Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SINGULARITÉS DE KLEIN

Autor: de la Harpe, P. / Siegfried, P.

DOI: https://doi.org/10.5169/seals-50380

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SINGULARITÉS DE KLEIN

par P. de la Harpe et P. Siegfried

« Ich bitte den Leser, sich (...) Zeichnungen anfertigen zu wollen oder sich geradezu an einem leicht zu verschaffenden *Modelle* die in Betracht kommenden Verhältnisse zu überlegen. Denn es handelt sich um durchaus concrete Dinge, welche vermittelst der genannten Hülfsmittel jedesmal leicht erfasst werden, aber ohne dieselben der Vorstellung gelegentlich Schwierigkeiten bereiten können. »

F. Klein, « Vorlesungen über das Ikosaeder... ».

Ces notes veulent être une introduction élémentaire à la géométrie analytique complexe locale, centrée autour de quelques exemples simples. Elles reprennent la matière de séminaires tenus à Genève et à Lausanne entre 1974 et 1977. Elles abordent des sujets développés par Alan Durfee dans ce même volume à l'intention des lecteurs plus savants [4].

Nous supposerons que le lecteur connaît, au moins en première approximation, le contenu des chapitres I et II de [8]. C'est un bagage à deux ballots. D'une part, soient k un entier positif et $_k\mathcal{O}$ l'anneau des germes de fonctions holomorphes définies au voisinage de l'origine dans \mathbf{C}^k ; le théorème de préparation de Weierstrass dit comment l'étude d'un élément de $_{(k+1)}\mathcal{O}$ peut se ramener à celle d'un élément dans l'anneau de polynômes $_k\mathcal{O}$ $[z_{k+1}]$; il en résulte en particulier que l'anneau intègre et local $_k\mathcal{O}$ est aussi factoriel et noethérien. D'autre part, nous utiliserons le vocabulaire rudimentaire concernant les (germes d') ensembles analytiques plongés dans \mathbf{C}^n (= « subvariety »; voir section II.E de [8]). Nous ferons également un usage répété de quelques propriétés des résultants et discriminants de polynômes, auxquelles nous revenons ci-dessous.

Le premier chapitre traite des propriétés les plus élémentaires des courbes planes, et offre ainsi une traduction géométrique de cas particuliers des théorèmes de Weierstrass et Hensel (démontré au n° I.2). Le second chapitre est une introduction à la notion d'ensemble normal, et montre qu'un ensemble analytique de dimension 2 qui se plonge dans C³ (qui y est donc décrit par une équation et qu'on appelle une hypersurface dans C³) et qui est normal n'a que des singularités isolées. On peut grossièrement

classer les points d'une petite portion d'hypersurface dans C³ comme suit, relativement à une projection convenable sur C²: d'abord ceux qui se projettent hors du lieu discriminant, qui sont toujours lisses; puis ceux qui se projettent sur un point lisse du discriminant, qui sont lisses lorsque la surface est normale (voir II.2); ensuite ceux qui se projettent sur une singularité du type $\{(x, y) \in \mathbb{C}^2 \mid xy = 0\}$ dans le discriminant, et qui forment l'objet du troisième chapitre; enfin les autres points normaux, dont on trouvera au chapitre V des exemples classiques, et les points non normaux, dont nous ne dirons rien. Le chapitre IV est une introduction à la notion de désingularisation et offre en exemples les quotients de \mathbb{C}^2 par un groupe cyclique d'isomorphismes analytiques [9]. Dans le dernier chapitre, nous calculons explicitement les matrices d'intersection qui apparaissent dans les désingularisations des quotients de \mathbb{C}^2 par un sous-groupe fini non cyclique de SU(2); nous traitons en détail le cas du groupe binaire de l'icosaèdre et donnons quelques indications sur les autres cas, plus simples. Suivant [20], nous appelons singularité de Klein une singularité \mathbb{C}^2/G , avec G un sousgroupe fini de SU(2) (ou, ce qui revient au même, de $SL(2, \mathbb{C})$); les matrices d'intersection associées correspondent alors aux fameux diagrammes de Dynkin des familles A, D et E.

Avant d'entrer dans le vif du sujet, nous souhaitons rappeler les faits suivants; les références à Bourbaki sont données de manière canonique. Nous désignons par A un anneau intègre (avec unité), par K son corps des fractions, et par f, g deux éléments de A.

Les éléments f et g sont étrangers si les seuls éléments de A qui divisent f et g sont les unités, en d'autres termes si 1 est un pgcd de f et g [A, VI, §1, nº 12]. Ils sont fortement étrangers s'il existe a et b dans A avec af + bg = 1 [AC, III, §4, nº 1]. Deux éléments fortement étrangers sont étrangers (on montre facilement que tout diviseur de f et de g est inversible); la réciproque n'est pas vraie en général (comme le montrent les éléments f et f de f et f de f et f et

Nous renvoyons à l'appendice III de [7] pour les définitions de résultant et de discriminant. Nous désignons par P et Q deux polynômes dans l'anneau A [X], l'un au moins étant unitaire (= monique).

Les polynômes P et Q sont fortement étrangers si et seulement si leur résultant est inversible dans A (c'est au vocabulaire près le lemme 2 de l'appendice III dans [7], et c'est essentiellement la proposition 1 de [AC, III, §4, n^0 1]).

Supposons de plus A factoriel, et les deux polynômes P, Q unitaires. On sait que P et Q sont étrangers dans A [X] si et seulement s'ils le sont en

tant qu'éléments de K[X] [AC, VII, §3, n° 5, th. 2], ou encore si et seulement si leurs facteurs irréductibles (= éléments extrémaux) sont non équivalents deux à deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1], ou enfin si et seulement si leur résultant n'est pas nul dans A (donc est inversible dans K); cette dernière affirmation est à un oubli de détail près le lemme 3 de l'appendice III de [7]. De même, les facteurs irréductibles de P sont non équivalents entre eux si et seulement si son discriminant n'est pas nul; on dit alors que P est sans facteur multiple.

Soient B un second anneau intègre et $\varphi: A \to B$ un homomorphisme appliquant 1 sur 1; nous désignons par la même lettre l'homomorphisme $A[X] \to B[X]$. Si Res (,) et Dis () dénotent respectivement le résultant et le discriminant, il convient d'insister sur la propriété suivante, qui est très utile malgré sa banalité:

$$\varphi\left(\operatorname{Res}(P,Q)\right) = \operatorname{Res}\left(\varphi\left(P\right), \varphi\left(Q\right)\right)$$

$$\varphi\left(\operatorname{Dis}(P)\right) = \operatorname{Dis}\left(\varphi\left(P\right)\right).$$

Le cas le plus fréquent ci-dessous est celui ou $A = \mathcal{O}(D)$ est l'anneau des fonctions holomorphes sur un polycylindre D de \mathbb{C}^k centré à l'origine, où $B = {}_k \mathcal{O}$ et où $\varphi : f \mapsto \underline{f}$ est l'injection canonique. Précisons à ce sujet que tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national suisse de la recherche scientifique.

I. COURBES PLANES

I.1. SINGULARITÉS DES COURBES PLANES ET REVÊTEMENTS

Soit $\underline{\gamma}$ un germe de courbe plane. On peut toujours supposer $\underline{\gamma}$ donné par les zéros d'un polynôme de Weierstrass (quitte à opérer un changement linéaire de coordonnées). Plus précisément, il existe

- 1º) Un polycylindre D_2 dans \mathbf{C}^2 , centré à l'origine; nous noterons D_1 sa trace sur la droite $\mathbf{C} = \mathbf{C}_x$ de $\mathbf{C}^2 = \mathbf{C}_{xy}^2$.
- 2º) Un polynôme de Weierstrass $f \in \mathcal{O}(D_1)[y]$ de degré n, c'est-à-dire une fonction $f \in \mathcal{O}(D_2)$ avec

$$f(x, y) = y^{n} + a_{1}(x) y^{n-1} + ... + a_{n}(x)$$

pour tout $(x, y) \in D_2$, où les a_j sont des fonctions holomorphes dans D_1 qui s'annulent à l'origine.

Le germe $\underline{\gamma}$ est alors représenté par $\gamma_D = \{(x, y) \in D_2 \mid f(x, y) = 0\}$. Nous écrirons plus simplement γ si $D_2 = \mathbb{C}^2$. On peut toujours remplacer D_2 par un polycylindre plus petit; en particulier, on pourra toujours supposer que la projection canonique fournit par restriction une application π de γ_D sur D_1 . Si n = 1, le changement de coordonnées $(x, y) \mapsto (x, y - a(x))$ montre que γ_D est lisse à l'origine; nous supposerons désormais $n \ge 2$ (on prendra garde que ceci n'exclut pas tous les germes lisses, comme le montre le cas de $f(x, y) = y^2 - x$).

PROPOSITION 1. Soit $\underline{\gamma}$ un germe donné comme ci-dessus. Alors la projection canonique de \mathbb{C}^2 sur \mathbb{C} induit (après rétrécissement éventuel de D_2) un revêtement holomorphe à n feuilles

$$\pi^*: \gamma_D^* = \gamma_D - \{(0,0)\} \to D_1^* = D_1 - \{0\}$$

Preuve. Le discriminant Dis (f) est un élément de $\mathcal{O}(D_1)$. Notons Ev: $\mathcal{O}(D_1) \to \mathbb{C}$ le morphisme d'évaluation $g \mapsto g(0)$; alors Ev (Dis (f) = Dis (Ev (f)). Or Ev $(f) = y^n$ est un polynôme qui a par hypothèse $(n \ge 2)$ une racine multiple et son discriminant est nul. Par suite Dis (f) s'annule à l'origine.

On peut supposer que le germe à l'origine \underline{f} de f est sans facteur multiple, de sorte que Dis (\underline{f}) n'est pas nul. Mais Dis (\underline{f}) est le germe de Dis (f). Par suite la fonction Dis (f) n'est pas nulle, ses zéros sont isolés, et on peut supposer (après rétrécissement de D_2 au besoin) que Dis (f) ne s'annule pas dans D_1^* .

Soient $a \in D_1^*$ et $\operatorname{Ev}_a : \mathcal{O}(D_1) \to \mathbf{C}$ l'évaluation $g \mapsto g(a)$. Comme $\operatorname{Dis}\left(\operatorname{Ev}_a(f)\right) = \operatorname{Ev}_a\left(\operatorname{Dis}(f)\right) \neq 0$, le polynôme $y \mapsto f(a, y)$ n'a pas de racine double; en d'autres termes $\frac{\partial f}{\partial y}(a, y) \neq 0$ si $(a, y) \in \gamma_D^*$. Par suite la

fonction $\frac{\partial f}{\partial y} \in \mathcal{O}(D_2)$ ne s'annule pas sur γ_D^* . Le théorème des fonctions implicites affirme dans cette situation que γ_D^* est une courbe lisse et que π^* est un isomorphisme analytique local. Ses fibres ayant toutes le même nombre n d'éléments, c'est de plus un revêtement.

COROLLAIRE. Les singularités des courbes planes sont isolées.

PROPOSITION 2. On suppose \underline{f} sans facteur multiple. Alors \underline{f} est réductible si et seulement s'il existe un polycylindre D_2 tel que \underline{f} ait un représentant $f \in \mathcal{O}(D_2)$ avec γ_D^* non connexe.

Preuve. Supposons $\underline{f} = \underline{f}' \underline{f}''$, avec \underline{f}' et \underline{f}'' des polynômes de Weierstrass non constants et sans facteur commun; leur résultant est donc un élément non nul de ${}_{1}\theta$. On peut choisir un polycylindre D_{2} et des représentants f'_{D} et f''_{D} de \underline{f}' et \underline{f}'' tels que le résultant de f'_{D} et f''_{D} soit une fonction de $\theta(D_{1})$ sans zéro dans D_{1}^{*} . Un argument déjà utilisé dans la preuve de la proposition 1 montre alors que f'_{D} et f''_{D} n'ont pas de zéro commun dans $D_{2} - \{(0,0)\}$. Par suite les ensembles

$$\gamma' = \{ (x, y) \in D_2 \mid f'_D(x, y) = 0 \text{ et } x \neq 0 \}$$

et

$$\gamma'' = \{ (x, y) \in D_2 \mid f_D''(x, y) = 0 \text{ et } x \neq 0 \}$$

forment une partition en fermés non vides de γ_D^* , qui n'est donc pas connexe.

Supposons réciproquement qu'il existe un polycylindre D_2 tel que l'espace total du revêtement associé $\pi^*: \gamma_D^* \to D_1^*$ admette une partition en deux fermés non vides: $\gamma_D^* = \gamma' \cup \gamma''$. Par la proposition 1, le cardinal n' de $\gamma' \cap \pi^{-1}(x)$ ne dépend pas du choix de x dans D_1^* . Soient $\varphi_1(x)$, ..., $\varphi_n(x)$ les zéros de la fonction $y \mapsto f(x, y)$, numérotés de telle sorte que $\varphi_i(x) \in \gamma'$ pour $j \leqslant n'$. Posons

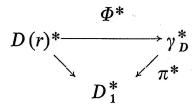
$$f'(x, y) = \prod_{j=1}^{n'} (y - \varphi_j(x))$$
 et $f''(x, y) = \prod_{j=n'+1}^{n} (y - \varphi_j(x))$

pour tout $(x, y) \in D_2$. Les φ_j ne sont en général pas holomorphes (seules leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de la proposition 1 que, pour tout disque $\Delta_1 \subset D_1^*$, on peut faire en sorte que les φ_j soient holomorphes dans Δ_1 . Par suite, f' et f'' sont holomorphes au voisinage de tout point (x, y) avec $x \neq 0$, donc dans tout D_2 par le théorème d'extension de Riemann. En d'autres termes $\underline{f} = \underline{f}' \underline{f}''$ est réductible.

