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tant qu'éléments de K[X] [AC, VII, §3, n° 5, th. 2], ou encore si et seulement

si leurs facteurs irréductibles éléments extrémaux) sont non équivalents

deux à deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1],

ou enfin si et seulement si leur résultant n'est pas nul dans A (donc est

inversible dans K);cette dernière affirmation est à un oubli de détail près

le lemme 3 de l'appendice III de [7]. De même, les facteurs irréductibles

de P sont non équivalents entre eux si et seulement si son discriminant

n'est pas nul; on dit alors que Pest sans facteur multiple.

Soient B un second anneau intègre et -* un homomorphisme

appliquant 1 sur 1.; nous désignons par la même lettre l'homomorphisme

A[X\~* B[X\. Si Res et Dis dénotent respectivement le résultant

et le discriminant, il convient d'insister sur la propriété suivante, qui est

très utile malgré sa banalité:

cp (Res (P, Q))Res (P), cp (©)
ç) (Dis (P)) Dis (P))

Le cas le plus fréquent ci-dessous est celui ou (D) est l'anneau des

fonctions holomorphes sur un polycylindre D de Ck centré à l'origine, où

B k0 et où / est l'injection canonique. Précisons à ce sujet que

tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national

suisse de la recherche scientifique.

I. COURBES PLANES

1.1. Singularités des courbes planes et revêtements

Soit y un germe de courbe plane. On peut toujours supposer y donné par
les zéros d'un polynôme de Weierstrass (quitte à opérer un changement
linéaire de coordonnées). Plus précisément, il existe

1°) Un polycylindre D2 dans C2, centré à l'origine; nous noterons D,
sa trace sur la droite C Cx de C2 C2r

2°) Un polynôme de Weierstrass / (DJ [y] de degré n, c'est-à-dire

une fonctionf e & (D2) avec
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f(x,y) y" + al(x) y"1 + + an(x)

pour tout (x, y) e D2, où les aj sont des fonctions holomorphes
dans D1 qui s'annulent à l'origine.

Le germe y est alors représenté par yD {(x, y) e D2 | /{x, y) 0}.
Nous écrirons plus simplement y si D2 C2. On peut toujours remplacer
D2 par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit par restriction une application

h de yD sur D±. Si n 1, le changement de coordonnées (x,y)
(x, y-a (x)) montre que yD est lisse à l'origine; nous supposerons

désormais n > 2 (on prendra garde que ceci n'exclut pas tous les germes
lisses, comme le montre le cas de/ (x, y) y2 — x).

Proposition 1. Soit y un germe donné comme ci-dessus. Alors la
projection canonique de C2 sur C induit (après rétrécissement éventuel
de D2) un revêtement holomorphe à n feuilles

rc*: yt yD-{(0,0) } -» £>f -{ 0 }

Preuve. Le discriminant Dis (/) est un élément de (S (D1). Notons
Ev: 0 (Djl) -> C le morphisme d'évaluation g g (0); alors Ev (Dis (/)

Dis (Ev (/)). Or Ev (/) yn est un polynôme qui a par hypothèse
(n > 2) une racine multiple et son discriminant est nul. Par suite Dis (/)
s'annule à l'origine.

On peut supposer que le germe à l'origine / de/est sans facteur multiple,
de sorte que Dis (/) n'est pas nul. Mais Dis (/) est le germe de Dis (/).
Par suite la fonction Dis (/) n'est pas nulle, ses zéros sont isolés, et on
peut supposer (après rétrécissement de D2 au besoin) que Dis (/) ne
s'annule pas dans Z>*.

Soient aeD\ et Eva: (S (D^) -> C l'évaluation g \-^ g (a). Comme
Dis (Eva (/)) Eva (Dis (/)) # 0, le polynôme y h>/(a, y) n'a pas de

df *racine double; en d'autres termes — {a, y) ^ 0 si (a, y) e yD. Par suite la
ôy

dffonction— e(9(D2) ne s'annule pas sur y%. Le théorème des fonctions
dy

implicites affirme dans cette situation que y% est une courbe lisse et que
est un isomorphisme analytique local. Ses fibres ayant toutes le même

nombre n d'éléments, c'est de plus un revêtement.

Corollaire. Les singularités des courbes planes sont isolées.



— 211 —

Proposition 2. On suppose / sans facteur multiple. Alors / est réductible

si et seulement s'il existe un polycylindre tel que/ ait un représentant

feO (D2) avec non connexe.

