Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN de la Harpe, P. / Siegfried, P.

Kapitel: I.1. Singularités des courbes planes et revêtements

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tant qu'éléments de K[X] [AC, VII, §3, n° 5, th. 2], ou encore si et seulement si leurs facteurs irréductibles (= éléments extrémaux) sont non équivalents deux à deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1], ou enfin si et seulement si leur résultant n'est pas nul dans A (donc est inversible dans K); cette dernière affirmation est à un oubli de détail près le lemme 3 de l'appendice III de [7]. De même, les facteurs irréductibles de P sont non équivalents entre eux si et seulement si son discriminant n'est pas nul; on dit alors que P est sans facteur multiple.

Soient B un second anneau intègre et $\varphi: A \to B$ un homomorphisme appliquant 1 sur 1; nous désignons par la même lettre l'homomorphisme $A[X] \to B[X]$. Si Res (,) et Dis () dénotent respectivement le résultant et le discriminant, il convient d'insister sur la propriété suivante, qui est très utile malgré sa banalité:

$$\varphi\left(\operatorname{Res}(P,Q)\right) = \operatorname{Res}\left(\varphi\left(P\right), \varphi\left(Q\right)\right)$$

$$\varphi\left(\operatorname{Dis}(P)\right) = \operatorname{Dis}\left(\varphi\left(P\right)\right).$$

Le cas le plus fréquent ci-dessous est celui ou $A = \mathcal{O}(D)$ est l'anneau des fonctions holomorphes sur un polycylindre D de \mathbb{C}^k centré à l'origine, où $B = {}_k \mathcal{O}$ et où $\varphi : f \mapsto \underline{f}$ est l'injection canonique. Précisons à ce sujet que tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national suisse de la recherche scientifique.

I. COURBES PLANES

I.1. SINGULARITÉS DES COURBES PLANES ET REVÊTEMENTS

Soit $\underline{\gamma}$ un germe de courbe plane. On peut toujours supposer $\underline{\gamma}$ donné par les zéros d'un polynôme de Weierstrass (quitte à opérer un changement linéaire de coordonnées). Plus précisément, il existe

- 1º) Un polycylindre D_2 dans \mathbf{C}^2 , centré à l'origine; nous noterons D_1 sa trace sur la droite $\mathbf{C} = \mathbf{C}_x$ de $\mathbf{C}^2 = \mathbf{C}_{xy}^2$.
- 2º) Un polynôme de Weierstrass $f \in \mathcal{O}(D_1)[y]$ de degré n, c'est-à-dire une fonction $f \in \mathcal{O}(D_2)$ avec

$$f(x, y) = y^{n} + a_{1}(x) y^{n-1} + ... + a_{n}(x)$$

pour tout $(x, y) \in D_2$, où les a_j sont des fonctions holomorphes dans D_1 qui s'annulent à l'origine.

Le germe $\underline{\gamma}$ est alors représenté par $\gamma_D = \{(x, y) \in D_2 \mid f(x, y) = 0\}$. Nous écrirons plus simplement γ si $D_2 = \mathbb{C}^2$. On peut toujours remplacer D_2 par un polycylindre plus petit; en particulier, on pourra toujours supposer que la projection canonique fournit par restriction une application π de γ_D sur D_1 . Si n = 1, le changement de coordonnées $(x, y) \mapsto (x, y - a(x))$ montre que γ_D est lisse à l'origine; nous supposerons désormais $n \ge 2$ (on prendra garde que ceci n'exclut pas tous les germes lisses, comme le montre le cas de $f(x, y) = y^2 - x$).