PROPOSITION 3. Supposons \underline{f} irréductible. Alors il existe un nombre positif r et une fonction holomorphe φ dans $D(r) = \{t \in \mathbb{C} \mid |t| < r\}$ tels que $\begin{cases} D(r) \to \gamma_D \\ t \mapsto (t^n, \varphi(t)) \end{cases}$ soit un homéomorphisme.

Preuve. Avec les notations de la proposition 1, soient s le rayon de D_1 et r la racine positive n-ième de s. Notons $D(r)^*$ le disque D(r) privé de l'origine. Les applications $t \mapsto t^n$ de $D(r)^*$ sur D_1^* et $(x,y) \mapsto x$ de γ_D^* sur D_1^* sont des revêtements holomorphes (proposition 1) connexes (propo-

sition 2) à n feuilles de l'espace D_1^* à groupe fondamental abélien. Il existe donc un isomorphisme analytique Φ^* rendant le diagramme



commutatif. Comme Φ^* est borné, il se prolonge par continuité en un morphisme bijectif $\Phi: D(r) \to \gamma_D$ de la forme $t \mapsto (t^n, \varphi(t))$ avec $\varphi \in \mathcal{O}(D(r))$. C'est alors un exercice facile de topologie générale de montrer que Φ est un homéomorphisme.

COROLLAIRE. Les courbes planes irréductibles sont des variétés topologiques.

Notons qu'une courbe plane (plus généralement une sous-variété de \mathbb{C}^k) analytiquement singulière n'est jamais une variété différentiable; voir par exemple [14], §2.

La proposition 3 exprime γ_D paramétriquement par $x = t^n$ et

$$y = \varphi(t) = a_0 t^m + a_1 t^{m+1} + ... + a_k t^{m+k} + ... (a_0 \neq 0);$$

on montre facilement qu'on ne restreint pas la généralité en supposant $m \ge n$. On écrit aussi

$$y = a_0 x^{m/n} + a_1 x^{(m+1)/n} + \dots + a_k x^{(m+k)/n} + \dots$$

et on parle alors du développement de Puiseux ou de la série fractionnaire associé au germe considéré.

I.2. LES TANGENTES EN UN POINT D'UNE COURBE PLANE

Soient k un entier positif et $\text{Ev:}_k \mathcal{O} \to \mathbf{C}$ l'évaluation à l'origine, qui n'est autre que la projection canonique de l'anneau local $_k \mathcal{O}$ sur son corps résiduel.

PROPOSITION 4. L'anneau local $_k\mathcal{O}$ est hensélien. En d'autres termes, soient $P \in _k\mathcal{O}[t]$ un polynôme unitaire et ρ , $\sigma \in \mathbb{C}[t]$ des polynômes unitaires étrangers tels que Ev $(P) = \rho \sigma$. Alors il existe des polynômes unitaires R et S dans $_k\mathcal{O}[t]$ avec P = RS, Ev $(R) = \rho$ et Ev $(S) = \sigma$.

Attention: P n'est pas nécessairement un polynôme de Weierstrass.

Preuve. Notons Ev $(P)(t) = P(0, t) = \prod (t - \lambda_j)^{s_j}$, avec $\lambda_1, ..., \lambda_n$ distincts. (Dans cette preuve, les produits \prod portent sur l'indice j de 1 à n et les \prod' portent sur j de 2 à n). Nous voulons montrer par induction sur n qu'il existe des polynômes unitaires $P_1, ..., P_n$ dans ${}_k \mathcal{O}[t]$ avec $P = \prod P_j$ et Ev $(P_j)(t) = (t - \lambda_j)^{s_j}$. Cette assertion étant trivialement vraie pour n = 1, on peut supposer $n \ge 2$ et qu'elle est vraie pour tous les polynômes dont l'évaluation a au plus n - 1 racines distinctes.

Supposons d'abord que P(0,0) = 0 et que $\text{Ev}(P) = t^{s_1} \prod' (t - \lambda_j)^{s_j}$. Le théorème de préparation permet d'écrire

$$P(x,t) = u(x,t) \left[t^{s_1} + a_1(x) t^{s_{1-1}} + \dots + a_{s_1}(x) \right]$$

où u est un polynôme de $_k \mathcal{O}[t]$ inversible dans $_{k+1} \mathcal{O}$ et où les a_j sont des germes dans $_k \mathcal{O}$ qui sont nuls à l'origine. Par suite

$$Ev(P)(t) = u(0, t) t^{s_1} = t^{s_1} \prod' (t - \lambda_j)^{s_j}$$

et $u(0, t) = \prod_{j=1}^{r} (t - \lambda_j)^{s_j}$. Par hypothèse d'induction, il existe $P_2, ..., P_n$ dans ${}_k \mathcal{O}[t]$ avec $u = \prod_{j=1}^{r} P_j$ et $P_j(0, t) = (t - \lambda_j)^{s_j}$ pour j = 2, ..., n. On achève en posant

$$P_1(x,t) = t^{s_1} + a_1(x) t^{s_1-1} + \dots + a_{s_1}(x).$$

Supposons au contraire que $P(0,0) \neq 0$. Soient $\lambda \in \mathbb{C}$ tel que $P(0,\lambda) = 0$ et P^T le polynôme défini par $P^T(x,t) = P(x,t+\lambda)$. Alors P^T est un produit de n facteurs P_j^T par l'argument précédent et on achève en posant $P_j(x,t) = P_j^T(x,t-\lambda)$ pour j=1,...,n.

Notons qu'il existe d'autres définitions (équivalentes à celle de la proposition) pour un anneau local d'être hensélien; voir par exemple [AC, III, §4, ex. 3].

Soient $\underline{\gamma}$, D_2 , f et γ_D comme au début de la section 1. Ecrivons la série de Taylor de f à l'origine sous la forme $f(x,y) = \sum h_j(x,y)$ (somme sur j de p à l'infini), où h_j est un polynôme homogène de degré j en x et y et où $h_p \neq 0$. Le polynôme h_p est un produit de facteurs linéaires. Quitte à modifier les axes de coordonnées, on peut supposer que h_p ne s'annule pas sur la droite d'équation x = 0, donc que $h_p(x,y) = c \prod (y-\lambda_j x)^{s_j}$ avec c un nombre complexe, $\lambda_1, ..., \lambda_m$ des nombres complexes distincts, et $s_1, ..., s_m$ des entiers positifs de somme p. Les droites d'équation $y = \lambda_j x$ sont par définition les tangentes de $\underline{\gamma}$. Pour chaque entier $j \geqslant p$, on a $h_j(0, y)$ proportionnel à y^j , et $h_p(0, y) = cy^p$ avec $c \neq 0$. Par suite, f est une fonction régulière d'ordre p en p; avec les notations du début de la section 1, on a donc p = n. Cet entier s'appelle la multiplicité de f à l'origine; il ne dépend pas des coordonnées choisies sur \mathbb{C}^2 .

Proposition 5. Si $\underline{\gamma}$ a plusieurs tangentes, alors \underline{f} est réductible.

Preuve. Comme

$$f(x, y) = y^n + a_1(x) y^{n-1} + \dots + a_n(x) = \sum_{j=n}^{\infty} h_j(x, y)$$

l'ordre du zéro de a_i à l'origine est au moins i (i=1,...,n). Nous écrirons

$$f(x, y) - h_n(x, y) = b_1(x) y^{n-1} + b_2(x) y^{n-2} + \dots + b_n(x)$$

et $b_i(x) = x^{i+1} c_i(x)$, où c_i représente un germe holomorphe à l'origine (i=1, ..., n).

Si u et v décrivent de petits voisinages de l'origine dans \mathbb{C} , la fonction $(u, v) \mapsto f(v, uv)$ est divisible par v^n . Définissons $\tilde{f} \in {}_2\mathcal{O}$ par $\tilde{f}(u, v) = v^{-n} f(v, uv)$; on a donc

$$\widetilde{f(u,v)} = h_n(1,u) + vc_1(v)u^{n-1} + vc_2(v)u^{n-2} + \dots + vc_n(v).$$

L'évaluation Ev: ${}_{1}\mathcal{O} \to \mathbf{C}$ associe au polynôme $\widetilde{f} \in {}_{1}\mathcal{O}[u]$ le polynôme $u \mapsto h_{n}(1, u)$ de $\mathbf{C}[u]$.

Si $\underline{\gamma}$ a plusieurs tangentes, il résulte de la proposition 4 que \widetilde{f} est un produit dans ${}_{1}\mathcal{O}[u]$ de polynômes unitaires \widetilde{g} et \widetilde{h} de degrés respectifs r < n et s < n. Définissons alors g et h dans ${}_{1}\mathcal{O}[y]$ par $g(x, y) = x^{r}\widetilde{g}(y/x, x)$ et $h(x, y) = x^{s}\widetilde{h}(y/x, x)$. Alors f = gh et \underline{f} est réductible.

La signification géométrique de \widetilde{f} dans la preuve ci-dessus sera éclairée au numéro suivant.

Par exemple, le polynôme réductible xy définit une courbe ayant deux tangentes à l'origine. La réciproque à la proposition 5 n'est pas vraie car le polynôme réductible $x(x^2-y^3)$ définit une courbe n'ayant qu'une tangente à l'origine.

I.3. ECLATEMENT ET IRRÉDUCTIBILITÉ

Pour tout entier positif k, nous noterons h la projection canonique de $\mathbb{C}^{k+1} - \{0\}$ sur l'espace projectif P^k ; nous écrirons $(\omega_0, ..., \omega_k)$ les coordonnées d'un vecteur de \mathbb{C}^{k+1} et $[z_0, ..., z_k]$ les coordonnées homogènes d'un point de P^k . Introduisons la variété

$$S_{(-k)} = \left\{ \left([z_0, z_1], w \right) \in P^1 \times \mathbb{C}^{k+1} \mid w \in h^{-1} \left([z_0^k, z_0^{k-1} z_1, ..., z_1^k] \right) \cup \left\{ 0 \right\} \right\}$$

et la restriction $\pi_{(-k)}$ à $S_{(-k)}$ de la seconde projection du produit $P^1 \times \mathbb{C}^{k+1}$. Nous écrirons aussi $\pi: S \to \mathbb{C}^2$ lorsque k = 1; cette application est alors par définition l'éclatement de \mathbb{C}^2 à l'origine.

Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont à prendre dans $\{0, 1\}$.

Posons $U_j = \{(z_0, z_1) \in \mathbb{C}^2 - \{0\} \mid z_j \neq 0\}$ et $U_j = h(U_j)$. Soit $\widetilde{\varphi}_j \colon \widetilde{U}_j \to \mathbb{C}$ l'application qui associe à (z_0, z_1) le quotient z_1/z_0 si j = 0 et le quotient z_0/z_1 si j = 1; elle passe au quotient et définit une bijection $\varphi_j \colon U_j \to \mathbb{C}$. Les changements de cartes de l'atlas analytique ainsi défini sur P^1 sont

$$\begin{cases} \mathbf{C}^* = \varphi_0 (U_0 \cap U_1) \to \varphi_1 (U_0 \cap U_1) = \mathbf{C}^* \\ u \mapsto u^{-1} \end{cases}$$

et l'isomorphisme inverse.

Considérons ensuite la restriction $\lambda_{(-k)}: S_{(-k)} \to P^1$ de la première projection du produit $P^1 \times \mathbb{C}^{k+1}$. Posons $S_{(-k),j} = \lambda_{(-k)}^{-1}(U_j)$ et soient $\psi_j: S_{(-k),j} \to \mathbb{C}^2$ les bijections définies par $\psi_0([z], \omega) = (\varphi_0([z]), \omega_0)$ et $\psi_1([z], \omega) = (\varphi_1([z]), \omega_k)$; les applications inverses sont respectivement

$$(u,v) \mapsto ([1,u], (v,uv,...,u^kv))$$

et

$$(u,v) \mapsto ([u,1], (u^k v, u^{k-1} v, ..., v)).$$

Les changements de cartes de l'atlas analytique ainsi défini sur $S_{(-k)}$ sont

$$\begin{cases} \mathbf{C}^* \times \mathbf{C} = \psi_0(S_{(-k),0} \cap S_{(-k),1}) \to \psi_1(S_{(-k),0} \cap S_{(-k),1}) = \mathbf{C}^* \times \mathbf{C} \\ (u,v) \mapsto (u^{-1}, u^k v) \end{cases}$$

et l'isomorphisme inverse.

