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tant qu'éléments de K[X] [AC, VII, §3, n° 5, th. 2], ou encore si et seulement

si leurs facteurs irréductibles éléments extrémaux) sont non équivalents

deux à deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1],

ou enfin si et seulement si leur résultant n'est pas nul dans A (donc est

inversible dans K);cette dernière affirmation est à un oubli de détail près

le lemme 3 de l'appendice III de [7]. De même, les facteurs irréductibles

de P sont non équivalents entre eux si et seulement si son discriminant

n'est pas nul; on dit alors que Pest sans facteur multiple.

Soient B un second anneau intègre et -* un homomorphisme

appliquant 1 sur 1.; nous désignons par la même lettre l'homomorphisme

A[X\~* B[X\. Si Res et Dis dénotent respectivement le résultant

et le discriminant, il convient d'insister sur la propriété suivante, qui est

très utile malgré sa banalité:

cp (Res (P, Q))Res (P), cp (©)
ç) (Dis (P)) Dis (P))

Le cas le plus fréquent ci-dessous est celui ou (D) est l'anneau des

fonctions holomorphes sur un polycylindre D de Ck centré à l'origine, où

B k0 et où / est l'injection canonique. Précisons à ce sujet que

tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national

suisse de la recherche scientifique.

I. COURBES PLANES

1.1. Singularités des courbes planes et revêtements

Soit y un germe de courbe plane. On peut toujours supposer y donné par
les zéros d'un polynôme de Weierstrass (quitte à opérer un changement
linéaire de coordonnées). Plus précisément, il existe

1°) Un polycylindre D2 dans C2, centré à l'origine; nous noterons D,
sa trace sur la droite C Cx de C2 C2r

2°) Un polynôme de Weierstrass / (DJ [y] de degré n, c'est-à-dire

une fonctionf e & (D2) avec
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f(x,y) y" + al(x) y"1 + + an(x)

pour tout (x, y) e D2, où les aj sont des fonctions holomorphes
dans D1 qui s'annulent à l'origine.

Le germe y est alors représenté par yD {(x, y) e D2 | /{x, y) 0}.
Nous écrirons plus simplement y si D2 C2. On peut toujours remplacer
D2 par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit par restriction une application

h de yD sur D±. Si n 1, le changement de coordonnées (x,y)
(x, y-a (x)) montre que yD est lisse à l'origine; nous supposerons

désormais n > 2 (on prendra garde que ceci n'exclut pas tous les germes
lisses, comme le montre le cas de/ (x, y) y2 — x).

Proposition 1. Soit y un germe donné comme ci-dessus. Alors la
projection canonique de C2 sur C induit (après rétrécissement éventuel
de D2) un revêtement holomorphe à n feuilles

rc*: yt yD-{(0,0) } -» £>f -{ 0 }

Preuve. Le discriminant Dis (/) est un élément de (S (D1). Notons
Ev: 0 (Djl) -> C le morphisme d'évaluation g g (0); alors Ev (Dis (/)

Dis (Ev (/)). Or Ev (/) yn est un polynôme qui a par hypothèse
(n > 2) une racine multiple et son discriminant est nul. Par suite Dis (/)
s'annule à l'origine.

On peut supposer que le germe à l'origine / de/est sans facteur multiple,
de sorte que Dis (/) n'est pas nul. Mais Dis (/) est le germe de Dis (/).
Par suite la fonction Dis (/) n'est pas nulle, ses zéros sont isolés, et on
peut supposer (après rétrécissement de D2 au besoin) que Dis (/) ne
s'annule pas dans Z>*.

Soient aeD\ et Eva: (S (D^) -> C l'évaluation g \-^ g (a). Comme
Dis (Eva (/)) Eva (Dis (/)) # 0, le polynôme y h>/(a, y) n'a pas de

df *racine double; en d'autres termes — {a, y) ^ 0 si (a, y) e yD. Par suite la
ôy

dffonction— e(9(D2) ne s'annule pas sur y%. Le théorème des fonctions
dy

implicites affirme dans cette situation que y% est une courbe lisse et que
est un isomorphisme analytique local. Ses fibres ayant toutes le même

nombre n d'éléments, c'est de plus un revêtement.

