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tant qu’éléments de K [X] [AC, VI, §3, n° 5, th. 2], ou encore si et seulement
si leurs facteurs irréductibles (= éléments extrémaux) sont non équivalents
deux 4 deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1],
ou enfin si et seulement si leur résultant n’est pas nul dans 4 (donc est
inversible dans K); cette derniére affirmation est a un oubli de détail pres
le lemme 3 de Pappendice IIT de [7]. De méme, les facteurs irréductibles
de P sont non équivalents entre eux si et seulement si son discriminant
n’est pas nul; on dit alors que P est sans facteur multiple.

Soient B un second anneau intégre et ¢: 4 — B un homomorphisme
appliquant 1 sur 1; nous désignons par la méme lettre ’homomorphisme
A[X]— B[X). Si Res (,) et Dis () dénotent respectivement le résultant
et le discriminant, il convient d’insister sur la propriété suivante, qui est

trés utile malgré sa banalité:

@ (Res(P, Q)) = Res (¢ (P), ¢ (Q))
o (Dis(P)) = Dis(¢(P)).

Le cas le plus fréquent ci-dessous est celui ou 4 = O (D) est I'anneau des
fonctions holomorphes sur un polycylindre D de C* centré a l’origine, ou
B = ,0 et ol @: f+> f est I'injection canonique. Précisons a ce sujet que
tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national
suisse de la recherche scientifique.

I. COURBES PLANES

I.1. SINGULARITES DES COURBES PLANES ET REVETEMENTS

Soit y un germe de courbe plane. On peut toujours supposer y donné par
les zéros d’un polyndme de Weierstrass (quitte a opérer un changement
linéaire de coordonnées). Plus précisément, il existe

19) Un polycylindre D, dans C?, centré a l'origine; nous noterons D,
sa trace sur la droite C = C, de C* = C3,.

20) Un polyndéme de Weierstrass f € 0 (D,) [y] de degré n, c’est-a-dire
une fonction f € 0 (D,) avec
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o) =y +a,x)y ™ + ..+ a,(x)

pour tout (x,y) € D,, ou les a; sont des fonctions holombrphes |
dans D, qui s’annulent a I’origine.

Le germe y est alors représenté par y, = {(x,») e D, [ f(x,y) = 0}
Nous écrirons plus simplement y si D, = C2. On peut toujours remplacer |
D, par un pély’cylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit par restriction une applica-
tion = de y, sur Dy. Si n = 1, le changement de coordonnées (x, )
= (x, y— a (x)) montre que y, est lisse & origine; nous supposerons
désormais n > 2 (on prendra garde que ceci n ’exclut pas tous les germes

~lisses, comme me le montre le cas de f(x,y) = y - X).

ProposiTION 1. Soit y un germe donné comme ci-dessus. Alors la §
projection canonique de "C? sur C induit (apres retre01ssement éventuel
de D,) un revétement holomorphe a » feuilles

n*: yp =yp —{(0,0)} >Df =D, — {0}

Preuve. Le discriminant Dis (f) est un élément de @ (D,). Notons |
Ev: 0 (D,) = C le morphisme d’évaluation g+ g (0); alors Ev (Dis (f)
= Dis (Ev (f)). Or Ev (f) = " est un polyndme qui a par hypothése
(n > 2) une racine multiple et son discriminant est nul. Par suite Dis (/)
s’annule & I’origine.

On peut supposer que le germe a l’ongme f de fest sans facteur multiple,
de sorte que Dis (f) n’est pas nul. Mais Dis (f) est le germe de Dis (f).
Par suite la fonction Dis (f) n’est pas nulle, ses zéros sont isolés, et on
peut supposer (aprés rétrécissement de D, au besom) que Dis (f) ne §
s’annule pas dans D7.