La variété $S_{(-k)}$ est donc l'espace total d'un fibré holomorphe en droites de projection $\lambda_{(-k)}: S_{(-k)} \to P_1$. Les fonctions de transition associées au recouvrement trivialisant (U_0, U_1) de P^1 sont

$$\psi_{1,0}: \begin{cases} U_0 \cap U_1 \to \mathbb{C}^* \\ [z_0, z_1] \mapsto (z_1/z_0)^k \end{cases}$$

et

$$\psi_{0,1}: \left\{ \begin{array}{l} U_1 \cap U_0 \to \mathbb{C}^* \\ [z_0, z_1] \mapsto (z_0/z_1)^k \end{array} \right.$$

En particulier, le fibré $\lambda_{(-k)}$ est la puissance tensorielle k-ième du fibré canonique $\lambda = \lambda_{(-1)}$. Nous avons construit $\lambda_{(-k)}$ comme l'image inverse du fibré canonique sur P^k par le « morphisme de Véronèse » de P^1 dans P^k , qui est une application de « degré » k. Le signe dans l'indice (-k) exprime que la classe de Chern du fibré $\lambda_{(-k)}$ évaluée sur la classe fondamentale est négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes raisons pour lesquelles la classe de Chern de $\lambda_{(-k)}$ est -k (multiplicativité par produit tensoriel et multiplication par le degré); indiquons-en une troisième qui n'utilise que des notions encore plus rudimentaires (voir par exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe $s: P^1 \longrightarrow S_{(-k)}$ du fibré $\lambda_{(-k)}$ décrite par les applications

$$s_0: \begin{cases} U_0 \to S_{(-k),0} \\ u \mapsto (u,u) \end{cases} \quad \text{et} \quad s_1: \begin{cases} U_1 \dashrightarrow S_{(-k),1} \\ u \mapsto (u,u^{-k-1}) \end{cases}.$$

Alors s a un zéro simple, en un point correspondant à l'origine de U_0 , un pôle d'ordre k+1, en un point correspondant à l'origine de U_1 , et n'a ni autres zéros ni autres pôles. Les différentielles logarithmiques de s aux voisinages de son zéro et de son pôle se représentent respectivement par $d(\log u) = u^{-1} du$, de résidu +1, et $d(\log u^{-k-1}) = -(k+1) u^{-1} du$, de résidu -(k+1). Il en résulte que la classe de Chern du fibré $\lambda_{(-k)}$ vaut 1-(k+1)=-k.

L'application $\pi: S \to \mathbb{C}^2$ s'exprime dans les cartes standards par

$$\pi_0: \begin{cases} \mathbf{C}^2 = \psi_0(S_0) \to \mathbf{C}^2 \\ (u, v) \mapsto (v, uv) \end{cases}$$

et

$$\pi_1: \begin{cases} C^2 = \psi_1(S_1) \to C^2 \\ (u, v) \mapsto (uv, v). \end{cases}$$

On appellera courbe exceptionnelle de l'éclatement π et on notera E la courbe π^{-1} (0, 0), qui est lisse et isomorphe à P^1 . Elle est donnée dans les cartes par

$$E_0 = \psi_0 (E \cap S_0) = \{ (u, v) \in \mathbb{C}^2 \mid v = 0 \}$$

et

$$E_1 = \psi_1(E \cap S_1) = \{(u, v) \in \mathbb{C}^2 \mid v = 0\}.$$

On notera que, en général, l'image de la section nulle du fibré $\lambda_{(-k)}$ coïncide avec $\pi_{(-k)}^{-1}$ (0).

Soient alors $\underline{\gamma}$, D_2 , f et γ_D ou γ comme au début de la section 1. On appelle transformée stricte de γ_D et on note π^{-1} (γ_D) ou γ_D l'adhérence dans $\widetilde{D}_2 = \pi^{-1}$ (D_2) de π^{-1} (γ_D^*), avec comme plus haut $\gamma_D^* = \gamma_D - \{0\}$.

Exemple 1. $D_2 = \mathbb{C}^2$ et f(x, y) = xy. Alors γ a deux composantes irréductibles qui sont l'axe γ' d'équation y = 0 et l'axe γ'' d'équation x = 0, de sorte que $\widetilde{\gamma} = \widetilde{\gamma'} \cup \widetilde{\gamma''}$. Or $\widetilde{\gamma'}$ est l'adhérence de $\{([z], \omega) \in S \mid \omega = (x, 0) \text{ et } x \neq 0\}$, qui est $\{([z], \omega) \in S \mid [z] = [1, 0]\}$. De même $\widetilde{\gamma''} = \{([z], \omega) \in S \mid [z] = [0, 1]\}$. Dans les cartes standards:

$$\psi_0(\widetilde{\gamma'}) = \{ (u, v) \in \mathbb{C}^2 \mid u = 0 \}$$

$$\widetilde{\gamma'} \cap S_1 = \widetilde{\gamma''} \cap S_0 = \emptyset$$

$$\psi_1(\widetilde{\gamma''}) = \{ (u, v) \in \mathbb{C}^2 \mid u = 0 \}.$$

On retiendra que γ est réunion de deux courbes lisses disjointes et que $\pi^{-1}(\gamma) = \tilde{\gamma} \cup E$ est réunion de trois courbes lisses sans point triple et à intersections transverses.

Plus généralement, si γ est réunion de m droites distinctes dans \mathbb{C}^2 passant par l'origine, sa transformée stricte est réunion de m courbes lisses disjointes coupant chacune la courbe exceptionnelle en un point et transversalement.

Exemple 2. $D_2 = \mathbb{C}^2$ et $f(x, y) = x^2 - y^3$. Alors $\tilde{\gamma}$ est l'adhérence de $\{([z], \omega) \in S \mid \omega = (t^3, t^2) \text{ et } t \in \mathbb{C}^*\}$, qui est $\{([t, 1], (t^3, t^2)) \in S \mid t \in \mathbb{C}\}$ and les cartes, $\psi_0(\tilde{\gamma} \cap S_0)$ est l'adhérence de $\{(u, v) \in \mathbb{C}^2 \mid u = t^{-1}, v = t^3, t \in \mathbb{C}^*\}$ et $\psi_1(\tilde{\gamma} \cap S_1)$ celle de $\{(u, v) \in \mathbb{C}^2 \mid u = t, v = t^2, t \in \mathbb{C}^*\}$. Ecrit sans paramètre:

$$\psi_0(\widetilde{\gamma} \cap S_0) = \{(u, v) \in \mathbb{C}^2 \mid u^3 v = 1\}$$

$$\psi_1(\widetilde{\gamma} \cap S_1) = \{(u, v) \in \mathbb{C}^2 \mid u^2 = v\}.$$

Par suite γ est une courbe lisse, et $\pi^{-1}(\gamma) = \gamma \cup E$ est réunion de deux courbes lisses se coupant au seul point $\psi_1^{-1}(0, 0)$. Cette intersection n'étant pas transverse, on itère le procédé en espérant éliminer ce « défaut ».

Au voisinage de ce point d'intersection, $\pi^{-1}(\gamma)$ définit un germe $\underline{\delta}$; on le représente par la courbe δ , zéro de la fonction $g \in \mathcal{O}(C^2)$ définie par $g(x, y) = y(x^2 - y)$. La transformée stricte est donnée dans les cartes par

$$\psi_0(\overset{\sim}{\delta} \cap S_0) = \{(u,v) \in \mathbb{C}^2 \mid u(v-u) = 0\}$$

$$\psi_1(\overset{\sim}{\delta} \cap S_1) = \{(u,v) \in \mathbb{C}^2 \mid u^2v = 1\}.$$

Par suite δ est réunion de deux courbes lisses se coupant en un seul point et transversalement; d'autre part $\pi^{-1}(\delta)$ est réunion de trois courbes lisses se coupant en un seul point, et transversalement deux à deux.

Au voisinage de ce point triple, $\pi^{-1}(\delta)$ définit un germe $\underline{\varepsilon}$. La remarque à la fin de l'exemple 1 montre que $\underline{\varepsilon}$ conduit à une transformée stricte qui est réunion de trois courbes lisses disjointes coupant la courbe exceptionnelle transversalement et en des points distincts.

En composant ces trois éclatements, on obtient une résolution de la singularité γ plongée dans \mathbb{C}^2 , au sens du théorème 8.4 de [17]. En d'autres termes, on obtient une variété lisse M et une application $\zeta \colon M \to \mathbb{C}^2$ ayant les propriétés suivantes:

- 1) ζ induit un isomorphisme de $M \zeta^{-1}$ (0) sur $\mathbb{C}^2 \{0\}$;
- 2) l'adhérence $\tilde{\zeta}^{-1}(\gamma)$ de $\zeta^{-1}(\gamma^*)$ dans M est une courbe lisse;
- 3) $\zeta^{-1}(\gamma)$ est une réunion de courbes lisses sans point triple qui se coupent transversalement.

Revenons au cas général et soit à nouveau n la multiplicité de f à l'origine; nous supposons comme à la section 2 que la droite d'équation x=0 n'est pas une tangente de $\underline{\gamma}$. Nous appellerons transformée stricte de la fonction f et nous noterons \tilde{f} la fonction définie pour tout $(u,v) \in \Delta_2$ $= \psi_0 \left(\pi^{-1}(D_2) \cap S_0\right)$ par $\tilde{f}(u,v) = v^{-n}f(v,uv)$.

Proposition 6. Avec les notations déjà introduites:

- (j) $\psi_0(\tilde{\gamma}_D \cap S_0) = \{(u, v) \in \Delta_2 \mid \tilde{f}(u, v) = 0\}.$
- (jj) Si \underline{f} est irréductible, alors \widetilde{f} s'annule en un seul point de E_0 et y définit un germe $f \in {}_{2}\mathcal{O}$ qui est irréductible.
- (jjj) Supposons \underline{f} irréductible et soient n et \tilde{n} les multiplicités de f et \tilde{f} ; alors $\tilde{n} \leqslant n$ et $\tilde{n} < n$ si et seulement si E_0 est une tangente à $\overset{\sim}{\gamma}$.

Preuve. Supposons $(u, v) \in \psi_0$ $(\gamma_D \cap S_0)$; alors $\pi_0(u, v) = (v, uv) \in \gamma_D$, donc f(v, uv) = 0. Si $v \neq 0$, cela implique $\tilde{f}(u, v) = 0$ par définition de \tilde{f} ; c'est encore vrai par continuité si v = 0.

Supposons $(u, v) \in \Delta_2$ avec $\widetilde{f}(u, v) = 0$, alors $f(\pi_0(u, v)) = v^n f(u, v)$ = 0, donc $\psi_0^{-1}(u, v) \in \pi^{-1}(\gamma_D) \cap S_0$. Si $v \neq 0$, cela s'écrit $\psi_0^{-1}(u, v)$ $\in \gamma_D \cap S_0$. Si v = 0, la fonction $u \mapsto \widetilde{f}(u, 0)$ est de la forme $u \mapsto c \prod (u - \lambda_j)^{sj}$ avec c non nul et $\lambda_1, ..., \lambda_m$ distincts (voir la proposition 5). Elle s'annule donc aux points $(\lambda_j, 0)$ de E_0 ; ceux-ci étant en nombre fini, leurs images inverses par ψ_0 sont par continuité dans $\gamma_D \cap S_0$. L'assertion (j) en résulte.

Si \underline{f} est irréductible, il n'y a qu'un λ_j (voir la preuve de la proposition 4); \widetilde{f} ne s'annule qu'en un point de E_0 et y définit un germe $\underline{\widetilde{f}}$. L'application π induit un homéomorphisme de S - E sur $\mathbb{C}^2 - \{0\}$, donc aussi de π^{-1} (γ_D^*)

 $= \gamma_D - (\gamma_D \cap E)$ sur γ_D^* . L'assertion (jj) résulte donc de la proposition 2. Quitte à changer linéairement les coordonnées, on peut supposer que la tangente à $\underline{\gamma}$ est l'axe d'équation y = 0. Pour tout $(x, y) \in D_2$, on a maintenant

$$f(x, y) = y^{n} + b_{1}(x) y^{n-1} + ... + b_{n}(x)$$

et $b_i(x) = x^{i+1} c_i(x)$ où c_i est holomorphe à l'origine. Pour tout $(u, v) \in \Delta_2$, on a donc

$$\widetilde{f}(u,v) = u^n + vc_1(v)u^{n-1} + \dots + vc_n(v),$$

d'où en particulier $n \le n$. Si n = n, alors $f(u, v) = \sum h_j(u, v)$ (somme de n à l'infini) avec $h_n(u, v) = u^n + vk(u, v)$ pour un polynôme homogène k ad hoc, nul ou de degré n - 1; dans ce cas, la courbe E_0 d'équation v = 0 n'est pas tangente à $\psi_0(\tilde{\gamma}_D \cap S_0)$. Si n < n, alors $\tilde{f}(u, v) = \sum h_j(u, v)$ (somme de n à l'infini) avec \tilde{h}_n divisible par v; dans ce cas, E_0 est tangente à $\psi_0(\tilde{\gamma}_D \cap S_0)$.

Exemple 3. $D_2 = \mathbb{C}^2$ et $f(x, y) = x^5 + y^2$. On peut montrer brutalement que \underline{f} est irréductible. On peut aussi observer que la paire formée de $\mathbb{C}^2 - \{0\}$ et de γ^* se rétracte par déformation sur la paire formée de $\mathbb{S}^3 = \{(x, y) \in \mathbb{C}^2 |x|^2 + |y|^2 = 1\}$ et d'un nœud du tore: la rétraction

applique un point (x, y) sur l'intersection avec S^3 de l'image du chemin $\begin{cases} \mathbf{R}_+^* \to \mathbf{C}^2 \\ t \mapsto (t^2 x, t^5 y) \end{cases}$. En particulier γ^* est connexe et \underline{f} est bien irréductible.

La transformée stricte de f est donnée par

$$\tilde{f}(u,v) = v^{-2}(v^5 + (uv)^2) = u^2 + v^3$$

qui est comme f de multiplicité 2. La tangente de \underline{f} est la droite d'équation u = 0, qui est transverse à E_0 .

