_{(-k)}: S_{(-k)} \to P_1$. Les fonctions de transition associées au recouvrement trivialisant (U_0, U_1) de P^1 sont

$$\psi_{1,0}: \begin{cases} U_0 \cap U_1 \to \mathbb{C}^* \\ \lceil z_0, z_1 \rceil \mapsto (z_1/z_0)^k \end{cases}$$

et

$$\psi_{0,1}: \left\{ \begin{array}{l} U_1 \cap U_0 \to \mathbb{C}^* \\ [z_0, z_1] \mapsto (z_0/z_1)^k \end{array} \right.$$

En particulier, le fibré $\lambda_{(-k)}$ est la puissance tensorielle k-ième du fibré canonique $\lambda = \lambda_{(-1)}$. Nous avons construit $\lambda_{(-k)}$ comme l'image inverse du fibré canonique sur P^k par le « morphisme de Véronèse » de P^1 dans P^k , qui est une application de « degré » k. Le signe dans l'indice (-k) exprime que la classe de Chern du fibré $\lambda_{(-k)}$ évaluée sur la classe fondamentale est négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes raisons pour lesquelles la classe de Chern de $\lambda_{(-k)}$ est -k (multiplicativité par produit tensoriel et multiplication par le degré); indiquons-en une troisième qui n'utilise que des notions encore plus rudimentaires (voir par exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe $s: P^1 \longrightarrow S_{(-k)}$ du fibré $\lambda_{(-k)}$ décrite par les applications

$$s_0: \begin{cases} U_0 \to S_{(-k),0} \\ u \mapsto (u,u) \end{cases} \quad \text{et} \quad s_1: \begin{cases} U_1 \dashrightarrow S_{(-k),1} \\ u \mapsto (u,u^{-k-1}) \end{cases}.$$

Alors s a un zéro simple, en un point correspondant à l'origine de U_0 , un pôle d'ordre k+1, en un point correspondant à l'origine de U_1 , et n'a ni autres zéros ni autres pôles. Les différentielles logarithmiques de s aux voisinages de son zéro et de son pôle se représentent respectivement par $d(\log u) = u^{-1} du$, de résidu +1, et $d(\log u^{-k-1}) = -(k+1) u^{-1} du$, de résidu -(k+1). Il en résulte que la classe de Chern du fibré $\lambda_{(-k)}$ vaut 1-(k+1)=-k.

L'application $\pi: S \to \mathbb{C}^2$ s'exprime dans les cartes standards par

$$\pi_0: \begin{cases} \mathbf{C}^2 = \psi_0(S_0) \to \mathbf{C}^2 \\ (u, v) \mapsto (v, uv) \end{cases}$$

et

$$\pi_1: \begin{cases} C^2 = \psi_1(S_1) \to C^2 \\ (u, v) \mapsto (uv, v). \end{cases}$$

On appellera courbe exceptionnelle de l'éclatement π et on notera E la courbe π^{-1} (0, 0), qui est lisse et isomorphe à P^1 . Elle est donnée dans les cartes par

$$E_0 = \psi_0 (E \cap S_0) = \{ (u, v) \in \mathbb{C}^2 \mid v = 0 \}$$

et

$$E_1 = \psi_1(E \cap S_1) = \{(u, v) \in \mathbb{C}^2 \mid v = 0\}.$$

On notera que, en général, l'image de la section nulle du fibré $\lambda_{(-k)}$ coïncide avec $\pi_{(-k)}^{-1}$ (0).

Soient alors $\underline{\gamma}$, D_2 , f et γ_D ou γ comme au début de la section 1. On appelle transformée stricte de γ_D et on note π^{-1} (γ_D) ou γ_D l'adhérence dans $\widetilde{D}_2 = \pi^{-1}$ (D_2) de π^{-1} (γ_D^*), avec comme plus haut $\gamma_D^* = \gamma_D - \{0\}$.

