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sition 2) & n feuilles de I’espace D} A groupe fondamental abélien. I ex1ste
donc un isomorphisme analytique ¢* rendant le diagramme
@* ‘
D (r)* 7D

commutatif. Comme &* est borné, il se prolonge par continuité en un |
morphisme bijectif @: D (r) > y, de la forme ¢ (¢",¢ (1)) avec
@ € O (D (r)). Cest alors un exercice facile de topologie générale de montrer
que & est un homéomorphisme. m

COROLLAIRE. Les courbes planes 1rreduct1bles sont des variétés z‘opo-
logiques.

Notons qu’une courbe plane (plus généralement une sous-variété de §
C*) analytiquement singuliére n’est jamais une variété différentiable; voir
par exemple [14], §2.

La proposition 3 exprime y, paramétriquement par x = ¢" et

= @) = apt™ + at™t + ... + a ™ + ... (ay, #0);
on montre facilement qu’on ne restreint pas la généralité en supposant
m 2> n. On écrit aussi

y = agx™" 4 a;x™TOM 44 g xR 4

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

I.2. LES TANGENTES EN UN POINT D’UNE COURBE PLANE
Soient k un entier positif et Ev: ,0 — C I’évaluation a I’origine, qui
n’est autre que la projection canonique de I’anneau local 0 sur son corps
résiduel.

PropoOsITION 4. L’anneau local ;0 est hensélien. En d’autres termes,
soient P € .0 {t] un polyndme unitaire et p, ceC [¢] des polyndmes unitaires
étrangers tels que Ev (P) = p o. Alors il existe des polyndmes unitaires R
et S dans 0 [t] avec P = RS, Ev(R) = p et Ev(S) =

Attention : P n’est pas nécessairement un polyndme de Weierstrass.
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Preuve. Notons Ev (P)(¢) = P(0,17) = [[(t—A)"7, avec 4., 4
distincts. (Dans cette preuve, les produits [ portent sur I'indice j delan
et les [’ portent sur j de 2 & n). Nous voulons montrer par induction sur 7
quiil existe des polynémes unitaires Py, ..., P, dans ;0 [t] avec P = 11P;
et Ev(P))(t) = (t—4 1. Cette assertion étant trivialement vraie pour
n = 1, on peut supposer n > 2 et qu’elle est vraie pour tous les polynémes
dont 1’évaluation a au plus n — 1 racines distinctes.

Supposons d’abord que P (0,0) = 0 et que Ev (P) =1 ] ¢—4)7.
Le théoréme de préparation permet d’écrire

P(x;0) = u(x, ) [Ff14+a, () 117+ 4a, (X)]

oll u est un polynoéme de .0 [¢] inversible dans ;.0 et ol les a; sont des
germes dans .0 qui sont nuls & Porigine. Par suite

Ev(P)()) = u(0,0) 1 = 1 [ (t— )
et u(0,¢) = [] (¢—A,)". Par hypothése d’induction, il existe Py, ..., P,
dans ,0 [t] avec u = [['P; et P;(0,¢) = (t—Ay)"7 pour j = 2,..,n. On
achéve en posant
P (x,0) =t +a;, (x) 171 + ...+ as; (%)

Supposons - au contraire que P (0,0) # 0. Soient AeC tel que
P(0,2) =0 et PT le polyndme défini par PT (x, ) = P (x, t+4). Alors
PT est un produit de » facteurs P f par largument précédent et on achéve
en posant P; (x, ) = P? (x,t—A) pourj=1,..,n H

Notons qu’il existe d’autres définitions (équivalentes a celle de la pro-
position) pour un anneau local d’étre hensélien; voir par exemple [AC,
11, §4, ex. 3].

Soient y, D,, fet yp, comme au début de la section 1. Ecrivons la série
de Taylor de f a Iorigine sous la forme f (x, y) = Y, k; (x, y) (somme sur j
de p a Pinfini), ol 4; est un polyndme homogéne de degré j en x et y et
ol h, # 0. Le polyndme /%, est un produit de facteurs linéaires. Quitte a
modifier les axes de coordonnées, on peut supposer que %, ne s’annule pas
sur la droite d’équation x = 0, donc que 4, (x,y) = ¢ [[ (y—4;x)"7 avec ¢
un nombre complexe, A4, ..., 4,, des nombres complexes distincts, et s,
.., 8, des entiers positifs de somme p. Les droites d’équation y = 4; x
sont par définition les tangentes de y. Pour chaque entier j > p, on a
li; (0, ) proportionnel & y/, et &, (0, y) = cy® avec ¢ # 0. Par suite, f est
une fonction réguliére d’ordre p en y; avec les notations du début de la
section 1, on a donc p = n. Cet entier s’appelle la multiplicité de f a 1’ori-
gine; il ne dépend pas des coordonnées choisies sur C2. |
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PROPOSITION 5. Si y a plusieurs tangentes, alors [ est réductible.

Preuve. Comme

@) =Y+ @Y 0,0 = 3 )

ordre du zéro de q; & I’origine est au moins i (i=1, ..., n). Nous écrirons
J0) = (6, 9) = b1y + 5, (0" + o+ by ()
et b; (x) = x'*1 ¢ (x), oul ¢ représente un germe holomorphe 4 Iorigine

@i=1, ..., n). ,
Si u et v décrivent de petits voisinages de lorigine dans C, la fonction

(u,v) = f (v, uv) est divisible par »". Définissons z €,0 par ]; (u,v) §
= v " f (v, uv); on a donc

F@,9) = Ry (L, u) +ve; @ u™t +ve, @) w2 + ... + ve, (v) .

L’¢évaluation Ev: ;0 — C associe au polyndme j: € 10 [u] le polyndme"
u>h, (1, u) de C [u]. N
Si y a plusieurs tangentes, il résulte de la proposition 4 que f est un

produit dans ;0 [1] de polynémes unitaires g~ et h de degrés respectifs r < n
et s < n. Définissons alors g et 4 dans ,0 [y] par g (x,y) = x’gN (y/x, x)
et h(x,y) = x° h (y/x, x). Alors f = gh et f est réductible. m

La signification géométrique de f dans la preuve ci-dessus sera éclairée
au numé€ro suivant. |

Par exemple, le polyndme réductible xy définit une courbe ayant deux .
tangentes a 'origine. La réciproque a la proposition 5 n’est pas vraie car
le polynéme réductible x (x* —»3) définit une courbe n’ayant qh’une tangente
a ’origine.

S

1.3. ECLATEMENT ET IRREDUCTIBILITE

Pour tout entier positif k, nous noterons 4 la projection canonique
de C**' — {0} sur I’espace projectif P*; nous é&crirons (@ ...y ) les
4 > k+ 1 z b
coordonnées d’un vecteur de C** 1 et [z,, ..., z,] les coordonnées homogeénes
d’un point de P*. Introduisons la variété |
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