Soient a € DY et Ev,: 0 (D;) » C D’évaluation g+>g (a). Comme j
Dis (Ev, (f )) = Ev, (Dis (f )) # 0, le polynéme y+> f(a,y) n’a pas de

a .
racine double; en d’autres termes 6—f (a,y) # 0 si (a, y) € y5. Par suite 1a |
y .

0 : |
fonction 6_f € 0 (D,) ne s’annule pas sur 7;. Le théoréme des fonctions j§
y |

implicites affirme dans cette situation que 7y}, est une courbe lisse et que 7*
est un isomorphisme - analytique local. Ses fibres ayant toutes le méme §
nombre n d’éléments, c’est de plus un revétement. W

COROLLAIRE. Les singularités des courbes planes sont isolées.
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PROPOSITION 2. On suppose f sans facteur multiple. Alors f est réduc-
tible si et seulement s’il existe un polycylindre D, tel que f ait un représentant
e 0 (D,) avec y non connexe.

Preuve. Supposons f = f’ f”,avec f’ et f " des polynomes de Weierstrass
non constants et sans facteur commun; leur résultant est donc un élément
non nul de ;0. On peut choisir un polycylindre D, et des représentants

0(D,) sans zéro dans D¥. Un argument déja utilisé dans la preuve de la
proposition 1 montre alors que fp et fp n’ont pas de zéro commun dans
D, — {(0, 0)}. Par suite les ensembles

v ={(,eD,|fp(x,y) =0 et x#0}
et
y" = {(x,)eD, | fp(x,») =0 et x#0}

forment une partition en fermés non vides de y 7, qui n’est donc pas connexe.

Supposons réciproquement qu’il existe un polycylindre D, tel que
Pespace total du revétement associé 7*: y% — D% admette une partition
en deux fermés non vides: y% = 3’ U 9”. Par la proposition 1, le cardinal
n' de 9/ A n~ ! (x) ne dépend pas du choix de x dans D¥. Soient ¢, (x),
s @, (x) les zéros de la fonction y > f (X, »), numérotés de telle sorte
que ¢; (x) € y" pour j < n'. Posons

n’ n
Fey =TI —e;®) et fn= 11 -¢;x)

j=1 j=n'+1
pour tout (x,y) € D,. Les ¢; ne sont en général pas holomorphes (seules
leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de
la proposition 1 que, pour tout disque 4; < D¥, on peut faire en sorte que
les ¢; soient holomorphes dans 4. Par suite, f' et f” sont holomorphes au
voisinage de tout point (x, y) avec x 5 0, donc dans tout D, par le théoréme
dextension de Riemann. En d’autres termes f = f'f" est réductible. ™

PROPOSITION 3. Supposons f irréductible. Alors il existe un nombre
positif 7 et une fonction holomorphe ¢ dans D (r) = {t eCI |t] <r}

el D(r) = v . . .
els que . soit un homéomorphisme.
t (2, 0 (1)

Preuve. Avec les notations de la proposition 1, soient s le rayon de D,
et r la racine positive n-iéme de s. Notons D (r)* le disque D (r) privé de
Porigine. Les applications ¢#+>¢" de D (r)* sur D} et (x,y)>x de y}
sur D} sont des revétements holomorphes (proposition 1) connexes (propo-

et fp de f' et f” tels que le résultant de fp et fp soit une fonction de

iy
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sition 2) & n feuilles de I’espace D} A groupe fondamental abélien. I ex1ste
donc un isomorphisme analytique ¢* rendant le diagramme
@* ‘
D (r)* 7D

commutatif. Comme &* est borné, il se prolonge par continuité en un |
morphisme bijectif @: D (r) > y, de la forme ¢ (¢",¢ (1)) avec
@ € O (D (r)). Cest alors un exercice facile de topologie générale de montrer
que & est un homéomorphisme. m

COROLLAIRE. Les courbes planes 1rreduct1bles sont des variétés z‘opo-
logiques.

Notons qu’une courbe plane (plus généralement une sous-variété de §
C*) analytiquement singuliére n’est jamais une variété différentiable; voir
par exemple [14], §2.