Soient alors $D_2 = \mathbb{C}^2$ et $g(x, y) = x^3 + y^2$ de sorte que g = f (pas $g(x, y) = x^2 + y^3$ qui aurait comme tangente la droite d'équation x = 0). On a $g(u, v) = u^2 + v$, qui est de multiplicité 1, et dont la tangente à l'origine est bien E_0 .

Exemple 4. $D_2 = \mathbb{C}^2$ et $f(x, y) = y^5 + x^5y + g(x, y)$ avec g de multiplicité 8 au moins. Montrons que f est réductible.

On a $\widetilde{f}(u, v) = u^5 + uv + h(u, v)$ avec h d'ordre 3 au moins. Donc \widetilde{f} a deux tangentes, d'où l'assertion par les propositions 5 et 6 (jj).

II. SINGULARITÉS NORMALES DANS C3

II.1. Ensembles normaux

Si X est un ensemble analytique, $X_{\text{rég}}$ désigne l'ouvert de ses *points* réguliers; on sait qu'il est dense dans X. (Voir le corollaire de la proposition 1 si X est une courbe plane, l'argument de la proposition 7 ci-dessous si X est une hypersurface dans \mathbb{C}^k , et le théorème III. C.3 de [8] en général.)

Rappelons qu'un ensemble X est irréductible en un point p si X n'est pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce cas, on peut trouver un voisinage de p dont la trace sur $X_{rég}$ est connexe. Réciproquement, s'il existe un bon voisinage U de P dans X dont la trace sur $X_{rég}$ est connexe, alors X est irréductible en p. (Voir la proposition 2 si X est une courbe plane, et la fin de la section III.C de [8] pour le cas général.) Le terme de « bon voisinage » pour U signifie qu'il existe une base de voisinages $\{U_{\alpha}\}$ de p dans X telle que chaque $U_{\alpha} - \{p\}$ soit un rétracte par déformation de $U - \{p\}$; voir [21].

On appelle fonction faiblement holomorphe sur un voisinage ouvert U d'un point p de X une fonction définie et holomorphe sur $U \cap X_{\text{rég}} - \{p\}$ qui est bornée sur $K \cap X_{\text{rég}} - \{p\}$ pour tout compact K de U; on dit que l'espace X est normal en p si toute fonction de ce type admet un prolongement (nécessairement unique par continuité) en une fonction holomorphe sur U. Par exemple, X est normal en tous ses points réguliers (c'est un cas particulier du théorème d'extension de Riemann) et n'est normal en aucun de ses points réductibles (choisir un voisinage connexe U de p dans X et une partition $U_0 \cup U_1$ de $U \cap X_{\text{rég}}$ en ouverts disjoints non vides, puis définir f comme valant 0 sur U_0 et 1 sur U_1). Soit $\mathcal{O}_{X,p}$ l'anneau des germes de fonctions holomorphes au voisinage d'un point p de X; pour que X soit normal en p, il faut et il suffit que $\mathcal{O}_{X,p}$ soit intégralement clos. (La nécessité résulte immédiatement des définitions; pour la suffisance, voir par exemple [18]; en général, la clôture intégrale de $\mathcal{O}_{X,p}$ coïncide avec l'anneau des germes de fonctions faiblement holomorphes.)

C'est un corollaire facile de la proposition 3 qu'une courbe plane est normale en un point si et seulement si elle y est lisse. Soient par exemple

$$\gamma = \{(x, y) \in \mathbb{C}^2 \mid x^2 = y^3\}$$
 et $f \colon \begin{cases} \gamma - \{0\} \to \mathbb{C} \\ (x, y) \mapsto x/y \end{cases}$

alors f a un prolongement continu non holomorphe qui applique l'origine de \mathbb{C}^2 sur 0, de sorte que γ n'est pas normale à l'origine. Dans toute courbe (plane ou non), on sait que les points normaux coïncident avec les points lisses. L'objet de ce chapitre est d'examiner la nature des singularités des surfaces normales dans \mathbb{C}^3 .

Dans les sections suivantes, nous ferons un usage répété d'un théorème de H. Cartan [3]: Soient M une variété lisse et G un groupe fini opérant holomorphiquement sur M. Alors l'espace des orbites X = M/G possède une structure canonique d'ensemble analytique normal (= normal en chaque point). Si $\pi: M \to X$ est la projection canonique, U un ouvert de X, et $f: U \to \mathbb{C}$ une application, alors f est holomorphe pour la structure en question si et seulement si f π l'est sur π^{-1} (U).

II.2. Les singularités des surfaces normales dans \mathbb{C}^3 sont isolées

Soit $\underline{\Gamma}$ un germe de surface plongé dans \mathbb{C}^3 . On peut supposer $\underline{\Gamma}$ donné par les zéros d'un polynôme de Weierstrass. Plus précisément, il existe

- 1º) Un polycylindre D_3 dans \mathbb{C}^3 , centré à l'origine; nous noterons D_2 et D_1 ses traces sur le plan d'équation z=0 et sur la droite d'équations y=z=0.
- 2º) Un polynôme de Weierstrass $F \in \mathcal{O}(D_2)$ [z], c'est-à-dire une fonction $F \in \mathcal{O}(D_3)$ avec

$$F(x, y, z) = z^{n} + a_{1}(x, y) z^{n-1} + ... + a_{n}(x, y)$$

pour tous $(x, y, z) \in D_3$, où les a_j sont des fonctions holomorphes dans D_2 qui s'annulent à l'origine.

La germe $\underline{\Gamma}$ est alors représenté par $\Gamma_D = \{(x, y, z) \in D_3 \mid F(x, y, z) = 0\}$. Nous écrirons plus simplement Γ si $D_3 = \mathbb{C}^3$. On peut toujours remplacer D_3 par un polycylindre plus petit; en particulier, on pourra toujours supposer que la projection canonique fournit une application surjective π de Γ_D sur D_2 . Si n=1, la surface Γ_D est lisse à l'origine; nous supposerons désormais $n \geqslant 2$.

Nous noterons γ_D l'ensemble analytique $\{(x, y) \in D_2 \mid \text{Dis } (F)(x, y) = 0\}$. Nous allons voir que ce *lieux discriminant* définit un germe $\underline{\gamma}$ de courbe plane qui joue un rôle important dans l'étude de $\underline{\Gamma}$.

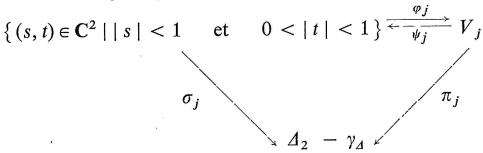
PROPOSITION 7. Le lieux discriminant est une courbe passant par l'origine. Si D_3 est suffisamment petit, alors $\gamma_D^* = \gamma_D - \{0\}$ est lisse et π fournit par restriction un revêtement holomorphe $\Gamma_D - \pi^{-1}(\gamma_D) \to D_2 - \gamma_D$ à n feuilles. De plus, si Γ est normal, alors $\Gamma_D^* = \Gamma_D - \{0\}$ est lisse.

Preuve. Les mêmes arguments que ceux de la preuve de la proposition 1 montrent: d'abord que Dis (F) est une fonction holomorphe dans D_2 qui s'annule à l'origine, et qui est non nulle — donc que γ_D est une courbe plane passant par l'origine et qu'on peut supposer γ_D^* lisse; ensuite que π se restreint en une projection de revêtement de $\Gamma_D - \pi^{-1}$ (γ_D) sur $D_2 - \gamma_D$.

Soient alors $(x_0, y_0) \in \gamma_D^*$ et Δ_2 un voisinage de (x_0, y_0) dans D_2 tel que γ_A soit lisse. Notons Δ_3 l'ouvert $\{(x, y, z) \in D_3 \mid (x, y) \in \Delta_2\}$. On peut supposer qu'on s'est donné des coordonnées (ξ, η) sur un voisinage de Δ_2 telles que Δ_2 soit le polycylindre défini par $|\xi| < 1$ et $|\eta| < 1$ et telles que $\gamma_A = \{(\xi, \eta) \in \Delta_2 \mid \eta = 0\}$. Nous noterons π_A la restriction de π à Γ_A . La première partie de la preuve montre que la restriction de π_A à $V = \{(\xi, \eta, z) \in \Gamma_A \mid \eta \neq 0\}$ est un revêtement holomorphe à n feuilles.

Soient $V_1, ..., V_k$ les composantes connexes de V. Pour chaque $j \in \{1, ..., k\}$, notons $\pi_j \colon V_j \to \Delta_2 - \gamma_A$ la restriction de π_A à V_j ; c'est un revêtement holomorphe connexe à n_j feuilles (la somme des n_j vaut n).

L'application σ_j de $\{(s,t) \in \mathbb{C}^2 \mid |s| < 1 \text{ et } 0 < |t| < 1\}$ dans $\Delta_2 - \gamma_\Delta$ donnée par $\sigma_j(s,t) = (s,t^{n_j})$ est un revêtement du même type. Le groupe fondamental de $\Delta_2 - \gamma_\Delta$ étant \mathbb{Z} , il existe des isomorphismes analytiques inverses l'un de l'autre φ_j et ψ_j rendant le diagramme



commutatif. Soient \overline{V}_j l'adhérence de V_j dans Δ_3 (elle est dans Γ_Δ), $\overline{\pi}_j$ la restriction de π_Δ à \overline{V}_j (qui est aussi l'unique extension continue de π_j à \overline{V}_j) et $B = \{(s,t) \in \mathbb{C}^2 \mid |s| < 1 \text{ et } |t| < 1\}$. Le théorème d'extension de Riemann implique que φ_j admet un prolongement holomorphe $\overline{\varphi}_j$: $B \to \overline{V}_j$. Nous montrons plus bas que \overline{V}_j est ouvert dans Γ_Δ ; en particulier \overline{V}_j est un ensemble normal. Le même théorème de Riemann implique que ψ_j admet un prolongement à $(\overline{V}_j)_{\text{rég}}$, et la définition de la normalité implique que celui-ci s'étend en $\overline{\psi}_j$: $\overline{V}_j \to B$. Les morphismes $\overline{\varphi}_j$ et $\overline{\psi}_j$ sont encore inverses l'un de l'autre; par suite \overline{V}_j est isomorphe à B et Γ_Δ est lisse.

Montrons enfin que \overline{V}_j est ouvert dans Γ_{Δ} . Soit $p \in \overline{V}_j - V_j$. Comme Γ_{Δ} est normal, il est irréductible en p et il existe un voisinage U de p dans Γ_{Δ} avec $U' = U \cap (\Gamma_{\Delta})_{\text{rég}}$ connexe. Toujours en vertu du même théorème de Riemann, l'ouvert $U'' = \{(\xi, \eta, z) \in U' \mid \eta \neq 0\}$ est connexe (voir [8], corollaire I.C.4). Montrons que U'' est dans V_j . Si k = 1, il n'y a rien à vérifier. Si k > 1, supposons au contraire $U'' \not = V_j$; alors il existe $i \neq j$ avec $U'' \cap V_i$ non vide. Mais $U'' \cap V_j$ n'est pas vide non plus, d'où l'absurdité puisque V_j et V_i sont des composantes connexes distinctes de V. Donc U'' est bien dans V_j , et U' est dans \overline{V}_j ; par suite $U \subset \overline{V}_j$. Ceci montre que \overline{V}_i est ouvert dans Γ_{Δ} et achève la preuve.

COROLLAIRE. Les singularités des surfaces normales dans C³ sont isolées.

On sait que le corollaire est vrai pour toute surface, plongée ou non dans \mathbb{C}^3 . Un théorème d'Oka affirme que la réciproque du corollaire est vraie; plus généralement, une hypersurface de \mathbb{C}^k dont le lieu singulier est de codimension au moins 2 dans l'hypersurface est un espace normal; voir [19], pages 139-140.

Il n'y a pas d'analogue ici au corollaire de la proposition 3, même pour les surfaces normales; cela résulte par exemple des surfaces étudiées au chapitre III. De fait, un théorème fondamental de Mumford affirme que les singularités analytiques se détectent par le seul groupe fondamental. Plus précisément, soient X une portion de surface plongée dans \mathbb{C}^k et x_0 un point de X; on suppose que $X - \{x_0\}$ est lisse. Soit S une petite sphère centrée en x_0 . L'intersection $X \cap S$ est une variété différentiable (si le rayon de la sphère est suffisament petit) de dimension réelle 3; il est facile de voir que le type topologique de cette variété ne dépend pas du rayon de la sphère. Le théorème de Mumford affirme que le groupe fondamental de $X \cap S$ est trivial si et seulement si x_0 est un point lisse de X [16].

II.3. SUR LA NORMALISATION

On appelle normalisation d'un ensemble analytique X la donnée d'un ensemble normal X et d'un morphisme propre fini surjectif $v: X \to X$ ayant la propriété suivante: si $A = v^{-1} (X - X_{rég})$, alors X - A est dense dans X et la restriction de v est un isomorphisme de X - A sur $X_{rég}$. Il est facile de montrer que deux normalisations d'un même ensemble sont isomorphes au sens convenable. C'est par contre un résultat très profond que tout espace possède une normalisation (voir [5], appendice au chapitre 2, et [18]); remarquons seulement que nous l'avons essentiellement montré dans le cas très particulier des courbes planes. Nous utiliserons à plusieurs reprises le résultat suivant, qui dit qu'on peut parfois « normaliser les morphismes » (voir par exemple [5], page 2.28).