Exemple 1. $D_2 = \mathbb{C}^2$ et f(x, y) = xy. Alors γ a deux composantes irréductibles qui sont l'axe γ' d'équation y = 0 et l'axe γ'' d'équation x = 0, de sorte que $\widetilde{\gamma} = \widetilde{\gamma'} \cup \widetilde{\gamma''}$. Or $\widetilde{\gamma'}$ est l'adhérence de $\{([z], \omega) \in S \mid \omega = (x, 0) \text{ et } x \neq 0\}$, qui est $\{([z], \omega) \in S \mid [z] = [1, 0]\}$. De même $\widetilde{\gamma''} = \{([z], \omega) \in S \mid [z] = [0, 1]\}$. Dans les cartes standards:

$$\psi_0(\widetilde{\gamma'}) = \{ (u, v) \in \mathbb{C}^2 \mid u = 0 \}$$

$$\widetilde{\gamma'} \cap S_1 = \widetilde{\gamma''} \cap S_0 = \emptyset$$

$$\psi_1(\widetilde{\gamma''}) = \{ (u, v) \in \mathbb{C}^2 \mid u = 0 \}.$$

On retiendra que γ est réunion de deux courbes lisses disjointes et que $\pi^{-1}(\gamma) = \tilde{\gamma} \cup E$ est réunion de trois courbes lisses sans point triple et à intersections transverses.

Plus généralement, si γ est réunion de m droites distinctes dans \mathbb{C}^2 passant par l'origine, sa transformée stricte est réunion de m courbes lisses disjointes coupant chacune la courbe exceptionnelle en un point et transversalement.

Exemple 2. $D_2 = \mathbb{C}^2$ et $f(x, y) = x^2 - y^3$. Alors $\tilde{\gamma}$ est l'adhérence de $\{([z], \omega) \in S \mid \omega = (t^3, t^2) \text{ et } t \in \mathbb{C}^*\}$, qui est $\{([t, 1], (t^3, t^2)) \in S \mid t \in \mathbb{C}\}$ and les cartes, $\psi_0(\tilde{\gamma} \cap S_0)$ est l'adhérence de $\{(u, v) \in \mathbb{C}^2 \mid u = t^{-1}, v = t^3, t \in \mathbb{C}^*\}$ et $\psi_1(\tilde{\gamma} \cap S_1)$ celle de $\{(u, v) \in \mathbb{C}^2 \mid u = t, v = t^2, t \in \mathbb{C}^*\}$. Ecrit sans paramètre:

$$\psi_0(\widetilde{\gamma} \cap S_0) = \{(u, v) \in \mathbb{C}^2 \mid u^3 v = 1\}$$

$$\psi_1(\widetilde{\gamma} \cap S_1) = \{(u, v) \in \mathbb{C}^2 \mid u^2 = v\}.$$

Par suite γ est une courbe lisse, et $\pi^{-1}(\gamma) = \gamma \cup E$ est réunion de deux courbes lisses se coupant au seul point $\psi_1^{-1}(0, 0)$. Cette intersection n'étant pas transverse, on itère le procédé en espérant éliminer ce « défaut ».

Au voisinage de ce point d'intersection, $\pi^{-1}(\gamma)$ définit un germe $\underline{\delta}$; on le représente par la courbe δ , zéro de la fonction $g \in \mathcal{O}(C^2)$ définie par $g(x, y) = y(x^2 - y)$. La transformée stricte est donnée dans les cartes par

$$\psi_0(\widetilde{\delta} \cap S_0) = \{(u, v) \in \mathbb{C}^2 \mid u(v - u) = 0\}$$

$$\psi_1(\widetilde{\delta} \cap S_1) = \{(u, v) \in \mathbb{C}^2 \mid u^2v = 1\}.$$

Par suite δ est réunion de deux courbes lisses se coupant en un seul point et transversalement; d'autre part $\pi^{-1}(\delta)$ est réunion de trois courbes lisses se coupant en un seul point, et transversalement deux à deux.

Au voisinage de ce point triple, $\pi^{-1}(\delta)$ définit un germe $\underline{\varepsilon}$. La remarque à la fin de l'exemple 1 montre que $\underline{\varepsilon}$ conduit à une transformée stricte qui est réunion de trois courbes lisses disjointes coupant la courbe exceptionnelle transversalement et en des points distincts.