La proposition 3 exprime y, paramétriquement par x = ¢" et

= @) = apt™ + at™t + ... + a ™ + ... (ay, #0);
on montre facilement qu’on ne restreint pas la généralité en supposant
m 2> n. On écrit aussi

y = agx™" 4 a;x™TOM 44 g xR 4

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

I.2. LES TANGENTES EN UN POINT D’UNE COURBE PLANE
Soient k un entier positif et Ev: ,0 — C I’évaluation a I’origine, qui
n’est autre que la projection canonique de I’anneau local 0 sur son corps
résiduel.

PropoOsITION 4. L’anneau local ;0 est hensélien. En d’autres termes,
soient P € .0 {t] un polyndme unitaire et p, ceC [¢] des polyndmes unitaires
étrangers tels que Ev (P) = p o. Alors il existe des polyndmes unitaires R
et S dans 0 [t] avec P = RS, Ev(R) = p et Ev(S) =

Attention : P n’est pas nécessairement un polyndme de Weierstrass.
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Preuve. Notons Ev (P)(¢) = P(0,17) = [[(t—A)"7, avec 4., 4
distincts. (Dans cette preuve, les produits [ portent sur I'indice j delan
et les [’ portent sur j de 2 & n). Nous voulons montrer par induction sur 7
quiil existe des polynémes unitaires Py, ..., P, dans ;0 [t] avec P = 11P;
et Ev(P))(t) = (t—4 1. Cette assertion étant trivialement vraie pour
n = 1, on peut supposer n > 2 et qu’elle est vraie pour tous les polynémes
dont 1’évaluation a au plus n — 1 racines distinctes.

Supposons d’abord que P (0,0) = 0 et que Ev (P) =1 ] ¢—4)7.
Le théoréme de préparation permet d’écrire

P(x;0) = u(x, ) [Ff14+a, () 117+ 4a, (X)]

oll u est un polynoéme de .0 [¢] inversible dans ;.0 et ol les a; sont des
germes dans .0 qui sont nuls & Porigine. Par suite

Ev(P)()) = u(0,0) 1 = 1 [ (t— )
et u(0,¢) = [] (¢—A,)". Par hypothése d’induction, il existe Py, ..., P,
dans ,0 [t] avec u = [['P; et P;(0,¢) = (t—Ay)"7 pour j = 2,..,n. On
achéve en posant
P (x,0) =t +a;, (x) 171 + ...+ as; (%)

Supposons - au contraire que P (0,0) # 0. Soient AeC tel que
P(0,2) =0 et PT le polyndme défini par PT (x, ) = P (x, t+4). Alors
PT est un produit de » facteurs P f par largument précédent et on achéve
en posant P; (x, ) = P? (x,t—A) pourj=1,..,n H

Notons qu’il existe d’autres définitions (équivalentes a celle de la pro-
position) pour un anneau local d’étre hensélien; voir par exemple [AC,
11, §4, ex. 3].

Soient y, D,, fet yp, comme au début de la section 1. Ecrivons la série
de Taylor de f a Iorigine sous la forme f (x, y) = Y, k; (x, y) (somme sur j
de p a Pinfini), ol 4; est un polyndme homogéne de degré j en x et y et
ol h, # 0. Le polyndme /%, est un produit de facteurs linéaires. Quitte a
modifier les axes de coordonnées, on peut supposer que %, ne s’annule pas
sur la droite d’équation x = 0, donc que 4, (x,y) = ¢ [[ (y—4;x)"7 avec ¢
un nombre complexe, A4, ..., 4,, des nombres complexes distincts, et s,
.., 8, des entiers positifs de somme p. Les droites d’équation y = 4; x
sont par définition les tangentes de y. Pour chaque entier j > p, on a
li; (0, ) proportionnel & y/, et &, (0, y) = cy® avec ¢ # 0. Par suite, f est
une fonction réguliére d’ordre p en y; avec les notations du début de la
section 1, on a donc p = n. Cet entier s’appelle la multiplicité de f a 1’ori-
gine; il ne dépend pas des coordonnées choisies sur C2. |

L’Enseignement mathém., t. XXV, fasc. 3-4. 14
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PROPOSITION 5. Si y a plusieurs tangentes, alors [ est réductible.