PROPOSITION 8. Soient X et Y des ensembles analytiques, $v_X \colon \tilde{X} \to X$ et $v_Y \colon \tilde{Y} \to Y$ leurs normalisations, et $f \colon X \to Y$ une application holomorphe telle que $A = f^{-1}(Y_{\text{rég}})$ soit dense dans X. Alors il existe une application holomorphe $f \colon \tilde{X} \to \tilde{Y}$ telle que $v_Y f = f v_X$.

Preuve. Soit $\tilde{A} = v_X^{-1}(A)$. Comme A est dense dans X, il en est de même de $A \cap X_{\text{rég}}$, et $v_X^{-1}(A \cap X_{\text{rég}})$ est dense dans $v_X^{-1}(X_{\text{rég}})$ lui-même dense dans X; donc A est dense dans X.

La restriction de $f v_X$ applique \widetilde{A} dans $Y_{\text{rég}}$ et se relève donc en F: $\widetilde{A} \to v_y^{-1}$ ($Y_{\text{rég}}$). Si K est un compact de \widetilde{X} , alors (fv_X) ($\widetilde{A} \cap K$) $\subset L$ = (fv_X) (K) qui est compact; $F(A \cap K)$ est donc relativement compact dans \widetilde{Y} puisque v_y est propre. Par suite, l'image par F de tout compact est relativement compacte, ce qui veut précisément dire que F est bornée.

L'ensemble $\tilde{X} - \tilde{A}$ est contenu dans un sous-ensemble analytique propre de \tilde{X} car X - A est dans f^{-1} $(Y - Y_{\text{rég}})$. Comme \tilde{X} est normal, F se prolonge en un morphisme $\tilde{f} \colon \tilde{X} \to \tilde{Y}$. Il est évident que \tilde{f} est l'unique morphisme satisfaisant $v_Y \tilde{f} = f v_X$.

Sans l'hypothèse que A est dense dans X, il n'y a en général ni existence ni unicité. En effet, soient d'abord X un ensemble normal, $S = \{(x, y) \in \mathbb{C}^2 | xy = 0\}$ et f l'application de X sur le point double de S. Alors S est réunion disjointe de deux droites, l'image inverse par V_S du point double est formée de deux points, et f a plusieurs relèvements.

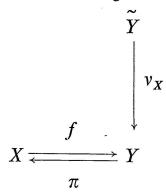
Ensuite, l'exemple ci-dessous montre qu'il peut n'exister aucune « normalisée ». Soient T un tore de dimension complexe un, σ une involution sans point fixe de T et X le tore T/σ . Sur le fibré trivial $L = T \times \mathbb{C}$, considérons la relation d'équivalence

$$(a, z) \sim (a', z') \begin{cases} \sin a = a' & \text{et } z = z' \\ \text{ou si } a = \sigma(a') & \text{et } z = z' = 0. \end{cases}$$

L'espace quotient Y est muni naturellement d'une structure de fibré analytique $\pi: Y \to X$; si U est un ouvert trivialisant de X pour ce fibré, alors $\pi^{-1}(U) = U \times S$ avec S comme dans l'exemple précédent.

L'ensemble analytique X est lisse, donc normal; l'ensemble $Y_{\rm sing} = Y - Y_{\rm rég}$ est de codimension un dans Y (en particulier Y n'est pas normal) et Y se fibre sur X avec pour fibre la réunion disjointe de deux droites. Soit $E = v_Y^{-1}$ ($Y_{\rm sing}$). Alors Y - E est homéomorphe à $Y_{\rm rég}$, donc est connexe (car $Y_{\rm rég}$ est l'image par $L \to Y$ de l'ensemble $L - T \times \{0\}$ qui est connexe); comme il est dense dans Y, celui-ci est aussi connexe. Par suite E est connexe, car c'est un rétracte de Y, et la restriction de V_Y à E est le revêtement connexe à deux feuilles de $Y_{\rm sing}$.

Si $f: X \to Y$ est la section nulle du fibré π , (de sorte que le A de la proposition 8 est vide), il est alors évident que f ne se relève pas, car cela impliquerait que le revêtement $E \to Y_{\text{sing}} = f(X)$ soit trivial.



III. SINGULARITÉS NORMALES AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.1. LES SURFACES $A_{n,q}$ ET LEURS NORMALISATIONS

Soient n et q des entiers, avec n positif et $q \le n$. Nous noterons $A_{n,q}$ la surface $\{(x, y, z) \in \mathbb{C}^3 \mid z^n = xy^{n-q}\}$.

Si n = 1, les surfaces ainsi définies sont toutes lisses: l'isomorphisme $(x, y, z) \mapsto (x, y, z - xy^{1-q})$ de \mathbb{C}^3 applique $A_{1,n}$ sur l'hyperplan d'équation z = 0. De même, si q = n, l'isomorphisme $(x, y, z) \mapsto (x - z^n, y, z)$ applique $A_{n,n}$ sur l'hyperplan d'équation x = 0. Nous supposerons désormais $n \ge 2$ et q < n sauf mention expresse du contraire.

Si q = n - 1, les dérivées partielles du polynôme $z^n - xy^{n-q} = z^n - xy$ ne s'annulent simultanément qu'à l'origine, et $A_{n,n-1}$ est lisse en dehors de ce point (donc normale en vertu d'un théorème d'Oka rappelé en II.2). Si $q \le n - 2$, la surface $A_{n,q}$ est lisse en dehors de la droite d'équations y = z = 0; nous vérifions ci-dessous que ces points sont effectivement tous singuliers; la proposition 7 montre donc que $A_{n,q}$ n'est pas normale.

Soit $G_{n,q}$ le groupe des isomorphismes de C^2 de la forme $(s, t) \mapsto (\zeta^q s, \zeta t)$ où ζ est une racine *n*-ième de l'unité; c'est un groupe cyclique d'ordre n. Nous noterons $X_{n,q}$ l'ensemble des orbites, muni de sa structure canonique d'ensemble analytique normal.

Si q = 0, l'ensemble $X_{n,0}$ est lisse: l'application $(s, t) \mapsto (s, t^n)$ passe au quotient et définit un isomorphisme de $X_{n,0}$ sur $\mathbb{C} \times (\mathbb{C}/(\mathbb{Z}/n\mathbb{Z})) \approx \mathbb{C}^2$. Les espaces $X_{n,q}$ et $X_{n,q'}$ sont évidemment identiques si $q' \equiv q \pmod{n}$; il suffit donc d'étudier les $X_{n,q}$ pour lesquels $1 \leqslant q < n$ (voir de plus la proposition 13).

Considérons le morphisme $\widetilde{\phi}_{n,q} \colon \mathbb{C}^2 \to \mathbb{C}^3$ défini par $\widetilde{\phi}_{n,q}(s,t) = (s^n, t^n, st^{n-q})$; son image est dans $A_{n,q}$ et il définit par passage au quotient un morphisme $\phi_{n,q} \colon X_{n,q} \to A_{n,q}$. Nous écrirons aussi $\widetilde{\phi}$ et ϕ au lieu de $\widetilde{\phi}_{n,q}$ et $\phi_{n,q}$.

PROPOSITION 9. Le morphisme ϕ induit un homéomorphisme de l'image de $\{(s,t)\in \mathbb{C}^2\mid t\neq 0\}$ dans $X_{n,q}$ sur $\{(x,y,z)\in A_{n,q}\mid y\neq 0\}$. Si n et q sont premiers entre eux, ϕ lui-même est un homéomorphisme de $X_{n,q}$ sur $A_{n,q}$.

Preuve. Montrons d'abord que $\tilde{\phi}$ est surjectif et que l'image inverse par $\tilde{\phi}$ de tout point autre que l'origine est formée de n points.

Soit $P = (x, y, z) \in A_{n,q}$ avec $y \neq 0$. Choisissons une racine *n*-ième t de y et posons $s = zt^{-n+q}$. Alors

$$\tilde{\phi}(s,t) = (z^n y^{-n+q}, y, z) = (x, y, z).$$

Soit $(s', t') \in \mathbb{C}^2$ avec $\widetilde{\phi}(s', t') = \widetilde{\phi}(s, t)$. Il existe des racines *n*-ièmes ζ et η de l'unité avec $s' = \zeta s$, $t' = \eta t$ et $\zeta \eta^{n-q} = 1$. Par suite $\widetilde{\phi}^{-1}(P)$ a n points.

Soit $Q = (x, 0, 0) \in A_{n,q}$ avec $x \neq 0$. Choisissons une racine *n*-ième *s* de *x*. Alors $\tilde{\phi}^{-1}(Q) = \{(\zeta s, 0) \in \mathbb{C}^2 \mid \zeta \in \mathbb{C} \text{ et } \zeta^n = 1\}$ a *n* points.

Le groupe $G_{n,q}$ agit librement sur $\{(s,t) \in \mathbb{C}^2 \mid t \neq 0\}$, et même sur $\mathbb{C}^2 - \{0\}$ lorsque n et q sont premiers entre eux. Il en résulte que la restriction de ϕ à l'image de $\{(s,t) \in \mathbb{C}^2 \mid t \neq 0\}$ dans $X_{n,q}$ est injective dans tous les cas, et que ϕ lui-même est une bijection si (n,q) = 1.

Montrons par exemple que ϕ est un homéomorphisme si (n, q) = 1. Pour tout nombre réel positif r, soient K_r l'image dans $X_{n,q}$ de

$$\{(s,t) \in \mathbb{C}^2 \mid |s| \leqslant r \text{ et } |t| \leqslant r\}$$

et L_r l'intersection avec $A_{n,q}$ de

$$\{(x, y, z) \in \mathbb{C}^3 \mid |x| \leqslant r^n, |y| \leqslant r^n, |z| \leqslant r^{1+n-q}\}.$$

La restriction de ϕ à K_r est une bijection continue du compact K_r sur le compact L_r ; c'est donc un homéomorphisme. Par suite, ϕ est un homéomorphisme.

COROLLAIRE. Si (n, q) = 1, la surface $A_{n,q}$ est topologiquement singulière à l'origine.

Preuve. Pour tout r > 0, le complémentaire de l'origine dans L_r est homéomorphe au complémentaire du point central dans K_r . Il se rétracte donc par déformation sur l'espace lenticulaire que définit l'action de $G_{n,q}$ sur une petite sphère S^3 centrée à l'origine de C^2 . (L'intérieur de L_1 est donc un bon voisinage de l'origine dans $A_{n,q}$ au sens de la section II.1.) En particulier, le groupe fondamental du complémentaire de l'origine dans L_r n'est pas trivial.

Remarquons que c'est aussi un corollaire immédiat de la proposition 9 que $(A_{n,q})_{r \neq g}$ est « connexe à l'origine»: $(L_r)_{r \in \mathbb{R}_+^*}$ est une base de voisinages de l'origine dans $A_{n,q}$ et $L_r \cap (A_{n,q})_{r \neq g}$ est connexe pour tout $r \in \mathbb{R}_+^*$. D'autre part, il est facile de vérifier que le polynôme $z^n - xy^{n-q}$ est irréductible dans ${}_2\mathcal{O}[z]$, donc aussi dans ${}_3\mathcal{O}$ (voir [8], lemme II.B.5). On vérifie ainsi un cas particulier d'une affirmation énoncée à la section II.1.

PROPOSITION 10. Supposons $q \le n-2$. Soient $c \in \mathbb{C}^*$ et $Q = (c, 0, 0) \in A_{n,q}$. Alors le voisinage $\{(x, y, z) \in A_{n,q} \mid |x-c| < |c|\}$ de Q dans $A_{n,q}$ est isomorphe au produit direct du disque $D = \{\xi \in \mathbb{C} \mid |\xi| < 1\}$ et de la courbe plane $\gamma = \{(y, z) \in \mathbb{C}^2 \mid z^n = y^{n-q}\}$.

Preuve. Soit $\rho: D \to \mathbb{C}$ la fonction holomorphe définie par $\rho(\xi)^n = 1 + \xi$ pour tout $\xi \in D$ et $\rho(0) = 1$. Soit d une racine (n-q)-ième de 1/c. Considérons l'application $\alpha: D \times \gamma \to \mathbb{C}^3$ définie par $\alpha(\xi, y, z) = (c(1+\xi), dy, \rho(\xi)z)$. Pour tout $(\xi, y, z) \in D \times \gamma$, on a

$$(\rho(\xi)z)^{n}-c(1+\xi)(dy)^{n-q}=(1+\xi)(z^{n}-y^{n-q})=0.$$

Par suite α définit un morphisme

$$D \times \gamma \to \{(x, y, z) \in A_{n,q} \mid |x - c| < |c| \}.$$

qui applique (0, 0, 0) sur Q et d'inverse donné par

$$(x, y, z) \mapsto (c^{-1}x - 1, d^{-1}y, (\rho(c^{-1}x - 1))^{-1}z)$$
.

COROLLAIRE. Supposons $q \le n-2$. Si $(n,q) \ne 1$, la surface $A_{n,q}$ est topologiquement singulière en tout point de l'axe d'équations y=z=0. Si (n,q)=1, c'est une variété topologique au voisinage de Q qui n'est pas normale en Q.

Preuve. Si $(n, q) \neq 1$, la courbe γ a plusieurs branches à l'origine; les intersections de petites sphères centrées à l'origine dans \mathbb{C}^2 avec

 $\gamma - \{0\}$ ne sont donc pas connexes et $A_{n,q}$ est bien topologiquement singulière en Q. Si (n, q) = 1, la surface est une variété topologique au voisinage de Q en vertu du corollaire à la proposition 3. Reste à montrer que $D \times \gamma$ n'est pas normal. Cela résulte de la proposition 7, ou de l'argument direct qui suit.