En composant ces trois éclatements, on obtient une résolution de la singularité γ plongée dans \mathbb{C}^2 , au sens du théorème 8.4 de [17]. En d'autres termes, on obtient une variété lisse M et une application $\zeta \colon M \to \mathbb{C}^2$ ayant les propriétés suivantes:

- 1) ζ induit un isomorphisme de $M \zeta^{-1}(0)$ sur $\mathbb{C}^2 \{0\}$;
- 2) l'adhérence $\tilde{\zeta}^{-1}(\gamma)$ de $\zeta^{-1}(\gamma^*)$ dans M est une courbe lisse;
- 3) $\zeta^{-1}(\gamma)$ est une réunion de courbes lisses sans point triple qui se coupent transversalement.

Revenons au cas général et soit à nouveau n la multiplicité de f à l'origine; nous supposons comme à la section 2 que la droite d'équation x=0 n'est pas une tangente de $\underline{\gamma}$. Nous appellerons transformée stricte de la fonction f et nous noterons \tilde{f} la fonction définie pour tout $(u,v) \in \Delta_2$ $= \psi_0 \left(\pi^{-1}(D_2) \cap S_0\right)$ par $\tilde{f}(u,v) = v^{-n}f(v,uv)$.

Proposition 6. Avec les notations déjà introduites:

- (j) $\psi_0(\tilde{\gamma}_D \cap S_0) = \{(u, v) \in \Delta_2 \mid \tilde{f}(u, v) = 0\}.$
- (jj) Si \underline{f} est irréductible, alors \widetilde{f} s'annule en un seul point de E_0 et y définit un germe $\underline{\widetilde{f}} \in {}_2\mathcal{O}$ qui est irréductible.
- (jjj) Supposons \underline{f} irréductible et soient n et \tilde{n} les multiplicités de f et \tilde{f} ; alors $\tilde{n} \leqslant n$ et $\tilde{n} < n$ si et seulement si E_0 est une tangente à $\overset{\sim}{\gamma}$.

Preuve. Supposons $(u, v) \in \psi_0$ $(\gamma_D \cap S_0)$; alors $\pi_0(u, v) = (v, uv) \in \gamma_D$, donc f(v, uv) = 0. Si $v \neq 0$, cela implique $\tilde{f}(u, v) = 0$ par définition de \tilde{f} ; c'est encore vrai par continuité si v = 0.

Supposons $(u, v) \in \Delta_2$ avec $\widetilde{f}(u, v) = 0$, alors $f(\pi_0(u, v)) = v^n f(u, v)$ = 0, donc $\psi_0^{-1}(u, v) \in \pi^{-1}(\gamma_D) \cap S_0$. Si $v \neq 0$, cela s'écrit $\psi_0^{-1}(u, v)$ $\in \gamma_D \cap S_0$. Si v = 0, la fonction $u \mapsto \widetilde{f}(u, 0)$ est de la forme $u \mapsto c \prod (u - \lambda_j)^{sj}$ avec c non nul et $\lambda_1, ..., \lambda_m$ distincts (voir la proposition 5). Elle s'annule donc aux points $(\lambda_j, 0)$ de E_0 ; ceux-ci étant en nombre fini, leurs images inverses par ψ_0 sont par continuité dans $\gamma_D \cap S_0$. L'assertion (j) en résulte.

Si \underline{f} est irréductible, il n'y a qu'un λ_j (voir la preuve de la proposition 4); \widetilde{f} ne s'annule qu'en un point de E_0 et y définit un germe $\underline{\widetilde{f}}$. L'application π induit un homéomorphisme de S - E sur $\mathbb{C}^2 - \{0\}$, donc aussi de π^{-1} (γ_D^*)