Preuve. Comme

@) =Y+ @Y 0,0 = 3 )

ordre du zéro de q; & I’origine est au moins i (i=1, ..., n). Nous écrirons
J0) = (6, 9) = b1y + 5, (0" + o+ by ()
et b; (x) = x'*1 ¢ (x), oul ¢ représente un germe holomorphe 4 Iorigine

@i=1, ..., n). ,
Si u et v décrivent de petits voisinages de lorigine dans C, la fonction

(u,v) = f (v, uv) est divisible par »". Définissons z €,0 par ]; (u,v) §
= v " f (v, uv); on a donc

F@,9) = Ry (L, u) +ve; @ u™t +ve, @) w2 + ... + ve, (v) .

L’¢évaluation Ev: ;0 — C associe au polyndme j: € 10 [u] le polyndme"
u>h, (1, u) de C [u]. N
Si y a plusieurs tangentes, il résulte de la proposition 4 que f est un

produit dans ;0 [1] de polynémes unitaires g~ et h de degrés respectifs r < n
et s < n. Définissons alors g et 4 dans ,0 [y] par g (x,y) = x’gN (y/x, x)
et h(x,y) = x° h (y/x, x). Alors f = gh et f est réductible. m

La signification géométrique de f dans la preuve ci-dessus sera éclairée
au numé€ro suivant. |

Par exemple, le polyndme réductible xy définit une courbe ayant deux .
tangentes a 'origine. La réciproque a la proposition 5 n’est pas vraie car
le polynéme réductible x (x* —»3) définit une courbe n’ayant qh’une tangente
a ’origine.

S

1.3. ECLATEMENT ET IRREDUCTIBILITE

Pour tout entier positif k, nous noterons 4 la projection canonique
de C**' — {0} sur I’espace projectif P*; nous é&crirons (@ ...y ) les
4 > k+ 1 z b
coordonnées d’un vecteur de C** 1 et [z,, ..., z,] les coordonnées homogeénes
d’un point de P*. Introduisons la variété |
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Scciy = {([20, 21, W) €P* x CF* | w eh ' ([2& 267 2y, .., Z5]) U {0} }

et la restriction 7 -1 a S(_, de la seconde projection du produit Pl x CH L
Nous écrirons aussi 7: S — C? lorsque k = 1; cette application est alors

par définition I'éclatement de C*> a l’origine.
Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont a

prendre dans {0, 1}.
Posons I~Jj = {(z9,21) €C? — {O}[zj # 0} et U; = h((NJj). Soit

(; i l~] ; = C P’application qui associe a (zo, z4) le quotient z,/z, sij = O et
le quotlent Zo/z4 si j = 1; elle passe au quotient et définit une bijection
:U; - C. Les changements de cartes de ’atlas analytique ainsi défini
sur P1 sont
{ C* = ¢ (UpnUy) = ¢ (UpnUy) = C*

ur>u-1

et 'isomorphisme inverse.

Considérons ensuite la restriction Ac_ypy: S_g) — P! de la premiére
projection du produit P* x C**'. Posons S(_4); = A1 ' (U;) et soient
1% S( _w.; = C? les bijections définies par ¥, ([z], @) = (¢, ([2]), @o) et
Uy (Iz], ) = (¢4 ([2]), @); les applications inverses sont respectlvement

(u,v) = ([1,u], (v,uv,...,u v))
et

(u,v) > ([u, 1], (v, u* 1o, ..., v)) .
Les changements de cartes de I’atlas analytique ainsi défini sur S._,, sont

{C* X C = Yo (S-1),0NS=1),1) 2 ¥1(S(-1y0NS(-1y,1) = C* x C
' (u, ) = (u"1, ut)

et 'isomorphisme inverse.