Preuve. Supposons/ /' /", avec/' et/" des polynômes de Weierstrass

non constants et sans facteur commun; leur résultant est donc un élément

non nul de 1&. On peut choisir un polycylindre et des représentants

fô et fî> de /' et f"tels(lue le résultant de fî> et f'ô soit une fonction de

©(£>!) sans zéro dans D'f. Un argument déjà utilisé dans la preuve de la

proposition 1 montre alors que fô et fD n'ont pas de zéro commun dans

D2 ~ {(0, 0)}. Par suite les ensembles

y' {(x,y)eD2\f'B(x,y)0 et x#0}
et

f {(x,y)eD2 \fD(x,y) 0 et x/0}
forment une partition en fermés non vides de y % qui n'est donc pas connexe.

Supposons réciproquement qu'il existe un polycylindre D2 tel que

l'espace total du revêtement associé 71*: y%-+ D\ admette une partition

en deux fermés non vides: y% y' u y"Par la proposition 1, le cardinal

ri de y' n n"1 (x) ne dépend pas du choix de x dans D*. Soient cp1 (x),

...,cpn(x) les zéros de la fonction y^f(x,y), numérotés de telle sorte

que (pj (x) e y' pour j < ri. Posons

f] (y-vjW) et /"O'J7) Il (y-vjW)
j= 1 j n' +1

pour tout (x, y) e D2. Les cpj ne sont en général pas holomorphes (seules

leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de

la proposition 1 que, pour tout disque a D*, on peut faire en sorte que

les cpj soient holomorphes dans A±. Par suite,/' et/" sont holomorphes au

voisinage de tout point (x9 y) avec x ^ 0, donc dans tout D2 par le théorème

d'extension de Riemann. En d'autres termes / /'/" est réductible.

Proposition 3. Supposons / irréductible. Alors il existe un nombre

positif r et une fonction holomorphe <p dans D (r) {t e C | | 11 < r}
f D (r) yD ttels que < soit un homeomorphisme.

Preuve, Avec les notations de la proposition 1, soient s le rayon de D1

et r la racine positive n-ième de s. Notons D (r)* le disque D (r) privé de

l'origine. Les applications de D (r)* sur D\ et (x,y)h>x de y%

surD* sont des revêtements holomorphes (proposition 1) connexes (propo-
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sition 2) à « feuilles de l'espace D* à groupe fondamental abélien. Il existe
donc un isomorphisme analytique 'P* rendant le diagramme

D(r)* -y*

\ / 71*

D?

commutatif. Comme est borné, il se prolonge par continuité en un
morphisme bijectif $:D(r)-*yD de la forme t\-> {tn,cp (t)) avec

(p e G (D (r)). C'est alors un exercice facile de topologie générale de montrer
que <P est un homéomorphisme.

Corollaire. Les courbes planes irréductibles sont des variétés topo-
logiques.

Notons qu'une courbe plane (plus généralement une sous-variété de

Ck) analytiquement singulière n'est jamais une variété différentiable ; voir
par exemple [14], §2.

La proposition 3 exprime yD paramétriquement par x tn et

y (p(t) a0tm + a1tm+i + + aktm+k + (a0 =£0) ;

on montre facilement qu'on ne restreint pas la généralité en supposant
m > n. On écrit aussi

y a0xm/n + a1x(m+1)ln + + akx(m+k)/n +

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

1.2. Les tangentes en un point d'une courbe plane

Soient k un entier positif et Ev: k0 -> C l'évaluation à l'origine, qui
n'est autre que la projection canonique de l'anneau local k(9 sur son corps
résiduel.

Proposition 4. L'anneau local k0 est hensélien. En d'autres termes,
soient P ek0 [*] un polynôme unitaire et p, creC [/] des polynômes unitaires

étrangers tels que Ev (P) p a. Alors il existe des polynômes unitaires R

et S dans k(9 [t] avec P RS, Ev (R) p et Ev (S) a.

Attention : P n'est pas nécessairement un polynôme de Weierstrass.
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Preuve. Notons Ev (P) (t)P (0, t 0 ~~ A/) A avec ^i' "*'
distincts. (Dans cette preuve, les produits portent sur l'indicede 1 à n

les J~J' portent sur j de 2 à ri). Nous voulons montrer par induction sur n

qu'il existe des polynômes unitaires Pu ...,P„ dans k® [t] avec P

Ev (Pj) (t) Cette assertion étant trivialement vraie pour

1, on peut supposer ri i-' 2 et qu'elle est vraie pour tous les polynômes

dont l'évaluation a au plus n - 1 racines distinctes.