Soient $a, b \in \mathbb{Z}$ avec an + b(n-q) = 1, et $\psi : D \times \gamma \to \mathbb{C}$ la fonction définie par $\psi(\xi, y, z) = \begin{cases} y^a z^b & \text{si } yz \neq 0 \\ 0 & \text{si } y = z = 0 \end{cases}$. Alors ψ n'est pas holomorphe, mais ψ^n l'est car $\psi(\xi, y, z)^n = y$. L'anneau des germes en Q de fonctions holomorphes n'est donc pas intégralement clos.

PROPOSITION 11. Pour tout couple (n, q) avec $n \ge 2$ et $q \le n - 1$, le morphisme $\phi_{n,q} \colon X_{n,q} \to A_{n,q}$ est la normalisation de $A_{n,q}$. C'est un isomorphisme si et seulement si q = n - 1.

Preuve. Cela résulte de ce qui précède et du théorème de Cartan rappelé à la section II.1. ■

On pourrait montrer que les surfaces $A_{n,q}$, $A_{n,q-n}$, $A_{n,q-2n}$, ... sont non isomorphes deux à deux; par suite, $X_{n,q}$ est la normalisation d'une infinité d'ensembles analytiques distincts.

III.2. Les discriminants des $A_{n,q}$ et les ouverts $A_{n,q}^{**}$

Soient à nouveau n et q des entiers avec $n \ge 2$ et q < n. Notons $F \in {}_{2}\theta$ [z] le polynôme $z^{n} - xy^{n-q}$. A un facteur numérique près, son discriminant est une puissance de xy^{n-q} . Soient en effet $\lambda_{1}, ..., \lambda_{n}$ ses racines, qui sont dans une extension convenable du corps des quotients de ${}_{2}\theta$; alors

Dis
$$(F)$$
 = $\prod \frac{\partial F}{\partial z}(\lambda_j) = \prod n\lambda_j^{n-1} = (\prod n\lambda_j^n) (\prod \lambda_j)^{-1}$
= $n^n (xy^{n-q})^n (-1)^n F(x, y, 0)^{-1} = (-1)^{n-1} n^n (xy^{n-q})^{n-1}$

(tous les produits étant sur j de 1 à n). Comme à la section II.2, désignons par $\pi: A_{n,q} \to \mathbb{C}^2$ la restriction à $A_{n,q}$ de la projection canonique $(x, y, z) \mapsto (x, y)$. Nous noterons \mathbb{C}^{**} l'espace \mathbb{C}^2 privé du lieu discriminant $\gamma = \{(x, y) \in \mathbb{C}^2 \mid xy = 0\}$ et $A_{n,q}^{**}$ l'image inverse par π de \mathbb{C}^{**} . La proposition 7 ou un examen direct montre que π se restreint en un revêtement holomorphe à n feuilles

$$\pi^{**}: A_{n,q}^{**} \to \mathbb{C}^{**}.$$

Nous notons ci-dessous Fond (Y) le groupe fondamental d'un espace topologique Y; nous n'aurons à considérer que des cas où ce groupe est abélien, ce qui nous autorise à ne pas marquer de point base sur Y.

Le groupe fondamental de $C^{**} = C^* \times C^*$ est le groupe abélien libre sur deux générateurs représentés par les lacets

$$\begin{cases} [0,1] \to \mathbb{C}^* \\ t \mapsto (e(t),1) \end{cases} \text{ et } \begin{cases} [0,1] \to \mathbb{C}^* \\ t \to (1,e(t)) \end{cases}$$

avec $e(t) = \exp(i2\pi t)$ pour tout $t \in [0, 1]$. Nous identifierons désormais Fond (C**) et ces deux générateurs à Z² et sa base canonique.

Proposition 12. Le groupe fondamental de $A_{n,q}^{**}$ est abélien libre sur deux générateurs. Son image dans \mathbb{Z}^2 = Fond (\mathbb{C}^{**}) définie par le revêtement π^{**} est engendrée par (n, 0) et (q, 1).

Preuve. L'application φ de $\{u, v\} \in \mathbb{C}^2 \mid uv \neq 0\}$ dans $A_{n,q}^{**}$ définie par $\varphi(u, v) = (u^n v^q, v, uv)$ est un isomorphisme d'inverse $(x, y, z) \mapsto (z/y, y)$. Donc Fond $(A_{n,q}^{**})$ est bien isomorphe à \mathbb{Z}^2 , et son image par π^{**} dans Fond (C_{xy}^{**}) est aussi l'image de \mathbf{Z}^2 = Fond (C_{uv}^{**}) dans \mathbf{Z}^2 = Fond (C_{xy}^{**}) induite par

$$\begin{cases} \{(u,v) \in \mathbb{C}^2 \mid uv \neq 0\} \to \{(x,y) \in \mathbb{C}^2 \mid xy \neq 0\} \\ (u,v) \mapsto (u^n v^q, v) \end{cases}$$

 $\begin{cases} \{(u,v) \in \mathbb{C}^2 \mid uv \neq 0\} \to \{(x,y) \in \mathbb{C}^2 \mid xy \neq 0\} \\ (u,v) \mapsto (u^n v^q, v) \end{cases}$ Remarquons que les applications $g: \begin{cases} A_{n,q-n}^{**} \to A_{n,q}^{**} \\ (\xi,\eta,\zeta) \mapsto (\xi,\eta,\zeta/\eta) \end{cases}$ et $h: \begin{cases} A_{n,q}^{**} \to A_{n,q-n}^{**} \\ (x,y,z) \mapsto (x,y,yz) \end{cases}$ sont des isomorphismes inverses l'un de l'autre.

Continuons à noter $X_{n,q}$ [respectivement $X_{n,q-n}$] l'espace normalisé de $A_{n,q}$ [resp. $A_{n,q-n}$], mais « oublions » provisoirement sa description comme quotient de \mathbb{C}^2 par $G_{n,q}$; comme illustration de la section II.3, nous allons montrer que $X_{n,q}$ et $X_{n,q-n}$ sont isomorphes.

Soit $\phi: X_{n,q-n} \to A_{n,q-n}$ la normalisation; on peut considérer g comme une application de $\phi^{-1}(A_{n,q-n}^{**})$ dans $A_{n,q}^{**}$. Elle est évidemment bornée, et se prolonge en $g: X_{n,q-n} \to A_{n,q}$. La proposition 8 affirme que g se relève en $G: X_{n,q-n} \to X_{n,q}$. De même h (ou son prolongement évident $A_{n,q}$ $\rightarrow A_{n,q-n}$) se relève en $H: X_{n,q} \rightarrow X_{n,q-n}$. Comme G et H sont inverses l'un de l'autre une fois restreints aux ouverts non vides $U = \phi^{-1} (A_{n,q-n}^{**})$ et G(U), on a $G = H^{-1}$.

La proposition suivante montre qu'il y a d'autres isomorphismes entre les $X_{n,q}$.

PROPOSITION 13. Pour tout entier positif d, les espaces $X_{dn,dq}$ et $X_{n,q}$ sont isomorphes.

Première preuve. L'application $g: \begin{cases} A_{dn,dq}^{**} \to A_{n,q}^{**} \\ (\xi,\eta,\zeta) \mapsto (\zeta^n \eta^{-n+q},\eta,\zeta) \end{cases}$ est un isomorphisme d'inverse h décrit par $h(x,y,z) = (x^d,y,z)$. Le même argument que ci-dessus montre que g, considérée comme application de $\phi_{dn,dq}^{-1}$ $(A_{dn,dq}^{**})$ dans $A_{n,q}^{**}$, se relève et se prolonge en $G: X_{dn,dq} \to X_{n,q}$ et que h définit de même $H: X_{n,q} \to X_{dn,dq}$ avec $G = H^{-1}$.

Seconde preuve. Soit $\varphi: \mathbb{C}^2 \to \mathbb{C}^2$ défini par $\varphi(s, t) = (s, t^d)$. Pour tout $k \in \{0, 1, ..., dn - 1\}$, considérons $\underline{e}(k/dn)$ dans $G_{dn,dq}$ et $\underline{e}(k/n)$ dans $G_{n,q}$. Alors

$$\widetilde{\varphi}\left(\underline{e}\left(k/dn\right)(s,t)\right) = \left(\underline{e}\left(k/dn\right)^{dq}s, \left(\underline{e}\left(k/dn\right)t\right)^{d}\right)$$
$$= \left(\underline{e}\left(k/n\right)^{q}s, \underline{e}\left(k/n\right)t^{d}\right) = \underline{e}\left(k/n\right)\widetilde{\varphi}\left(s,t\right)$$

et φ définit un morphisme $\varphi: X_{dn,dq} \to X_{n,q}$. Il est évident que φ et φ sont surjectifs.

Montrons que φ est injectif. Soient (u, v) et (s, t) des points de \mathbb{C}^2 dont les images par φ sont congrues modulo $G_{n,q}$. Il existe donc $k \in \{0, 1, ..., n-1\}$ tel que $(u, v^d) = (e(k/n)^q s, e(k/n) t^d)$. Par suite, il existe aussi $j \in \{0, 1, ..., d-1\}$ avec v = e(j/d) e(k/dn) t. La transformation e(jn+k)/dn de $G_{dn,dq}$ applique alors (s, t) sur

$$\underbrace{\left(e\left((jn+k)/dn\right)^{dq}s, \underline{e}\left((jn+k)/dn\right)t\right)}_{=\left(\underline{e}\left(jq\right)\underline{e}\left(kq/n\right)s, \underline{e}\left(j/d\right)\underline{e}\left(k/dn\right)t\right) = (u,v),$$

de sorte que (s, t) et (u, v) sont congrus modulo $G_{dn,dq}$.

Par suite φ est bijectif. On peut montrer comme dans la preuve de la proposition 9 que φ est un homéomorphisme. Comme φ^{-1} est un morphisme sauf a priori au point singulier et comme $X_{n,q}$ est normal, φ^{-1} est un morphisme en tout point et φ est un isomorphisme.

Nous laissons au lecteur le soin de vérifier que l'automorphisme (u, v) $\mapsto (v, u)$ de \mathbb{C}^2 définit, lorsque $qq' \equiv 1 \pmod{n}$, un isomorphisme de $X_{n,q}$ sur $X_{n,q'}$. On peut montrer qu'il n'existe pas d'autres isomorphismes que ceux écrits jusqu'ici: si $X_{n,q}$ et $X_{n',q'}$ sont isomorphes avec (n,q) = (n', q') = 1, alors n = n' et q = q' ou $qq' \equiv 1 \pmod{n}$; voir [21], théorème 2.

Si q = n - 1, nous avons vu que ϕ est un isomorphisme de $X_{n,n-1}$ sur $A_{n,n-1}$; en d'autres termes que la dimension de plongement de la singularité normale $X_{n,n-1}$ est 3. On sait calculer en général la dimension de plongement de $X_{n,q}$: si (n,q) = 1 et avec les notations de la section IV.2, elle vaut $3 + \sum_{k=1}^{s} (b_k - 2)$. En particulier, la réciproque à l'assertion ci-dessus est aussi vraie: si (n,q) = 1 et si $X_{n,q}$ se plonge dans \mathbb{C}^3 , alors q = n - 1. Voir [22], fin du § 3.

III.3. CLASSIFICATION

Soit $\underline{\Gamma}$ un germe de surface plongé dans \mathbf{C}^3 . Reprenons les notations de la section II.2; supposons que le lieu discriminant exhibe une singularité consistant en un point double avec croisement normal — en d'autres termes, supposons qu'on puisse choisir les coordonnées de telle sorte que $\gamma_D = \{(x, y) \in D_2 \mid xy = 0\}$. Nous noterons D_2^{**} l'espace $D_2 - \gamma_D$ et Γ_D^{**} son image inverse par π ; la projection se restreint en un revêtement à n feuilles π^{**} : Γ_D^{**} \to D_2^{**} . On identifie comme à la section précédente le groupe fondamental de D_2^{**} à \mathbf{Z}^2 .

PROPOSITION 14. Il existe un polycylindre E_2 dans \mathbb{C}^2 , un morphisme $\rho^{**}: \Gamma_D^{**} \to E_2^{**}$ et des entiers n, q avec $0 \leqslant q < n$ et (n, q) = 1 tels que ρ^{**} induise une injection de Fond (Γ_D^{**}) sur le sous-groupe de Fond $(E_2^{**}) = \mathbb{Z}^2$ engendré par (n, 0) et (q, 1).

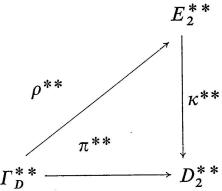
Preuve. Soit G l'image de Fond (Γ_D^{**}) dans \mathbb{Z}^2 définie par π^{**} . C'est un sous-groupe d'indice fini de \mathbb{Z}^2 car π^{**} est un revêtement fini. Par suite G contient des éléments de la forme (k, 0); soit

$$a = \inf\{ |k| \mid (k, 0) \in G \text{ et } k \neq 0 \}.$$

On peut choisir un vecteur (b, c) formant avec (a, 0) une base de G, tel que $0 \le b < a$ et c > 0.

Soit d le plus grand commun diviseur de a et b (avec d = a si b est nul). Soient $E_2 = \{(u, v) \in \mathbb{C}^2 \mid (u^d, v^c) \in D_2\}$ et $E_2^{**} = \{(u, v) \in E_2 \mid uv \neq 0\}$.

