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sition 2) à « feuilles de l'espace D* à groupe fondamental abélien. Il existe
donc un isomorphisme analytique 'P* rendant le diagramme

D(r)* -y*

\ / 71*

D?

commutatif. Comme est borné, il se prolonge par continuité en un
morphisme bijectif $:D(r)-*yD de la forme t\-> {tn,cp (t)) avec

(p e G (D (r)). C'est alors un exercice facile de topologie générale de montrer
que <P est un homéomorphisme.

Corollaire. Les courbes planes irréductibles sont des variétés topo-
logiques.

Notons qu'une courbe plane (plus généralement une sous-variété de

Ck) analytiquement singulière n'est jamais une variété différentiable ; voir
par exemple [14], §2.

La proposition 3 exprime yD paramétriquement par x tn et

y (p(t) a0tm + a1tm+i + + aktm+k + (a0 =£0) ;

on montre facilement qu'on ne restreint pas la généralité en supposant
m > n. On écrit aussi

y a0xm/n + a1x(m+1)ln + + akx(m+k)/n +

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

1.2. Les tangentes en un point d'une courbe plane

Soient k un entier positif et Ev: k0 -> C l'évaluation à l'origine, qui
n'est autre que la projection canonique de l'anneau local k(9 sur son corps
résiduel.

Proposition 4. L'anneau local k0 est hensélien. En d'autres termes,
soient P ek0 [*] un polynôme unitaire et p, creC [/] des polynômes unitaires

étrangers tels que Ev (P) p a. Alors il existe des polynômes unitaires R

et S dans k(9 [t] avec P RS, Ev (R) p et Ev (S) a.

Attention : P n'est pas nécessairement un polynôme de Weierstrass.
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Preuve. Notons Ev (P) (t)P (0, t 0 ~~ A/) A avec ^i' "*'
distincts. (Dans cette preuve, les produits portent sur l'indicede 1 à n

les J~J' portent sur j de 2 à ri). Nous voulons montrer par induction sur n

qu'il existe des polynômes unitaires Pu ...,P„ dans k® [t] avec P

Ev (Pj) (t) Cette assertion étant trivialement vraie pour

1, on peut supposer ri i-' 2 et qu'elle est vraie pour tous les polynômes

dont l'évaluation a au plus n - 1 racines distinctes.

Supposons d'abord que P (0, 0) 0 et que Ev (P) t 1 Ü (/ ~ A») J-

Le théorème de préparation permet d'écrire

P(x,t) ii(r,()[fi + fl1(x)/1"1 + ...+flllW]
où u est un polynôme de k0 [t] inversible dans k+1& et où les cij sont des

germes dans k6qui sont nuls à l'origine. Par suite

Ev (P) (0 u (0, 0 f1 1 n' - àj)s/

et « (0, t) J7'(t-2J)SL Par hypothèse d'induction, il existe P2, ...,P„
dans k& [t] avec u ]J' Pj et Pj (0, pour j 2,On
achève en posant

P1(x,t) fi + a1(x)tsi"1 + +fls1(x).

Supposons au contraire que P (0,0) ^ 0. Soient 2eC tel que

P(0, A) 0 et PT le polynôme défini par PT (x, t) P(x, + A). Alors
PT est un produit de n facteurs P] par l'argument précédent et on achève

en posant Pj (x, t) P] {x, t-X) pour j 1,..., n.

Notons qu'il existe d'autres définitions (équivalentes à celle de la

proposition) pour un anneau local d'être hensélien; voir par exemple [AC,

III, §4, ex. 3].

Soient y, D2,f et yD comme au début de la section 1. Ecrivons la série

de Taylor de/ à l'origine sous la forme / (x, y) £ hj (x, y) (somme sur j
de j? à l'infini), où hj est un polynôme homogène de degré j en x et y et

où hp ^ 0. Le polynôme hp est un produit de facteurs linéaires. Quitte à

modifier les axes de coordonnées, on peut supposer que hp ne s'annule pas

sur la droite d'équation x 0, donc que hp (x, y) - c J~J (y~^jx)Sj avec c

un nombre complexe, Âl9..., des nombres complexes distincts, et sl9

sm des entiers positifs de somme p. Les droites d'équation y kj x
sont par définition les tangentes de y. Pour chaque entier j > p, on a

hj (0> y) proportionnel à yj, et hp (0, y) cyp avec c ^ 0. Par suite, / est

une fonction régulière d'ordre p en y; avec les notations du début de la
section 1, on a donc p n. Cet entier s'appelle la multiplicité de / à l'origine;

il ne dépend pas des coordonnées choisies sur C2.

L'Enseignement mathém., t. XXV, fasc. 3-4. 14
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Proposition 5. Si ya plusieurs tangentes, alors est réductible.

Preuve. Comme

f(x,y) y"+ a1(x)y"~1 ++ J
j n

l'ordre du zéro de at à l'origine est au moins (/= 1,«). Nous écrirons

/ - hn(x,y)^(x)/"1 + b2(x)yn~2

et (x) xI+1 Cj (x), où ct représente un germe holomorphe à l'origine
(i=1,n).

Si uet vdécrivent de petits voisinages de l'origine dans C, la fonction

(u, v)v*f(v, uv) est divisible par v". Définissons f e 2& par f(u,v)
v~"f(v, uv); on a donc

f(u,v) h„(l,u) +vc1(v)un~1+vc2(v)un~2 + +vcn(v).

L'évaluation Ev: x<9Cassocie au polynôme f e 2(9 [u] le polynôme
U h-> hn(1, u) de C [u].

Si y a plusieurs tangentes, il résulte de la proposition 4 que / est un

produit dans [u] de polynômes unitaires et de degrés respectifs r < n

et s <n.Définissons alors g et h dans [y] par g (x, y) xr g (y/x, x)
et h (x, y) xs h (y/x, x). Alors / gh et / est réductible.

La signification géométrique de/dans la preuve ci-dessus sera éclairée
au numéro suivant.

Par exemple, le polynôme réductible xy définit une courbe ayant deux
tangentes à l'origine. La réciproque à la proposition 5 n'est pas vraie car
le polynôme réductible x (x2 — j3) définit une courbe n'ayant qu'une tangente
à l'origine.

1.3. Eclatement et irréductibilité

Pour tout entier positif k, nous noterons h la projection canonique
de Ck+1 - {0} sur l'espace projectif Pk; nous écrirons (co0,...,œk) les
coordonnées d'un vecteur de Ck+1 et [z0,..., zk] les coordonnées homogènes
d'un point de Pk. Introduisons la variété
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