 $= \gamma_D - (\gamma_D \cap E)$ sur γ_D^* . L'assertion (jj) résulte donc de la proposition 2. Quitte à changer linéairement les coordonnées, on peut supposer que la tangente à $\underline{\gamma}$ est l'axe d'équation y = 0. Pour tout $(x, y) \in D_2$, on a maintenant

$$f(x, y) = y^{n} + b_{1}(x) y^{n-1} + ... + b_{n}(x)$$

et $b_i(x) = x^{i+1} c_i(x)$ où c_i est holomorphe à l'origine. Pour tout $(u, v) \in \Delta_2$, on a donc

$$\widetilde{f}(u,v) = u^n + vc_1(v)u^{n-1} + \dots + vc_n(v),$$

d'où en particulier n < n. Si n = n, alors $f(u, v) = \sum h_j(u, v)$ (somme de n à l'infini) avec $h_n(u, v) = u^n + vk(u, v)$ pour un polynôme homogène k ad hoc, nul ou de degré n - 1; dans ce cas, la courbe E_0 d'équation v = 0 n'est pas tangente à $\psi_0(\tilde{\gamma}_D \cap S_0)$. Si n < n, alors $\tilde{f}(u, v) = \sum h_j(u, v)$ (somme de n à l'infini) avec \tilde{h}_n divisible par v; dans ce cas, E_0 est tangente à $\psi_0(\tilde{\gamma}_D \cap S_0)$.

Exemple 3. $D_2 = \mathbb{C}^2$ et $f(x, y) = x^5 + y^2$. On peut montrer brutalement que \underline{f} est irréductible. On peut aussi observer que la paire formée de $\mathbb{C}^2 - \{0\}$ et de γ^* se rétracte par déformation sur la paire formée de $\mathbb{S}^3 = \{(x, y) \in \mathbb{C}^2 |x|^2 + |y|^2 = 1\}$ et d'un nœud du tore: la rétraction

applique un point (x, y) sur l'intersection avec S^3 de l'image du chemin $\begin{cases} \mathbf{R}_+^* \to \mathbf{C}^2 \\ t \mapsto (t^2 x, t^5 y) \end{cases}$. En particulier γ^* est connexe et \underline{f} est bien irréductible.

La transformée stricte de f est donnée par

$$\tilde{f}(u,v) = v^{-2}(v^5 + (uv)^2) = u^2 + v^3$$

qui est comme f de multiplicité 2. La tangente de \underline{f} est la droite d'équation u = 0, qui est transverse à E_0 .

Soient alors $D_2 = \mathbb{C}^2$ et $g(x, y) = x^3 + y^2$ de sorte que g = f (pas $g(x, y) = x^2 + y^3$ qui aurait comme tangente la droite d'équation x = 0). On a $g(u, v) = u^2 + v$, qui est de multiplicité 1, et dont la tangente à l'origine est bien E_0 .

Exemple 4. $D_2 = \mathbb{C}^2$ et $f(x, y) = y^5 + x^5y + g(x, y)$ avec g de multiplicité 8 au moins. Montrons que f est réductible.

On a $\widetilde{f}(u, v) = u^5 + uv + h(u, v)$ avec h d'ordre 3 au moins. Donc \widetilde{f} a deux tangentes, d'où l'assertion par les propositions 5 et 6 (jj).

II. SINGULARITÉS NORMALES DANS C3

II.1. Ensembles normaux

Si X est un ensemble analytique, $X_{\text{rég}}$ désigne l'ouvert de ses *points* réguliers; on sait qu'il est dense dans X. (Voir le corollaire de la proposition 1 si X est une courbe plane, l'argument de la proposition 7 ci-dessous si X est une hypersurface dans \mathbb{C}^k , et le théorème III. C.3 de [8] en général.)

Rappelons qu'un ensemble X est irréductible en un point p si X n'est pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce cas, on peut trouver un voisinage de p dont la trace sur $X_{rég}$ est connexe. Réciproquement, s'il existe un bon voisinage U de P dans X dont la trace sur $X_{rég}$ est connexe, alors X est irréductible en p. (Voir la proposition 2 si X est une courbe plane, et la fin de la section III.C de [8] pour le cas général.) Le terme de « bon voisinage » pour U signifie qu'il existe une base de voisinages $\{U_{\alpha}\}$ de p dans X telle que chaque $U_{\alpha} - \{p\}$ soit un rétracte par déformation de $U - \{p\}$; voir [21].