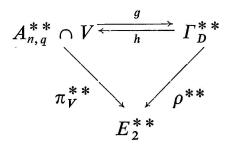
L'application $\kappa^{**}: (u, v) \mapsto (u^d, v^c)$ de E_2^{**} sur D_2^{**} est un revêtement holomorphe connexe à dc feuilles, et induit une injection de Fond (E_2^{**}) sur le sous-groupe de $\mathbb{Z}^2 = \operatorname{Fond}(D_2^{**})$ engendré par (d, 0) et (0, c). Ce groupe contenant G, il existe un morphisme ρ^{**} rendant le diagramme



commutatif. Au niveau des groupes fondamentaux, ρ^{**} induit un isomorphisme de Fond (Γ_D^{**}) sur le sous-groupe de $\mathbb{Z}^2 = \operatorname{Fond}(E_2^{**})$ engendré par (a/d, 0/c) et (b/d, c/c).

PROPOSITION 15. Avec les notations de la proposition 14, le germe $\underline{\Gamma}$ normalisé de $\underline{\Gamma}$ est isomorphe au germe de $X_{n,q}$ au point singulier.

Preuve. Soient $\rho^{**}: \Gamma_D^{**} \to E_2^{**}$ comme dans la preuve précédente et $\pi^{**}: A_{n,q}^{**} \to \mathbf{C}^{**}$ comme dans la section précédente. Soient $V = \{(x, y, z) \in \mathbf{C}^3 \mid (x, y) \in E_2\}$ et π_V^{**} la restriction de π^{**} à $A_{n,q}^{**} \cap V$. Les revêtements ρ^{**} et π_V^{**} définissent le même sous-groupe de Fond (E_2^{**}) . Il existe donc des morphismes g et h, inverses l'un de l'autre, rendant le diagramme



commutatif. Le morphisme g est borné car π l'est et ρ^{**} est propre; de même, h est borné. Le raisonnement usuel (voir par exemple celui qui précède la proposition 13) montre que g et h permettent de définir un isomorphisme du normalisé de $A_{n,q} \cap V$ avec Γ_D , c'est-à-dire du germe de $X_{n,q}$ au point singulier avec Γ .

IV. RÉSOLUTIONS DES QUOTIENTS DE C² PAR UN GROUPE CYCLIQUE FINI

IV.1. Définitions et premiers exemples

Si X est un ensemble analytique, une $r\acute{e}solution^{-1}$) de X est la donnée d'une variété complexe lisse X et d'une application holomorphe propre surjective $\rho: X \to X$ ayant la propriété suivante: si $A = \rho^{-1} (X - X_{r\acute{e}g})$, alors X - A est dense dans X et la restriction de ρ est un isomorphisme de X - A sur $X_{r\acute{e}g}$. (Le terme n'a donc pas ici le même sens qu'à la section I.3, où il s'agissait d'une « situation relative » où un ensemble analytique (= courbe) étant plongé dans une variété (= plan).) Lorsque $X - X_{r\acute{e}g}$ est réduit à un point X_0 , on appelle fibre exceptionnelle de la résolution le sous-ensemble analytique $\rho^{-1}(X_0)$ de X.

Exemple 1. Soit $X = \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 = 0\}$, qui est une surface lisse en dehors de l'origine; le changement de variables $\xi = ix + y$, $\eta = ix - y$ montre que X est isomorphe à $A_{2,1}$. L'image Q de ses points réguliers par la projection canonique $h: \mathbb{C}^3 - \{0\} \to P^2$ est une courbe projective lisse $\{[x, y, z] \in P^2 \mid x^2 + y^2 + z^2 = 0\}$. On en précise la nature grâce à l'application homogène

$$\widetilde{\varphi}: \begin{cases} \mathbf{C}^2 \to \mathbf{C}^3 \\ (s,t) \mapsto \left(\frac{i}{2} (s^2 + t^2), \frac{1}{2} (s^2 - t^2), st\right) \end{cases};$$

elle factorise en un morphisme $\varphi: P^1 \to Q$ qui est bijectif et qui est donc un isomorphisme.

Considérons $S = \{([z], w) \in P^2 \times \mathbb{C}^3 \mid w \in h^{-1}([z]) \cup \{0\}\}$ et la restriction $\pi: S \to \mathbb{C}^3$ de la seconde projection. On montre comme en I.3 que S est une variété lisse, qui est incidemment l'espace total du fibré canonique sur P^2 . Le morphisme π est propre, induit un isomorphisme de $S - \pi^{-1}(0)$ sur $\mathbb{C}^3 - \{0\}$, et sa «fibre exceptionnelle» est $\pi^{-1}(0) = P^2$; c'est par définition l'éclatement de \mathbb{C}^3 à l'origine.

¹⁾ On dit parfois « désingularisation » au lieu de « résolution ».

Posons $X = \{([z], w) \in S \mid [z] \in Q\}$; l'application $\lambda: X \to Q$ définie par $\lambda([z], w) = [z]$ est la restriction à Q du fibré canonique de P^2 . Alors l'application $\rho: X \to X$ qui envoie ([z], w) sur w est une résolution de X avec fibre exceptionnelle $E = \rho^{-1}(0)$ isomorphe à P^1 .

Plus généralement, soit X^d un cône de degré d dans \mathbb{C}^{k+1} ayant une singularité isolée à l'origine, de sorte que $Q^d = h(X^d - \{0\})$ est lisse dans P^k . Soient S l'espace total du fibré canonique sur P^k et $\pi\colon S\to \mathbb{C}^{k+1}$ l'éclatement de \mathbb{C}^{k+1} à l'origine. Posons $X^d = \{([z], w) \in S \mid [z] \in Q^d\}$. Alors la restriction $\rho\colon X^d\to X^d$ de π est une résolution de X^d avec fibre exceptionnelle isomorphe à Q^d .

Exemple 2. Soit $X = \{(x, y, z, t) \in \mathbb{C}^4 \mid x^2 + y^2 + z^2 + t^2 = 0\}$, qui s'écrit en d'autres coordonnées $\{(v_1, v_2, w_1, w_2) \in \mathbb{C}^4 \mid v_1 w_2 = v_2 w_1\}$ et qui est un ensemble de dimension 3 lisse en dehors de l'origine. La sous-variété correspondante Q de P^3 est une surface lisse. L'application

$$\stackrel{\sim}{\varphi}: \begin{cases} \mathbf{C}^2 \times \mathbf{C}^2 \to \mathbf{C}^4 \\ ((u_1, u_2), (u_3, u_4)) \mapsto (u_1 u_3, u_2 u_4, u_1 u_4, u_2 u_3) \end{cases}$$

factorise en un morphisme bijectif $P^1 \times P^1 \to Q$, donc en un isomorphisme. (La vérification de la bijectivité est un exercice facile. Le fait que les morphismes bijectifs sont des isomorphismes, qui est élémentaire en dimension 1, est pour les dimensions supérieures un théorème non banal: voir par exemple [2], page 179.)

Le procédé décrit à la fin de l'exemple 1 consiste à poser

$$\tilde{X} = \left\{ ([z], w) \in P^3 \times \mathbb{C}^4 \mid [z] \in Q \quad \text{et} \quad w \in h^{-1}([z]) \cap \{0\} \right\}$$
et

$$\rho: \left\{ \begin{matrix} \widetilde{X} \to X \\ ([z], w) \mapsto w \end{matrix} \right.$$

C'est une résolution avec fibre exceptionnelle de dimension $2 = \dim(X) - 1$ isomorphe à $P^1 \times P^1$.

On peut aussi considérer

$$\widetilde{Y} = \left\{ ([z], v, w) \in P^1 \times \mathbb{C}^2 \times \mathbb{C}^2 \mid v \text{ et } w \text{ dans } h^{-1}([z]) \cup \{0\} \right\}$$

qui est l'espace total de la somme de Whitney de deux fibrés canoniques

sur P^1 . Alors $\sigma: \begin{cases} \tilde{Y} \to X \\ ([z], v, w) \mapsto (v, w) \end{cases}$ est aussi une résolution de X avec fibre exceptionnelle de dimension 1.

Cet exemple montre en particulier que la fibre exceptionnelle d'une résolution $\rho: X \to X$ avec X à point singulier unique x_0 ne dépend pas seulement du germe de X en x_0 , mais aussi fortement de ρ . Toutefois, lorsqu'on se restreint à des espaces X de dimension deux, on peut lever cette ambiguïté: il existe en effet dans ce cas une unique « résolution minimale » pour tout germe de surface avec singularité isolée, et la fibre exceptionnelle d'une telle résolution en un point singulier ne dépend que du germe de la singularité; voir [13], chapitre V.

Rappelons qu'un diviseur D dans une variété lisse M (ci-dessous toujours connexe) est une famille $(D_{\beta}, n_{\beta})_{\beta \in B}$ où les D_{β} sont des sous-ensembles analytiques fermés de codimension un dans M, où les n_{β} sont des entiers rationnels, et où la famille $\{\beta \in B \mid D_{\beta} \cap K \neq \phi\}$ est finie pour tout compact K de M. On écrit aussi $D = \sum_{\beta \in B} n_{\beta}D_{\beta}$, et nous noterons |D|

le support de D, c'est-à-dire le sous-espace topologique de M qui est réunion des ensembles D_{β} pour lesquels $n_{\beta} \neq 0$.

Soit $f: M \to \mathbb{C}$ une fonction méromorphe non nulle. Soient Z_f [resp. P_f] l'ensemble des zéros [resp. des pôles] de f; on sait que ce sont des sousensembles de codimension 1 dans M (ou l'ensemble vide); voir [8], VIII.B.4. Soit $(Z_{f,i})_{i\in I}$ l'ensemble des composantes connexes des points réguliers de Z_f . Pour chaque $i \in I$, soient D_i l'adhérence de $Z_{f,i}$ dans M et n_i l'ordre du zéro de f en un point de $Z_{f,i}$ (qui est indépendant du choix de ce point); on sait que $\{i \in I \mid |D_i| \cap K \neq \emptyset\}$ est fini pour tout compact K de M. On définit de même $(P_{f,j})_{j\in J}$ puis, pour chaque $j \in J$, l'ensemble irréductible D_f et l'ordre n_f du pôle de f en un point de $P_{f,j}$. On appelle diviseur de la fonction f et on note D_f le diviseur $\sum n_i D_i - \sum n_j D_j$.

Les diviseurs de M forment pour l'addition naturelle un groupe abélien $\mathrm{Div}(M)$, et ceux à supports compacts un sous-groupe $\mathrm{Div}_c(M)$.

Si M est de dimension deux, on définit une forme d'intersection

$$\begin{cases} \operatorname{Div}(M) \times \operatorname{Div}_{c}(M) \to Z \\ (D, E) \mapsto \langle D \mid E \rangle \end{cases}$$

dont l'existence repose sur la dualité de Poincaré et dont nous utiliserons les propriétés suivantes:

(j) < | > est bilinéaire;

- (jj) la restriction de $\langle | \rangle$ à $\operatorname{Div}_c(M) \times \operatorname{Div}_c(M)$ est symétrique;
- (jjj) si D_1 et D_2 sont des courbes irréductibles lisses à intersections transverses, $\langle D_1 | D_2 \rangle$ est le cardinal de $| D_1 | \cap | D_2 |$;
- (jv) si $f: M \to \mathbb{C}$ est une fonction méromorphe, $\langle D_f | E \rangle = 0$ pour tout $E \in \text{Div}_c(M)$;
- (v) si D est irréductible à support compact, $\langle D \mid D \rangle$ est l'évaluation de la classe de Chern du diviseur D sur la classe fondamentale [D].
- (vj) Soient M' une variété lisse, U [respectivement U'] un ouvert de M [resp. de M'], et $\phi: U \to U'$ un isomorphisme. Si $D \in \text{Div}(M)$ et $E \in \text{Div}_c(M)$ ont leurs supports dans U, alors $\langle \phi(D) \mid \phi(E) \rangle = \langle D \mid E \rangle$.

Voir par exemple le § 9 de [11].

Soit $\rho: X \to X$ une résolution d'un ensemble X de dimension deux avec une unique singularité en x_0 ; supposons que la fibre exceptionnelle soit connexe et que ses composantes irréductibles soient des courbes lisses sans point triple et à intersections transverses. (Les exemples ci-dessous montrent l'intérêt de cette situation aussi bien que les résultats généraux; voir pour ceux-ci [13], théorème 5.12.) On associe à ρ sa matrice d'intersection $(e_{i,j})$: si $E_1, ..., E_n$ sont les composantes irréductibles de la fibre exceptionnelle $E = \rho^{-1}(x_0) \subset X$ (qui sont en nombre fini car ρ est propre), alors $e_{i,j} = \langle E_i \mid E_j \rangle$. Cette matrice est bien définie à conjuguaison près par une matrice de permutation.

Dans l'exemple 1 ci-dessus, cette matrice est réduite au nombre -2; donnons-en deux raisons.