Supposons d'abord que P (0, 0) 0 et que Ev (P) t 1 Ü (/ ~ A») J-

Le théorème de préparation permet d'écrire

P(x,t) ii(r,()[fi + fl1(x)/1"1 + ...+flllW]
où u est un polynôme de k0 [t] inversible dans k+1& et où les cij sont des

germes dans k6qui sont nuls à l'origine. Par suite

Ev (P) (0 u (0, 0 f1 1 n' - àj)s/

et « (0, t) J7'(t-2J)SL Par hypothèse d'induction, il existe P2, ...,P„
dans k& [t] avec u ]J' Pj et Pj (0, pour j 2,On
achève en posant

P1(x,t) fi + a1(x)tsi"1 + +fls1(x).

Supposons au contraire que P (0,0) ^ 0. Soient 2eC tel que

P(0, A) 0 et PT le polynôme défini par PT (x, t) P(x, + A). Alors
PT est un produit de n facteurs P] par l'argument précédent et on achève

en posant Pj (x, t) P] {x, t-X) pour j 1,..., n.

Notons qu'il existe d'autres définitions (équivalentes à celle de la

proposition) pour un anneau local d'être hensélien; voir par exemple [AC,

III, §4, ex. 3].

Soient y, D2,f et yD comme au début de la section 1. Ecrivons la série

de Taylor de/ à l'origine sous la forme / (x, y) £ hj (x, y) (somme sur j
de j? à l'infini), où hj est un polynôme homogène de degré j en x et y et

où hp ^ 0. Le polynôme hp est un produit de facteurs linéaires. Quitte à

modifier les axes de coordonnées, on peut supposer que hp ne s'annule pas

sur la droite d'équation x 0, donc que hp (x, y) - c J~J (y~^jx)Sj avec c

un nombre complexe, Âl9..., des nombres complexes distincts, et sl9

sm des entiers positifs de somme p. Les droites d'équation y kj x
sont par définition les tangentes de y. Pour chaque entier j > p, on a

hj (0> y) proportionnel à yj, et hp (0, y) cyp avec c ^ 0. Par suite, / est

une fonction régulière d'ordre p en y; avec les notations du début de la
section 1, on a donc p n. Cet entier s'appelle la multiplicité de / à l'origine;

il ne dépend pas des coordonnées choisies sur C2.

L'Enseignement mathém., t. XXV, fasc. 3-4. 14
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Proposition 5. Si ya plusieurs tangentes, alors est réductible.

Preuve. Comme

f(x,y) y"+ a1(x)y"~1 ++ J
j n

l'ordre du zéro de at à l'origine est au moins (/= 1,«). Nous écrirons

/ - hn(x,y)^(x)/"1 + b2(x)yn~2

et (x) xI+1 Cj (x), où ct représente un germe holomorphe à l'origine
(i=1,n).

Si uet vdécrivent de petits voisinages de l'origine dans C, la fonction

(u, v)v*f(v, uv) est divisible par v". Définissons f e 2& par f(u,v)
v~"f(v, uv); on a donc

f(u,v) h„(l,u) +vc1(v)un~1+vc2(v)un~2 + +vcn(v).

L'évaluation Ev: x<9Cassocie au polynôme f e 2(9 [u] le polynôme
U h-> hn(1, u) de C [u].

Si y a plusieurs tangentes, il résulte de la proposition 4 que / est un

produit dans [u] de polynômes unitaires et de degrés respectifs r < n

et s <n.Définissons alors g et h dans [y] par g (x, y) xr g (y/x, x)
et h (x, y) xs h (y/x, x). Alors / gh et / est réductible.

La signification géométrique de/dans la preuve ci-dessus sera éclairée
au numéro suivant.

Par exemple, le polynôme réductible xy définit une courbe ayant deux
tangentes à l'origine. La réciproque à la proposition 5 n'est pas vraie car
le polynôme réductible x (x2 — j3) définit une courbe n'ayant qu'une tangente
à l'origine.