La variété S._,, est donc I’espace total d’un ﬁbre holomorphe en droites
de projection A_jy: S(—z — P;. Les fonctions de transition associées au
recouvrement trivialisant (U,, U,) de P! sont

U,nU; - C*
l,0103{ ° .

[0, z1] = (z4/20)*

U nU, - C*
l‘00,13{ ! °

[20, 1] = (2o/2,)* .
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En particulier, le fibré 1 _,, est la puissance tensorielle k-iéme du fibré
canonique A = A._;y. Nous avons construit Ac-ry comme l'image inverse
du fibré canonique sur P* par le « morphisme de Véronése» de P! dans P,
qui est une application de « degré » k. Le signe dans I'indice (— k) exprime
que la classe de Chern du fibré A _,, évaluée sur la classe fondamentale est
négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes
raisons pour lesquelles la classe de Chern de Ac-xy est —k (multiplicativité
par produit tensoriel et multiplication par le degré); indiquons-en une
troisiéme qui n’utilise que des notions encore plus rudimentaires (voir par
exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe s: P! -~ S(-ry du fibré A _,, décrite
par les applications

Uy = S(-—k),o . Uy---— S(—k),l
So - et s i
u>(u,u) Uur--->(u,u ).

Alors s a un zéro simple, en un point correspondant a I’origine de U, un
pdle d’ordre k + 1, en un point correspondant 3 I’origine de U, et n’a ni-
autres zéros ni autres poles. Les différentielles logarithmiques de s aux
voisinages de son zéro et de son pdle se représentent respectivement par
d(logu) =u"'du, de résidu +1, et d(logu 1) = —(k+1)u" ! du, de
résidu —(k+1). Il en résulte que la classe de Chern du fibré A~y vaut
1 —-(k+1) = —k.
L’application 7: S — C? s’exprime dans les cartes standards par

. C* = Yo (So) » C?
' { (u,v) — (v, uv)

et
. {Cz =¥, (S) - C?

(u,v) = (uv,v).

On appellera courbe exceptionnelle de I’éclatement m et on notera E la
courbe #~* (0, 0), qui est lisse et isomorphe & P*. Elle est donnée dans les
cartes par

Ey = Yo (EnSy) = {(u,v)eC*|v = 0}
et

E; =Yy (EnS;) = {(u,1)eC*|v = 0}.

On notera que, en général, 'image de la section nulle du fibré A¢~xy coincide

avec m_, " (0).

*
* %
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Soient alors y, D,, f et yp ou y comme au début de la section 1. On
appelle transformée stricte de yp et on note 7~ ! (yp) ou yp ’adhérence dans
132 = g~ 1(D,) de n~ ! (y}), avec comme plus haut vy = yp — {0}.

Exemple 1. D, = C? et f(x,y) = xy. Alors y a deux composantes
irréductibles qui sont 'axe y’ d’équation y = 0 et I'axe y" d’équation
x = 0, de sorte que ; = ;’ U ;”. Or ;’ est I’adhérence de {([z], a)) eS | 0l
= (x,0) et x # 0}, qui est {([z], ®) eS[ [z] = [1,0]}. De méme 7" =
{([=], co) €S I [z] = [0, 1]}. Dans les cartes standards:

Vo) = {(,v)eC*|u = 0}
Y S =108 =2
Wi (") = {@,v)eC*|u = 0}.
On retiendra que ; est réunion de deux courbes lisses disjointes et que

7171 (y) = y U E est réunion de trois courbes lisses sans point triple et a
intersections transverses.

Plus généralement, si y est réunion de m droites distinctes dans C?
passant par 1’origine, sa transformée stricte est réunion de m courbes lisses
disjointes coupant chacune la courbe exceptionnelle en un point et trans-
versalement.

