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PROPOSITION 5. Si y a plusieurs tangentes, alors [ est réductible.

Preuve. Comme

@) =Y+ @Y 0,0 = 3 )

ordre du zéro de q; & I’origine est au moins i (i=1, ..., n). Nous écrirons
J0) = (6, 9) = b1y + 5, (0" + o+ by ()
et b; (x) = x'*1 ¢ (x), oul ¢ représente un germe holomorphe 4 Iorigine

@i=1, ..., n). ,
Si u et v décrivent de petits voisinages de lorigine dans C, la fonction

(u,v) = f (v, uv) est divisible par »". Définissons z €,0 par ]; (u,v) §
= v " f (v, uv); on a donc

F@,9) = Ry (L, u) +ve; @ u™t +ve, @) w2 + ... + ve, (v) .

L’¢évaluation Ev: ;0 — C associe au polyndme j: € 10 [u] le polyndme"
u>h, (1, u) de C [u]. N
Si y a plusieurs tangentes, il résulte de la proposition 4 que f est un

produit dans ;0 [1] de polynémes unitaires g~ et h de degrés respectifs r < n
et s < n. Définissons alors g et 4 dans ,0 [y] par g (x,y) = x’gN (y/x, x)
et h(x,y) = x° h (y/x, x). Alors f = gh et f est réductible. m

La signification géométrique de f dans la preuve ci-dessus sera éclairée
au numé€ro suivant. |

Par exemple, le polyndme réductible xy définit une courbe ayant deux .
tangentes a 'origine. La réciproque a la proposition 5 n’est pas vraie car
le polynéme réductible x (x* —»3) définit une courbe n’ayant qh’une tangente
a ’origine.

S

1.3. ECLATEMENT ET IRREDUCTIBILITE

Pour tout entier positif k, nous noterons 4 la projection canonique
de C**' — {0} sur I’espace projectif P*; nous é&crirons (@ ...y ) les
4 > k+ 1 z b
coordonnées d’un vecteur de C** 1 et [z,, ..., z,] les coordonnées homogeénes
d’un point de P*. Introduisons la variété |
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Scciy = {([20, 21, W) €P* x CF* | w eh ' ([2& 267 2y, .., Z5]) U {0} }

et la restriction 7 -1 a S(_, de la seconde projection du produit Pl x CH L
Nous écrirons aussi 7: S — C? lorsque k = 1; cette application est alors

par définition I'éclatement de C*> a l’origine.
Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont a

prendre dans {0, 1}.
Posons I~Jj = {(z9,21) €C? — {O}[zj # 0} et U; = h((NJj). Soit

(; i l~] ; = C P’application qui associe a (zo, z4) le quotient z,/z, sij = O et
le quotlent Zo/z4 si j = 1; elle passe au quotient et définit une bijection
:U; - C. Les changements de cartes de ’atlas analytique ainsi défini
sur P1 sont
{ C* = ¢ (UpnUy) = ¢ (UpnUy) = C*

ur>u-1

et 'isomorphisme inverse.

Considérons ensuite la restriction Ac_ypy: S_g) — P! de la premiére
projection du produit P* x C**'. Posons S(_4); = A1 ' (U;) et soient
1% S( _w.; = C? les bijections définies par ¥, ([z], @) = (¢, ([2]), @o) et
Uy (Iz], ) = (¢4 ([2]), @); les applications inverses sont respectlvement

(u,v) = ([1,u], (v,uv,...,u v))
et

(u,v) > ([u, 1], (v, u* 1o, ..., v)) .
Les changements de cartes de I’atlas analytique ainsi défini sur S._,, sont

{C* X C = Yo (S-1),0NS=1),1) 2 ¥1(S(-1y0NS(-1y,1) = C* x C
' (u, ) = (u"1, ut)

et 'isomorphisme inverse.

La variété S._,, est donc I’espace total d’un ﬁbre holomorphe en droites
de projection A_jy: S(—z — P;. Les fonctions de transition associées au
recouvrement trivialisant (U,, U,) de P! sont

U,nU; - C*
l,0103{ ° .

[0, z1] = (z4/20)*

U nU, - C*
l‘00,13{ ! °

[20, 1] = (2o/2,)* .
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En particulier, le fibré 1 _,, est la puissance tensorielle k-iéme du fibré
canonique A = A._;y. Nous avons construit Ac-ry comme l'image inverse
du fibré canonique sur P* par le « morphisme de Véronése» de P! dans P,
qui est une application de « degré » k. Le signe dans I'indice (— k) exprime
que la classe de Chern du fibré A _,, évaluée sur la classe fondamentale est
négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes
raisons pour lesquelles la classe de Chern de Ac-xy est —k (multiplicativité
par produit tensoriel et multiplication par le degré); indiquons-en une
troisiéme qui n’utilise que des notions encore plus rudimentaires (voir par
exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe s: P! -~ S(-ry du fibré A _,, décrite
par les applications

Uy = S(-—k),o . Uy---— S(—k),l
So - et s i
u>(u,u) Uur--->(u,u ).