1.3. Eclatement et irréductibilité

Pour tout entier positif k, nous noterons h la projection canonique
de Ck+1 - {0} sur l'espace projectif Pk; nous écrirons (co0,...,œk) les
coordonnées d'un vecteur de Ck+1 et [z0,..., zk] les coordonnées homogènes
d'un point de Pk. Introduisons la variété



S(-i) {(l>o>Zi]> w)eP1 x C*+1 I wz\J) u {0}}
la restriction n(-r>à S(^k) de la seconde projection du produit P1 x Ck+1.

Nous écrirons aussi % \ S C2 lorsque k 1; cette application est alors

par définition Yéclatement de C2 à Vorigine.
Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont à

prendre dans {0, 1}.

Posons Uj {(.z0, Zjl) eC2 - {0} | Zj #0} et Uj - h(Uj). Soit

Pj : Uj -> C l'application qui associe à (z0, zx) le quotient zjz0 si y 0 et

le quotient z0/z1 si j 1; elle passe au quotient et définit une bijection

(pj-. Uj -> C. Les changements de cartes de l'atlas analytique ainsi défini
surP1 sont

et l'isomorphisme inverse.

Considérons ensuite la restriction 2(_k): S(_fc)-» P1 de la première

projection du produit P1 x Cfe+1. Posons j /L(_fc)_1 (Uj) et soient

les bijections définies par \j/0 ([z], co) (<p0 ([z])? a>0) et

\j/1 ([z], co) ([z]), cofe); les applications inverses sont respectivement

Les changements de cartes de l'atlas analytique ainsi défini sur S(_k) sont

C* x C — \j/0 (S(-k),onS(-k),i) *Ai (^'(-fc)Jon^,(-fc),i) ~~ x ^
(u,v) !-> (w_15 likv)

et l'isomorphisme inverse.

La variété S(_k) est donc l'espace total d'un fibré holomorphe en droites
de projection A(_fc): S(_k) -» Px. Les fonctions de transition associées au
recouvrement trivialisant (U0, U±) de P1 sont

C* VoiUonUJ-xp^UonUJ C*

et
(w,^)^([l,w]3 (?L uv,..., uV))

1], ...,*0) •

<Ai,o :
U0nU±^ C*

[z^zJi-Kzi/zo)*
et
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En particulier, le fibré X(_k) est la puissance tensorielle k-ième du fibré
canonique X 2(_1}. Nous avons construit 2(_fc) comme l'image inverse
du fibré canonique sur Pk par le « morphisme de Véronèse » de P1 dans Pk,
qui est une application de « degré » k. Le signe dans l'indice (- k) exprime
que la classe de Chern du fibré 2(_fc) évaluée sur la classe fondamentale est
négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes
raisons pour lesquelles la classe de Chern de est —k (multiplicativité
par produit tensoriel et multiplication par le degré); indiquons-en une
troisième qui n'utilise que des notions encore plus rudimentaires (voir par
exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe^rP1 —> S(_k) du fibré 2(_fe) décrite

par les applications

_
(U0^s(_kh0 s(_i)4
\u^(u,u) 1

[ i

Alors sa un zéro simple, en un point correspondant à l'origine de un
pôle d'ordre k +1, en un point correspondant à l'origine de Uu et n'a ni
autres zéros ni autres pôles. Les différentielles logarithmiques de s aux
voisinages de son zéro et de son pôle se représentent respectivement par
d{log u) u'1du, de résidu +1, et d(log -(k+\)u~l du, de

résidu -(fc + 1). Il en résulte que la classe de Chern du fibré L M vaut

l-(k + l)=-k. (>
L'application n: S -> C2 s'exprime dans les cartes standards par

je2 =iAo(^o)^C2

et

f c2 =^1(S1)^C2
1

(u,v)^(uv,v).
On appellera courbe exceptionnelle de l'éclatement n et on notera E la
courbe 71_1 (0, 0), qui est lisse et isomorphe à P1. Elle est donnée dans les

cartes par
E0 ij/0(EnS0) {(u,v)eC2 | v 0}

et
E± {(u,v)eC2\v =0}.