Corollaire. Les singularités des courbes planes sont isolées.
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Proposition 2. On suppose / sans facteur multiple. Alors / est réductible

si et seulement s'il existe un polycylindre tel que/ ait un représentant

feO (D2) avec non connexe.

Preuve. Supposons/ /' /", avec/' et/" des polynômes de Weierstrass

non constants et sans facteur commun; leur résultant est donc un élément

non nul de 1&. On peut choisir un polycylindre et des représentants

fô et fî> de /' et f"tels(lue le résultant de fî> et f'ô soit une fonction de

©(£>!) sans zéro dans D'f. Un argument déjà utilisé dans la preuve de la

proposition 1 montre alors que fô et fD n'ont pas de zéro commun dans

D2 ~ {(0, 0)}. Par suite les ensembles

y' {(x,y)eD2\f'B(x,y)0 et x#0}
et

f {(x,y)eD2 \fD(x,y) 0 et x/0}
forment une partition en fermés non vides de y % qui n'est donc pas connexe.

Supposons réciproquement qu'il existe un polycylindre D2 tel que

l'espace total du revêtement associé 71*: y%-+ D\ admette une partition

en deux fermés non vides: y% y' u y"Par la proposition 1, le cardinal

ri de y' n n"1 (x) ne dépend pas du choix de x dans D*. Soient cp1 (x),

...,cpn(x) les zéros de la fonction y^f(x,y), numérotés de telle sorte

que (pj (x) e y' pour j < ri. Posons

f] (y-vjW) et /"O'J7) Il (y-vjW)
j= 1 j n' +1

pour tout (x, y) e D2. Les cpj ne sont en général pas holomorphes (seules

leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de

la proposition 1 que, pour tout disque a D*, on peut faire en sorte que

les cpj soient holomorphes dans A±. Par suite,/' et/" sont holomorphes au

voisinage de tout point (x9 y) avec x ^ 0, donc dans tout D2 par le théorème

d'extension de Riemann. En d'autres termes / /'/" est réductible.

Proposition 3. Supposons / irréductible. Alors il existe un nombre

positif r et une fonction holomorphe <p dans D (r) {t e C | | 11 < r}
f D (r) yD ttels que < soit un homeomorphisme.

Preuve, Avec les notations de la proposition 1, soient s le rayon de D1

et r la racine positive n-ième de s. Notons D (r)* le disque D (r) privé de

l'origine. Les applications de D (r)* sur D\ et (x,y)h>x de y%

surD* sont des revêtements holomorphes (proposition 1) connexes (propo-
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sition 2) à « feuilles de l'espace D* à groupe fondamental abélien. Il existe
donc un isomorphisme analytique 'P* rendant le diagramme

D(r)* -y*

\ / 71*

D?

commutatif. Comme est borné, il se prolonge par continuité en un
morphisme bijectif $:D(r)-*yD de la forme t\-> {tn,cp (t)) avec

(p e G (D (r)). C'est alors un exercice facile de topologie générale de montrer
que <P est un homéomorphisme.

Corollaire. Les courbes planes irréductibles sont des variétés topo-
logiques.

Notons qu'une courbe plane (plus généralement une sous-variété de

Ck) analytiquement singulière n'est jamais une variété différentiable ; voir
par exemple [14], §2.

La proposition 3 exprime yD paramétriquement par x tn et

y (p(t) a0tm + a1tm+i + + aktm+k + (a0 =£0) ;

on montre facilement qu'on ne restreint pas la généralité en supposant
m > n. On écrit aussi

y a0xm/n + a1x(m+1)ln + + akx(m+k)/n +

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

1.2. Les tangentes en un point d'une courbe plane

Soient k un entier positif et Ev: k0 -> C l'évaluation à l'origine, qui
n'est autre que la projection canonique de l'anneau local k(9 sur son corps
résiduel.

Proposition 4. L'anneau local k0 est hensélien. En d'autres termes,
soient P ek0 [*] un polynôme unitaire et p, creC [/] des polynômes unitaires

étrangers tels que Ev (P) p a. Alors il existe des polynômes unitaires R

et S dans k(9 [t] avec P RS, Ev (R) p et Ev (S) a.

Attention : P n'est pas nécessairement un polynôme de Weierstrass.
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