Exemple 2. D, = C? et f(x,y) = x* — y3. Alors ; est ’adhérence

de {([zhw)eS|w = (¢31? et teC*}, qui est {([t,1], (> t?)) eS|
te C} = Sy. Dans les cartes, ¥ (;mSO) est I'adhérence de {(u,v) € C? |
u=1"1 v =13 teC* et Y (1nSy) celle de {(,v)eC?|u = ¢,
v = t2, t € C*}. Ecrit sans paramétre:

Vo @nSo) = {(w,9) e C|ud = 1}

Vi nS) = {@,9)eC? u? =9},

Par suite y est une courbe lisse, et 771 (y) = 9 U E est réunion de deux
courbes lisses se coupant au seul pointy; ~* (0, 0). Cette intersection n’étant
pas transverse, on itére le procédé en espérant éliminer ce « défaut ».
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Au voisinage de ce point d’intersection, 7~ ! (y) définit un germe d; on
le représente par la courbe &, zéro de la fonction g € O (C?) définie par |
g (x, ) = y (x*—). La transformée stricte est donnée dans les cartes par

Vo (3nSe) = {(,9) e C* |u@—u) = 0}
V1 (6nSy) = {(@,2)eC? |u’y = 1} .

Par suite 6 est réunion de deux courbes lisses se coupant en un seul point
et transversalement; d’autre part 7~ ! () est réunion de trois courbes lisses
se coupant en un seul point, et transversalement deux a deux.

Au voisinage de ce point triple, 7~ ' (§) définit un germe &. La remarque

a la fin de I’exemple 1 montre que ¢ conduit & une transformée stricte qui i

est réunion de trois courbes lisses disjointes coupant la courbe exception-
nelle transversalement et en des points distincts.

En composant ces trois éclatements, on obtient une résolution de la
singularité y plongée dans C?2, au sens du théoréme 8.4 de [17]. En d’autres

termes, on obtient une variété lisse M et une application {: M — C? ayant 8

les propriétés suivantes:
1) ¢ induit un isomorphisme de M — {~* (0) sur C* — {0};
2) I’adhérence Z‘ 1(y) de {71 (y*) dans M est une courbe lisse;

3) {1 (y) est une réunion de courbes lisses sans point triple qui se
coupent transversalement. '

Revenons au cas général et soit a nouveau # la multiplicité de f a 1’ori-
gine; nous supposons comme a la section 2 que la droite d’équation x = 0
n’est pas une tangente de y. Nous appellerons transformée stricte de la

fonction f et nous noterons f la fonction définie pour tout (u,v) € 4, B

= o (n 1 (D;) A S,) par £ (u, v) = 07" f (v, w).

PrOPOSITION 6. Avec les notations déja introduites:
(§) Wo (75nSo) = {(wv) €45 | £ (wv) = O},
(jj) Si f est irréductible, alors } s’annule en un seul point de E et y définit
un germe f e ,0 qui est irréductible.
(jjj) Supposons f irréductible et soient n et n les multiplicités de f et/}';

alors n <<metn < nsi et seulement si E, est une tangente a y.




Preuve. Supposons (4, v) €W (ypNSy); alors mq (4, v) = (v, uv) € ¥p,

donc f (v, uv) = 0. Si v # 0, cela implique f (u, v) = 0 par définition de f;
c’est encore vrai par continuité si v = 0.

Supposons (u,v) € 4, avec ]N‘(u, v) = 0, alors f(n, (1, v)) = V" f (%, v)
=0, donc Yo L (w,v)en * (yp) NSy Siv # 0, cela s’écrit o L (u,v)

~

eypnSy. Si v=0, la fonction u r—»}(u, 0) est de la forme
u—>c[] (u—2,)* avec ¢ non nul et 4y, ..., 4, distincts (voir la proposi-
tion 5). Elle s’annule donc aux points (4;, 0) de E,; ceux-ci €tant en nombre

fini, leurs images inverses par /, sont par continuité dans y, N S,. L’asser-
tion (j) en résulte.
Si f est irréductible, il n’y a qu’un 4; (voir la preuve de la proposition 4);

]; ne s’annule qu’en un point de E, et y définit un germe f. L’application =
induit un homéomorphisme de S — E sur C2 — {0}, donc aussi de #~* (y%)

= vy, — (ypnE) sur y%5. Lassertion (jj) résulte donc de la proposition 2.