On notera que, en général, l'image de la section nulle du fibré 2(_fc) coïncide

avecjr(_t)-1(0).
** *
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Soient alors y, Z>2,/et yD ou y comme au début de la section 1. On

appelle transformée stricte de yD et on note n 1 (yD) ou yD l'adhérence dans

D2 tî"1 (ß2) de 71-1 (yV)> avec comme Plus baut y*D 7d ~ {°}-

Exemple L D2 C2 et f(x9y) xy. Alors y a deux composantes

irréductibles qui sont l'axe y' d'équation y 0 et l'axe y" d'équation

x 0, de sorte que y y' u y". Or y' est l'adhérence de {([^], coi) e S | co

(x, 0) et x # 0}, qui est {([z], co) e S | [z] [1,0]}. De même y"

{([z], co e S | [z] [0, 1]}. Dans les cartes standards:

^o(y') {(u,v)eC2 \u 0}

y' n S± y" n S0 0

{(u,v)ec2 |u 0}.

On retiendra que 7 est réunion de deux courbes lisses disjointes et que

(y) y u E est réunion de trois courbes lisses sans point triple et à

intersections transverses.
Plus généralement, si y est réunion de m droites distinctes dans C2

passant par l'origine, sa transformée stricte est réunion de m courbes lisses

disjointes coupant chacune la courbe exceptionnelle en un point et
transversalement.

Exemple 2. D2 C2 et /(x, y) x2 - y3. Alors y est l'adhérence
de {([z], co e S | co O3, *2) et feC*}, qui est {([*, 1], (t3, t2)) e S\

te C} c= Sv Dans les cartes, \j/0 (yr\S0) est l'adhérence de {(«, v) e C2 |

u t'1, v t3, te C*} et \f/1 (ynSJ celle de {(u, v) e C2 | u t,
v t2, t e C*}. Ecrit sans paramètre:

^o(ynSo) {(u,v)eC2\u3v 1}

*Ai (yriS±) {(u,v)eC2 \u2 v}

Par suite y est une courbe lisse, et n'1 (y) — y u E est réunion de deux
courbes lisses se coupant au seul point (0, 0). Cette intersection n'étant
pas transverse, on itère le procédé en espérant éliminer ce « défaut ».
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Au voisinage de ce point d'intersection, n'1 (y) définit un germe <5; on
le représente par la courbe <5, zéro de la fonction g e® (C2) définie par
g (x,y) y(x2—y). La transformée stricte est donnée dans les cartes par

\l/0(ônS0) {(u,v)e C2 \u(v—u) =0}
\l/± (ônSx) {(u,v) g C2 | u2v 1}

Par suite <5 est réunion de deux courbes lisses se coupant en un seul point
et transversalement; d'autre part n'1 (S) est réunion de trois courbes lisses

se coupant en un seul point, et transversalement deux à deux.

Au voisinage de ce point triple, n~1 (<S) définit un germe s. La remarque
à la fin de l'exemple 1 montre que e conduit à une transformée stricte qui
est réunion de trois courbes lisses disjointes coupant la courbe exceptionnelle

transversalement et en des points distincts.
En composant ces trois éclatements, on obtient une résolution de la

singularité y plongée dans C2, au sens du théorème 8.4 de [17]. En d'autres

termes, on obtient une variété lisse M et une application (: M C2 ayant
les propriétés suivantes :

1) C induit un isomorphisme de M — 1 (0) sur C2 - {0} ;

2) l'adhérence Ç~1 (y) de £~1 (y*) dans M est une courbe lisse;

3) C1 (y) est une réunion de courbes lisses sans point triple qui se

coupent transversalement.

Revenons au cas général et soit à nouveau n la multiplicité de/ à

l'origine; nous supposons comme à la section 2 que la droite d'équation x 0

n'est pas une tangente de y. Nous appellerons transformée stricte de la

fonction f et nous noterons / la fonction définie pour tout (u, v) e A 2

[j/0 (n_1 (Z>2) n S0) par/(m, v)v~nf(v, uv).

Proposition 6. Avec les notations déjà introduites:

(j) <Ao O»nS0) {{u, v) e A2 \f(u, 0}.

(jj) Si / est irréductible, alors/ s'annule en un seul point de E0 et y définit

un germe / g qui est irréductible.

(jjj) Supposons / irréductible et soient «et n les multiplicités de / et /;
alors n < n et n < n si et seulement si E0 est une tangente à y.
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Preuve. Supposons (w, v) e\//0 (7nn^o)j al°rs 71 o (w> v) (ü» wî;) e

donc/(v, uo) 0. Si ï; # 0, cela implique /(m, v) 0 par définition de/;
c'est encore vrai par continuité si v 0.