Alors s a un zéro simple, en un point correspondant a I’origine de U, un
pdle d’ordre k + 1, en un point correspondant 3 I’origine de U, et n’a ni-
autres zéros ni autres poles. Les différentielles logarithmiques de s aux
voisinages de son zéro et de son pdle se représentent respectivement par
d(logu) =u"'du, de résidu +1, et d(logu 1) = —(k+1)u" ! du, de
résidu —(k+1). Il en résulte que la classe de Chern du fibré A~y vaut
1 —-(k+1) = —k.
L’application 7: S — C? s’exprime dans les cartes standards par

. C* = Yo (So) » C?
' { (u,v) — (v, uv)

et
. {Cz =¥, (S) - C?

(u,v) = (uv,v).

On appellera courbe exceptionnelle de I’éclatement m et on notera E la
courbe #~* (0, 0), qui est lisse et isomorphe & P*. Elle est donnée dans les
cartes par

Ey = Yo (EnSy) = {(u,v)eC*|v = 0}
et

E; =Yy (EnS;) = {(u,1)eC*|v = 0}.

On notera que, en général, 'image de la section nulle du fibré A¢~xy coincide

avec m_, " (0).

*
* %
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Soient alors y, D,, f et yp ou y comme au début de la section 1. On
appelle transformée stricte de yp et on note 7~ ! (yp) ou yp ’adhérence dans
132 = g~ 1(D,) de n~ ! (y}), avec comme plus haut vy = yp — {0}.

Exemple 1. D, = C? et f(x,y) = xy. Alors y a deux composantes
irréductibles qui sont 'axe y’ d’équation y = 0 et I'axe y" d’équation
x = 0, de sorte que ; = ;’ U ;”. Or ;’ est I’adhérence de {([z], a)) eS | 0l
= (x,0) et x # 0}, qui est {([z], ®) eS[ [z] = [1,0]}. De méme 7" =
{([=], co) €S I [z] = [0, 1]}. Dans les cartes standards:

Vo) = {(,v)eC*|u = 0}
Y S =108 =2
Wi (") = {@,v)eC*|u = 0}.
On retiendra que ; est réunion de deux courbes lisses disjointes et que

7171 (y) = y U E est réunion de trois courbes lisses sans point triple et a
intersections transverses.

Plus généralement, si y est réunion de m droites distinctes dans C?
passant par 1’origine, sa transformée stricte est réunion de m courbes lisses
disjointes coupant chacune la courbe exceptionnelle en un point et trans-
versalement.

Exemple 2. D, = C? et f(x,y) = x* — y3. Alors ; est ’adhérence

de {([zhw)eS|w = (¢31? et teC*}, qui est {([t,1], (> t?)) eS|
te C} = Sy. Dans les cartes, ¥ (;mSO) est I'adhérence de {(u,v) € C? |
u=1"1 v =13 teC* et Y (1nSy) celle de {(,v)eC?|u = ¢,
v = t2, t € C*}. Ecrit sans paramétre:

Vo @nSo) = {(w,9) e C|ud = 1}

Vi nS) = {@,9)eC? u? =9},

Par suite y est une courbe lisse, et 771 (y) = 9 U E est réunion de deux
courbes lisses se coupant au seul pointy; ~* (0, 0). Cette intersection n’étant
pas transverse, on itére le procédé en espérant éliminer ce « défaut ».
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Au voisinage de ce point d’intersection, 7~ ! (y) définit un germe d; on
le représente par la courbe &, zéro de la fonction g € O (C?) définie par |
g (x, ) = y (x*—). La transformée stricte est donnée dans les cartes par

Vo (3nSe) = {(,9) e C* |u@—u) = 0}
V1 (6nSy) = {(@,2)eC? |u’y = 1} .

Par suite 6 est réunion de deux courbes lisses se coupant en un seul point
et transversalement; d’autre part 7~ ! () est réunion de trois courbes lisses
se coupant en un seul point, et transversalement deux a deux.

Au voisinage de ce point triple, 7~ ' (§) définit un germe &. La remarque

a la fin de I’exemple 1 montre que ¢ conduit & une transformée stricte qui i

est réunion de trois courbes lisses disjointes coupant la courbe exception-
nelle transversalement et en des points distincts.

En composant ces trois éclatements, on obtient une résolution de la
singularité y plongée dans C?2, au sens du théoréme 8.4 de [17]. En d’autres

termes, on obtient une variété lisse M et une application {: M — C? ayant 8

les propriétés suivantes:
1) ¢ induit un isomorphisme de M — {~* (0) sur C* — {0};
2) I’adhérence Z‘ 1(y) de {71 (y*) dans M est une courbe lisse;

3) {1 (y) est une réunion de courbes lisses sans point triple qui se
coupent transversalement. '

Revenons au cas général et soit a nouveau # la multiplicité de f a 1’ori-
gine; nous supposons comme a la section 2 que la droite d’équation x = 0
n’est pas une tangente de y. Nous appellerons transformée stricte de la

fonction f et nous noterons f la fonction définie pour tout (u,v) € 4, B

= o (n 1 (D;) A S,) par £ (u, v) = 07" f (v, w).