Quitte & changer linéairement les coordonnées, on peut supposer que la
tangente & y est 'axe d’équation y = 0. Pour tout (x, y) € D,, on a main-
tenant

f(x,3) =" +b (x)y " + ... +b,(x

et b, (x) = x*1¢;(x) ou ¢ est holomorphe a lorigine. Pour tout
(u,v) € 4,, on a donc

~

f(u,v) =u" +ve,@u""* + ... +vc,(),

d’ou en particulier n < n. Sin = n, alors f (4, v) = ) h; (4, v) (somme de 7

a linfini) avec h, (u,v) = u" + vk (u, v) pour un polynéme homogene k
ad hoc, nul ou de degré n — 1; dans ce cas, la courbe E, d’équationv = 0

n’est pas tangente a Y, (ypNSy). Si n < n, alors f(u, V) = Z;zj (u, v)

(somme de z a I'infini) avec Aj; divisible par v; dans ce cas, E, est tangente
ay, (ypNSo)

Exemple 3. D, = C* et f(x,y) = x° + y%. On peut montrer brutale-
ment que f est irréductible. On peut aussi observer que la paire formée de
C* — {0} et de y* se rétracte par déformation sur la paire formée de
3% = {(x,»)) eC?|x|* + |y|* = 1} et d’un nceud du tore: la rétraction
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applique un point (x, y) sur D’intersection avec S* de ’image du chemin
R¥ - C?
te (x, t°y)
La transformée stricte de f est donnée par

En particulier y* est connexe et f est bien irréductible.

f(u,v) =172 (v° +(wv)?) = u? + 03

qui est comme f de multiplicité 2. La tangente de fest la droite d’équation

u = 0, qui est transverse a E,,. B N
Soient alors D, = C? et g (x,y) = x*> + y* de sorte que g = f (pas

g (x,») = x* + y? qui aurait comme tangente la droite d’équation x = 0).

On a g (u,v) = u® + v, qui est de multiplicité 1, et dont la tangente 2
I’origine est bien E,. :

Exemple 4. D, = C* et f(x,y) = >+ x°y +g(x,y) avec g de
multiplicité 8 au moins. Montrons que f est réductible.

Onaf(u,v) = u + uv + h(u,v) avec h d’ordre 3 au moins. Donc f a
deux tangentes, d’ol I’assertion par les propositions 5 et 6 (jj).

II. SINGULARITES NORMALES DANS C?

I1.1. ENSEMBLES NORMAUX

Si X est un ensemble analytique, X, désigne I'ouvert de ses points

ég

réguliers; on sait qu’il est dense dans X. (Voir le corollaire de la proposi- |

tion 1 si X est une courbe plane, 'argument de la proposition 7 ci-dessous
si X est une hypersurface dans C¥, et le théoréme III. C.3 de [8] en général.)

Rappelons qu’un ensemble X est irréductible en un point p si X n’est
pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce
cas, on peut trouver un voisinage de p dont la trace sur X, est connexe.
Réciproquement, s’il existe un bon voisinage U de P dans X dont la trace
sur X, est connexe, alors X est irréductible en p. (Voir la proposition 2
si X est une courbe plane, et la fin de la section III.C de [8] pour le cas
général.) Le terme de « bon voisinage » pour U signifie qu’il existe une
base de voisinages {U,} de p dans X telle que chaque U, — {p} soit un

rétracte par déformation de U — {p}; voir [21].
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