Supposons (w, v) g d 2 avec / (w, v) 0, alors / (710 (u, v)) vnf (w, v)

0, donc ^o"1 (w,^) e7i-1 (y^) n S0. Si v # 0, cela s'écrit ^0_1 (w>*0.

eyDnS0. Si v 0, la fônction ut->f(u, 0) est de la forme

Mh>c[] (u-kjf3 avec c non nul et 21? 2m distincts (voir la proposition

5). Elle s'annule donc aux points (Xp 0) de E0 ; ceux-ci étant en nombre

fini, leurs images inverses par \j/0 sont par continuité dans yD n S0. L'assertion

(j) en résulte.

Si / est irréductible, il n'y a qu'un Xd (voir la preuve de la proposition 4);

/ ne s'annule qu'en un point de E0 et y définit un germe /. L'application n

induit un homéomorphisme de S — E sur C2 — {0}, donc aussi de %
1 (y*D)

7d ~ (Jd^E) sur Jd- L'assertion (jj) résulte donc de la proposition 2.

Quitte à changer linéairement les coordonnées, on peut supposer que la

tangente à y est l'axe d'équation y 0. Pour tout (x, y) e D2, on a

maintenant

f(x,y) / + b1(x)yn~+ + bn(x)

et bt(x) xi+1 ct(x) où ct est holomorphe à l'origine. Pour tout
(u, v) e A 2, on a donc

f{u,v) un + vc1(v)un~1 + +vcn(v),

d'où en particulier n < n. Si n — n, alors / (w, v) £ hj (u, v) (somme de n

à l'infini) avec hn (u, v) un + vk (w, a) pour un polynôme homogène k
ad hoc, nul ou de degré n - 1 ; dans ce cas, la courbe E0 d'équation v 0

n'est pas tangente à \j/0 (yDnS0). Si n < n, alors /(u,v) Yjhj(u,v)

(somme de n à l'infini) avec /z~ divisible par v; dans ce cas, E0 est tangente

a *Ao (yDnS0). h

Exemple 3. D2 C2 et /(x, y) x5 + y2. On peut montrer brutalement

que / est irréductible. On peut aussi observer que la paire formée de
C2 - {0} et de y* se rétracte par déformation sur la paire formée de
S3 {(x, y) g C2 I x 12 + \y\2 1} et d'un nœud du tore : la rétraction
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applique un point (x, y) sur l'intersection avec S3 de l'image du chemin
C Rî -» C2

<
0 En particulier 7* est connexe et / est bien irréductible.

[t\->(t2x,t5y) ~

La transformée stricte de/ est donnée par

f(u,v) v~2(v5 +(uv)2) ii2 + v3

qui est comme / de multiplicité 2. La tangente de/ est la droite d'équation
u 0, qui est transverse à E0.

Soient alors D2 C2 et g (.x, j) x3 + j2 de sorte que g f (pas

g (x, y) x2 + y3 qui aurait comme tangente la droite d'équation x 0).

On a g («, v) u2 + v, qui est de multiplicité 1, et dont la tangente à

l'origine est bien E0.

Exemple 4. D2 C2 et f(x,y) y5 + x5y + g (x, y) avec g de

multiplicité 8 au moins. Montrons que / est réductible.

On a/ (w, v) u5 + uv + h {u, v) avec h d'ordre 3 au moins. Donc / a

deux tangentes, d'où l'assertion par les propositions 5 et 6 (jj).

II. SINGULARITÉS NORMALES DANS C3

II.l. Ensembles normaux

Si X est un ensemble analytique, Xrég désigne l'ouvert de ses points
réguliers; on sait qu'il est dense dans X. (Voir le corollaire de la proposition

1 si X est une courbe plane, l'argument de la proposition 7 ci-dessous

si X est une hypersurface dans Ck, et le théorème III. C.3 de [8] en général.)

Rappelons qu'un ensemble X est irréductible en un point p si X n'est

pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce

cas, on peut trouver un voisinage de p dont la trace sur XTég est connexe.

Réciproquement, s'il existe un bon voisinage U de P dans X dont la trace

sur Xrég est connexe, alors X est irréductible en p. (Voir la proposition 2

si X est une courbe plane, et la fin de la section III.C de [8] pour le cas

général.) Le terme de « bon voisinage » pour U signifie qu'il existe une
base de voisinages {Ua} de p dans X telle que chaque Ua - {p} soit un
rétracte par déformation de U — {/?}; voir [21].
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