PROPOSITION 1. Soit $\underline{\gamma}$ un germe donné comme ci-dessus. Alors la projection canonique de \mathbb{C}^2 sur \mathbb{C} induit (après rétrécissement éventuel de D_2) un revêtement holomorphe à n feuilles

$$\pi^*: \gamma_D^* = \gamma_D - \{(0,0)\} \rightarrow D_1^* = D_1 - \{0\}$$

Preuve. Le discriminant Dis (f) est un élément de $\mathcal{O}(D_1)$. Notons Ev: $\mathcal{O}(D_1) \to \mathbb{C}$ le morphisme d'évaluation $g \mapsto g(0)$; alors Ev (Dis (f) = Dis (Ev (f)). Or Ev $(f) = y^n$ est un polynôme qui a par hypothèse $(n \ge 2)$ une racine multiple et son discriminant est nul. Par suite Dis (f) s'annule à l'origine.

On peut supposer que le germe à l'origine \underline{f} de f est sans facteur multiple, de sorte que Dis (\underline{f}) n'est pas nul. Mais Dis (\underline{f}) est le germe de Dis (f). Par suite la fonction Dis (f) n'est pas nulle, ses zéros sont isolés, et on peut supposer (après rétrécissement de D_2 au besoin) que Dis (f) ne s'annule pas dans D_1^* .

Soient $a \in D_1^*$ et $\operatorname{Ev}_a : \mathcal{O}(D_1) \to \mathbf{C}$ l'évaluation $g \mapsto g(a)$. Comme $\operatorname{Dis}\left(\operatorname{Ev}_a(f)\right) = \operatorname{Ev}_a\left(\operatorname{Dis}(f)\right) \neq 0$, le polynôme $y \mapsto f(a, y)$ n'a pas de racine double; en d'autres termes $\frac{\partial f}{\partial y}(a, y) \neq 0$ si $(a, y) \in \gamma_D^*$. Par suite la

fonction $\frac{\partial f}{\partial y} \in \mathcal{O}(D_2)$ ne s'annule pas sur γ_D^* . Le théorème des fonctions implicites affirme dans cette situation que γ_D^* est une courbe lisse et que π^* est un isomorphisme analytique local. Ses fibres ayant toutes le même nombre n d'éléments, c'est de plus un revêtement.

COROLLAIRE. Les singularités des courbes planes sont isolées.

PROPOSITION 2. On suppose \underline{f} sans facteur multiple. Alors \underline{f} est réductible si et seulement s'il existe un polycylindre D_2 tel que \underline{f} ait un représentant $f \in \mathcal{O}(D_2)$ avec γ_D^* non connexe.

Preuve. Supposons $\underline{f} = \underline{f}' \underline{f}''$, avec \underline{f}' et \underline{f}'' des polynômes de Weierstrass non constants et sans facteur commun; leur résultant est donc un élément non nul de ${}_{1}\theta$. On peut choisir un polycylindre D_{2} et des représentants f'_{D} et f''_{D} de \underline{f}' et \underline{f}'' tels que le résultant de f'_{D} et f''_{D} soit une fonction de $\theta(D_{1})$ sans zéro dans D_{1}^{*} . Un argument déjà utilisé dans la preuve de la proposition 1 montre alors que f'_{D} et f''_{D} n'ont pas de zéro commun dans $D_{2} - \{(0,0)\}$. Par suite les ensembles

$$\gamma' = \{ (x, y) \in D_2 \mid f'_D(x, y) = 0 \text{ et } x \neq 0 \}$$

et

$$\gamma'' = \{ (x, y) \in D_2 \mid f_D''(x, y) = 0 \text{ et } x \neq 0 \}$$

forment une partition en fermés non vides de γ_D^* , qui n'est donc pas connexe.