PrOPOSITION 6. Avec les notations déja introduites:
(§) Wo (75nSo) = {(wv) €45 | £ (wv) = O},
(jj) Si f est irréductible, alors } s’annule en un seul point de E et y définit
un germe f e ,0 qui est irréductible.
(jjj) Supposons f irréductible et soient n et n les multiplicités de f et/}';

alors n <<metn < nsi et seulement si E, est une tangente a y.




Preuve. Supposons (4, v) €W (ypNSy); alors mq (4, v) = (v, uv) € ¥p,

donc f (v, uv) = 0. Si v # 0, cela implique f (u, v) = 0 par définition de f;
c’est encore vrai par continuité si v = 0.

Supposons (u,v) € 4, avec ]N‘(u, v) = 0, alors f(n, (1, v)) = V" f (%, v)
=0, donc Yo L (w,v)en * (yp) NSy Siv # 0, cela s’écrit o L (u,v)

~

eypnSy. Si v=0, la fonction u r—»}(u, 0) est de la forme
u—>c[] (u—2,)* avec ¢ non nul et 4y, ..., 4, distincts (voir la proposi-
tion 5). Elle s’annule donc aux points (4;, 0) de E,; ceux-ci €tant en nombre

fini, leurs images inverses par /, sont par continuité dans y, N S,. L’asser-
tion (j) en résulte.
Si f est irréductible, il n’y a qu’un 4; (voir la preuve de la proposition 4);

]; ne s’annule qu’en un point de E, et y définit un germe f. L’application =
induit un homéomorphisme de S — E sur C2 — {0}, donc aussi de #~* (y%)

= vy, — (ypnE) sur y%5. Lassertion (jj) résulte donc de la proposition 2.

Quitte & changer linéairement les coordonnées, on peut supposer que la
tangente & y est 'axe d’équation y = 0. Pour tout (x, y) € D,, on a main-
tenant

f(x,3) =" +b (x)y " + ... +b,(x

et b, (x) = x*1¢;(x) ou ¢ est holomorphe a lorigine. Pour tout
(u,v) € 4,, on a donc

~

f(u,v) =u" +ve,@u""* + ... +vc,(),

d’ou en particulier n < n. Sin = n, alors f (4, v) = ) h; (4, v) (somme de 7

a linfini) avec h, (u,v) = u" + vk (u, v) pour un polynéme homogene k
ad hoc, nul ou de degré n — 1; dans ce cas, la courbe E, d’équationv = 0

n’est pas tangente a Y, (ypNSy). Si n < n, alors f(u, V) = Z;zj (u, v)

(somme de z a I'infini) avec Aj; divisible par v; dans ce cas, E, est tangente
ay, (ypNSo)

Exemple 3. D, = C* et f(x,y) = x° + y%. On peut montrer brutale-
ment que f est irréductible. On peut aussi observer que la paire formée de
C* — {0} et de y* se rétracte par déformation sur la paire formée de
3% = {(x,»)) eC?|x|* + |y|* = 1} et d’un nceud du tore: la rétraction
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applique un point (x, y) sur D’intersection avec S* de ’image du chemin
R¥ - C?
te (x, t°y)
La transformée stricte de f est donnée par

En particulier y* est connexe et f est bien irréductible.

f(u,v) =172 (v° +(wv)?) = u? + 03

qui est comme f de multiplicité 2. La tangente de fest la droite d’équation

u = 0, qui est transverse a E,,. B N
Soient alors D, = C? et g (x,y) = x*> + y* de sorte que g = f (pas

g (x,») = x* + y? qui aurait comme tangente la droite d’équation x = 0).

On a g (u,v) = u® + v, qui est de multiplicité 1, et dont la tangente 2
I’origine est bien E,. :

Exemple 4. D, = C* et f(x,y) = >+ x°y +g(x,y) avec g de
multiplicité 8 au moins. Montrons que f est réductible.

Onaf(u,v) = u + uv + h(u,v) avec h d’ordre 3 au moins. Donc f a
deux tangentes, d’ol I’assertion par les propositions 5 et 6 (jj).

II. SINGULARITES NORMALES DANS C?

I1.1. ENSEMBLES NORMAUX

Si X est un ensemble analytique, X, désigne I'ouvert de ses points

ég

réguliers; on sait qu’il est dense dans X. (Voir le corollaire de la proposi- |

tion 1 si X est une courbe plane, 'argument de la proposition 7 ci-dessous
si X est une hypersurface dans C¥, et le théoréme III. C.3 de [8] en général.)

Rappelons qu’un ensemble X est irréductible en un point p si X n’est
pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce
cas, on peut trouver un voisinage de p dont la trace sur X, est connexe.
Réciproquement, s’il existe un bon voisinage U de P dans X dont la trace
sur X, est connexe, alors X est irréductible en p. (Voir la proposition 2
si X est une courbe plane, et la fin de la section III.C de [8] pour le cas
général.) Le terme de « bon voisinage » pour U signifie qu’il existe une
base de voisinages {U,} de p dans X telle que chaque U, — {p} soit un

rétracte par déformation de U — {p}; voir [21].
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