Supposons réciproquement qu'il existe un polycylindre D_2 tel que l'espace total du revêtement associé $\pi^*: \gamma_D^* \to D_1^*$ admette une partition en deux fermés non vides: $\gamma_D^* = \gamma' \cup \gamma''$. Par la proposition 1, le cardinal n' de $\gamma' \cap \pi^{-1}(x)$ ne dépend pas du choix de x dans D_1^* . Soient $\varphi_1(x)$, ..., $\varphi_n(x)$ les zéros de la fonction $y \mapsto f(x, y)$, numérotés de telle sorte que $\varphi_i(x) \in \gamma'$ pour $j \leqslant n'$. Posons

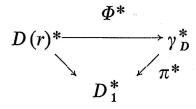
$$f'(x, y) = \prod_{j=1}^{n'} (y - \varphi_j(x))$$
 et $f''(x, y) = \prod_{j=n'+1}^{n} (y - \varphi_j(x))$

pour tout $(x, y) \in D_2$. Les φ_j ne sont en général pas holomorphes (seules leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de la proposition 1 que, pour tout disque $\Delta_1 \subset D_1^*$, on peut faire en sorte que les φ_j soient holomorphes dans Δ_1 . Par suite, f' et f'' sont holomorphes au voisinage de tout point (x, y) avec $x \neq 0$, donc dans tout D_2 par le théorème d'extension de Riemann. En d'autres termes $\underline{f} = \underline{f}' \underline{f}''$ est réductible.

PROPOSITION 3. Supposons \underline{f} irréductible. Alors il existe un nombre positif r et une fonction holomorphe φ dans $D(r) = \{t \in \mathbb{C} \mid |t| < r\}$ tels que $\begin{cases} D(r) \to \gamma_D \\ t \mapsto (t^n, \varphi(t)) \end{cases}$ soit un homéomorphisme.

Preuve. Avec les notations de la proposition 1, soient s le rayon de D_1 et r la racine positive n-ième de s. Notons $D(r)^*$ le disque D(r) privé de l'origine. Les applications $t \mapsto t^n$ de $D(r)^*$ sur D_1^* et $(x,y) \mapsto x$ de γ_D^* sur D_1^* sont des revêtements holomorphes (proposition 1) connexes (propo-

sition 2) à n feuilles de l'espace D_1^* à groupe fondamental abélien. Il existe donc un isomorphisme analytique Φ^* rendant le diagramme



commutatif. Comme Φ^* est borné, il se prolonge par continuité en un morphisme bijectif $\Phi: D(r) \to \gamma_D$ de la forme $t \mapsto (t^n, \varphi(t))$ avec $\varphi \in \mathcal{O}(D(r))$. C'est alors un exercice facile de topologie générale de montrer que Φ est un homéomorphisme.

COROLLAIRE. Les courbes planes irréductibles sont des variétés topologiques.

Notons qu'une courbe plane (plus généralement une sous-variété de \mathbb{C}^k) analytiquement singulière n'est jamais une variété différentiable; voir par exemple [14], §2.

La proposition 3 exprime γ_D paramétriquement par $x = t^n$ et

$$y = \varphi(t) = a_0 t^m + a_1 t^{m+1} + ... + a_k t^{m+k} + ... (a_0 \neq 0);$$

on montre facilement qu'on ne restreint pas la généralité en supposant $m \ge n$. On écrit aussi

$$y = a_0 x^{m/n} + a_1 x^{(m+1)/n} + \dots + a_k x^{(m+k)/n} + \dots$$

et on parle alors du développement de Puiseux ou de la série fractionnaire associé au germe considéré.

I.2. Les tangentes en un point d'une courbe plane

Soient k un entier positif et $\text{Ev}:_k \mathcal{O} \to \mathbb{C}$ l'évaluation à l'origine, qui n'est autre que la projection canonique de l'anneau local $_k \mathcal{O}$ sur son corps résiduel.

PROPOSITION 4. L'anneau local $_k\mathcal{O}$ est hensélien. En d'autres termes, soient $P \in _k\mathcal{O}[t]$ un polynôme unitaire et ρ , $\sigma \in \mathbb{C}[t]$ des polynômes unitaires étrangers tels que Ev $(P) = \rho \sigma$. Alors il existe des polynômes unitaires R et S dans $_k\mathcal{O}[t]$ avec P = RS, Ev $(R) = \rho$ et Ev $(S) = \sigma$.

Attention: P n'est pas nécessairement un polynôme de Weierstrass.