La fibre exceptionnelle $E \approx P^1$ est irréductible; c'est la section nulle du fibré en droites $\lambda \colon \tilde{X} \to Q$. Or l'isomorphisme $\varphi \colon P^1 \to Q$ est défini par l'application $\overset{\sim}{\varphi} \colon \mathbf{C}^2_{st} \to \mathbf{C}^3_{xyz}$, et celle-ci s'écrit aussi (avec u = is, v = -it, $\xi = ix + y$ et $\eta = ix - y$):

$$\begin{cases}
\mathbf{C}_{uv}^2 \to \mathbf{C}_{\xi\eta z}^3 \\
(u,v) \mapsto (v^2, u^2, uv)
\end{cases}$$

Par suite, l'image inverse par φ du fibré λ sur Q est le fibré noté $\lambda_{(-2)}$ à la section I.3; il résulte de la propriété (v) ci-dessus que $\langle E \mid E \rangle = -2$. Soient d'autre part $S_{(-2)}$ comme en I.3 et $f: S_{(-2)} \to \mathbb{C}$ le composé de

 $n_{(-2)}: S_{(-2)} \to \mathbb{C}^3$ et de la première projection $x: \mathbb{C}^3 \to \mathbb{C}$. Soit A la

transformée stricte de l'axe d'équation x = y = 0 dans \mathbb{C}^3 . Alors $D_f = 2A + E$, d'où par (jv) ci-dessus

$$\langle D_f | E \rangle = 2 \langle A | E \rangle + \langle E | E \rangle = 0$$

et par (jjj) $\langle E | E \rangle = -2$.

Exemple 3. Soit $S_{(-k)}$ comme à la section I.3, avec deux cartes — disons deux copies R_0 et R_1 de \mathbb{C}^2 — recollées selon l'isomorphisme que nous écrirons ici

$$\begin{cases} \left\{ (u,v) \in R_0 \mid u \neq 0 \right\} \to \left\{ (u,v) \in R_1 \mid v \neq 0 \right\} \\ (u,v) \mapsto (u^k v, 1/u) \end{cases}$$

Considérons d'une part les fonctions ξ_0 , η_0 , ζ_0 : $R_0 \to \mathbb{C}$ définies par

$$\xi_0(u,v) = u^k v$$
 $\eta_0(u,v) = v$ $\zeta_0(u,v) = uv$

et d'autre part les fonctions ξ_1 , η_1 , ζ_1 : $R_1 \to \mathbb{C}$ définies par

$$\xi_1(u,v) = u \qquad \eta_1(u,v) = uv^k \qquad \zeta_1(u,v) = uv^{k-1}.$$

On vérifie sans peine que ces données définissent trois fonctions globales ξ , η , $\zeta: S_{(-k)} \to \mathbb{C}$ satisfaisant l'égalité $\zeta^k = \xi \eta^{k-1}$, donc aussi une application $\rho: S_{(-k)} \to A_{k,1}$. Le lecteur s'assurera à titre d'exercice que ρ est une résolution de $A_{k,1}$, que la matrice d'intersection se réduit au nombre

-k, et que ρ se relève en $\rho: S_{(-k)} \to X_{k,1}$. L'application ρ résout donc la singularité définie par le groupe cyclique

$$\left\{ \begin{pmatrix} e(j/k) & 0 \\ 0 & e(j/k) \end{pmatrix} \in \operatorname{Aut}(\mathbb{C}^2) \mid j = 0, ..., k - 1 \right\}.$$

Si k = 2, on retrouve l'exemple 1.

Citons enfin sans démonstration le théorème suivant: pour toute singularité isolée de dimension deux et pour toute désingularisation (minimale ou non), la matrice d'intersection associée est négative définie. Les exemples ci-dessus offrent une première illustration de ce résultat. Voir [16], § 1.

IV.2. Trois suites numériques définies par n et q

Le contenu des paragraphes 2 et 3 se trouve dans [9].

Soient n et q des entiers avec 0 < q < n.

Posons $\lambda_0 = n$ et $\lambda_1 = q$. Définissons ensuite les entiers $\lambda_2, ..., b_1, b_2, ...$ par l'algorithme euclidien suivant:

$$\lambda_2 = b_1 \lambda_1 - \lambda_0$$
 avec $b_1 \geqslant 2$ et $0 \leqslant \lambda_2 < \lambda_1$
 $\lambda_3 = b_2 \lambda_2 - \lambda_1$ avec $b_2 \geqslant 2$ et $0 \leqslant \lambda_3 < \lambda_2$

Soit s le plus grand entier pour lequel λ_s soit non nul, de sorte que

$$\lambda_s = b_{s-1} \lambda_{s-1} - \lambda_{s-2} \quad \text{avec} \quad b_{s-1} \geqslant 0 \quad \text{ et } \quad 0 < \lambda_s < \lambda_{s-1}$$

$$0 = b_s \lambda_s - \lambda_{s-1}.$$

On vérifie sans peine que λ_s est le plus grand commun diviseur de n et q, ce qui s'écrit $\lambda_s = (n, q)$. On définit $\lambda_{s+1} = 0$. On peut remarquer que les équations ci-dessus s'écrivent aussi

$$\frac{n}{q} = b_1 - \frac{\lambda_2}{q}, \quad \frac{q}{\lambda_2} = b_2 - \frac{\lambda_3}{\lambda_2}, \dots,$$

$$\frac{\lambda_{s-2}}{\lambda_{s-1}} = b_{s-1} - \frac{\lambda_s}{\lambda_{s-1}} = b_{s-1} - \frac{1}{b_s}.$$

D'où

$$\frac{n}{q} = b_1 - \frac{1}{b_2 - \frac{1}{a}}$$

 $-\frac{1}{b_s}$

ce que certains auteurs notent plus économiquement

$$\frac{n}{q} = b_1 - 1/\overline{b}_2 - \dots - 1/\overline{b}_s.$$

 $v_{s+1} = b_s v_s - v_{s-1}$

On définit ensuite les suites $(\mu_k)_{k=0,\ldots,s+1}$ et $(v_k)_{k=0,\ldots,s+1}$ par

$$\mu_{0} = 0 \qquad v_{0} = 1$$

$$\mu_{1} = 1 \qquad v_{1} = 1$$

$$\mu_{2} = b_{1} \mu_{1} - \mu_{0} \qquad v_{2} = b_{1} v_{1} - v_{0}$$

$$\dots$$

$$\mu_{s} = b_{s-1} \mu_{s-1} - \mu_{s-2} \qquad v_{s} = b_{s-1} v_{s-1} - v_{s-2}$$

 $\mu_{s+1} = b_s \mu_s - \mu_{s-1}$

Lemme. Pour tout $k \in \{0, 1, ..., s\}$ on a:

(a)
$$\lambda_k + (n-q)\mu_k = n\nu_k$$

(b)
$$\lambda_k \mu_{k+1} - \lambda_{k+1} \mu_k = n$$

(c)
$$\mu_{k+1} \nu_k - \mu_k \nu_{k+1} = 1$$
.

De plus

$$0 = \mu_0 < \mu_1 < \dots < \mu_{s+1} = \frac{n}{(n,q)}$$

et

$$1 = v_0 \leqslant v_1 \leqslant ... \leqslant v_{s+1} = \frac{n-q}{(n,q)}.$$

Preuve. Les relations (a), (b) et (c) sont banales si k = 0 et si k = 1. Pour $k \ge 2$, elles résultent des calculs élémentaires suivants:

$$\lambda_{k+1} + (n-q)\mu_{k+1} = b_k \lambda_k - \lambda_{k-1} + (n-q)(b_k \mu_k - \mu_{k-1})$$

$$= b_k (\lambda_k + (n-q)\mu_k) - (\lambda_{k-1} + (n-q)\mu_{k-1}) = b_k n \nu_k - n \nu_{k-1}$$

$$= n \nu_{k+1} \qquad (k=1, ..., s);$$

$$\lambda_{k+1} \mu_{k+2} - \lambda_{k+2} \mu_{k+1} = \lambda_{k+1} (b_{k+1} \mu_{k+1} - \mu_k) - (b_{k+1} \lambda_{k+1} - \lambda_k) \mu_{k+1}$$
$$= \lambda_k \mu_{k+1} - \lambda_{k+1} \mu_k \quad (k=1, ..., s-1);$$

$$\mu_{k+2} v_{k+1} - \mu_{k+1} v_{k+2} = (b_{k+1} \mu_{k+1} - \mu_k) v_{k+1} - \mu_{k+1} (b_{k+1} v_{k+1} - v_k)$$
$$= \mu_{k+1} v_k - \mu_k v_{k+1} \quad (k=1, ..., s-1).$$

En particulier, comme $\lambda_{s+1} = 0$, on a $0 + (n-q) \mu_{s+1} = n v_{s+1}$ et $\lambda_s \mu_{s+1} = n$, d'où $\mu_{s+1} = \frac{n}{\lambda_s} = \frac{n}{(n,q)}$ et $\nu_{s+1} = \frac{n-q}{(n,q)}$. Enfin, comme $b_k \ge 2$ pour k = 1, ..., s, on a

$$\mu_{k+1} - \mu_k = (b_k - 1) \mu_k - \mu_{k-1} \geqslant \mu_k - \mu_{k-1} \geqslant \dots \geqslant \mu_1 - \mu_0 > 0$$
 et
$$\nu_{k+1} - \nu_k \geqslant \dots \geqslant \nu_1 - \nu_0 \geqslant 0.$$

ce qui achève la preuve.

Nous reviendrons à plusieurs reprises sur les exemples décrits dans le tableau suivant:

n	10	8	6	4
q	8	6	4	2
s	4	3	2	1
$(\lambda_k)0 \leq k \leq s+1$	(10,8,6,4,2,0)	(8,6,4,2,0)	(6,4,2,0)	(4,2,0)
(μ_k) 0 $\leq k \leq s+1$	(0,1,2,3,4,5)	(0,1,2,3,4)	(0,1,2,3)	(0,1,2)
(\vee_k) 0 $\leq k \leq s+1$	(1,1,1,1,1)	(1,1,1,1,1)	(1,1,1,1)	(1,1,1)

IV.3. Les résolutions
$$\rho: M_{n,q} \to A_{n,q}$$
 ou $\rho: M_{n,q} \to X_{n,q}$

Soient à nouveau n et q comme à la section 2, dont on reprend toutes les notations.

Pour chaque $k \in \{0, 1, ..., s\}$, désignons par R_k une copie de C^2 , par (u_k, v_k) ses coordonnées canoniques, et par R'_k [resp. R''_k] l'ouvert de ses points de première [resp. seconde] coordonnée non nulle. Pour $k \in \{1, ..., s\}$, soit

$$\varphi_{k-1}: \left\{ \begin{matrix} R'_{k-1} \to & R''_k \\ (u_{k-1}, v_{k-1}) \mapsto \left((u_{k-1})^{b_k} v_{k-1}, (u_{k-1})^{-1} \right) \end{matrix} \right\};$$

c'est un isomorphisme dont l'inverse applique (u_k, v_k) sur $(1/v_k, v_k^{bk}u_k)$. Notons $R_{0,1}$ la variété obtenue en recollant R_0 et R_1 selon φ_0 , déjà considérée à l'exemple 3 de la section 1. Soient ensuite $R_{0,1,2}$ la variété obte ue en recollant $R_{0,1}$ et R_2 selon φ_1 , ..., et $R_{0,1,...,s} = M_{n,q}$ la variété obtenue en recollant $R_{0,1,...,s-1}$ et R_s selon φ_{s-1} . Nous identifierons chaque R_k à son image dans $M_{n,q}$. La variété $M_{n,q}$ est une surface lisse dans laquelle chaque R_k est un ouvert dense (de fait un ouvert de Zariski).

Pour chaque $k \in \{1, ..., s\}$, considérons la courbe

$$\sigma_k = \{ (u_{k-1}, v_{k-1}) \in R_{k-1} \mid v_{k-1} = 0 \} \cup \{ (u_k, v_k) \in R_k \mid u_k = 0 \}$$

qui est lisse et isomorphe à P^1 . Notons encore σ_{in} et σ_{fi} les courbes lisses non compactes définies respectivement par $\{(u_0, v_0) \in R_0 \mid u_0 = 0\}$

et $\{(u_s, v_s) \in R_s \mid v_s = 0\}$. Ces courbes n'ont pas d'intersection triple et n'ont deux à deux que des intersections transverses. On vérifie facilement que

$$\langle \sigma_{in} | \sigma_k \rangle = \begin{cases} 1 & \text{si } k = 1 \\ 0 & \text{sinon} \end{cases}$$

$$\langle \sigma_j | \sigma_k \rangle = \begin{cases} 1 & \text{si } |j - k| = 1 \\ 0 & \text{si } |j - k| \geqslant 2 \end{cases}$$

$$\langle \sigma_{fi} | \sigma_k \rangle = \begin{cases} 1 & \text{si } k = s \\ 0 & \text{sinon} \end{cases}$$

Pour chaque $k \in \{0, 1, ..., s\}$, considérons enfin les fonctions

$$\xi_{k}: \begin{cases}
R_{k} \to \mathbf{C} \\
(u_{k}, v_{k}) \mapsto (u_{k})^{\lambda_{k}} (v_{k})^{\lambda_{k+1}}
\end{cases}$$

$$\eta_{k}: \begin{cases}
R_{k} \to \mathbf{C} \\
(u_{k}, v_{k}) \mapsto (u_{k})^{\mu_{k}} (v_{k})^{\mu_{k+1}}
\end{cases}$$

$$\zeta_{k}: \begin{cases}
R_{k} \to \mathbf{C} \\
(u_{k}, v_{k}) \mapsto (u_{k})^{\nu_{k}} (v_{k})^{\nu_{k+1}}
\end{cases}$$

Si $k \geqslant 1$ et $u_{k-1} \neq 0$, alors

$$\xi_k \left(\varphi_{k-1} \left(u_{k-1}, v_{k-1} \right) \right) = \left((u_{k-1})^{b_k} v_{k-1} \right)^{\lambda_k} \left(\frac{1}{u_{k-1}} \right)^{\lambda_{k+1}} \\
= (u_{k-1})^{b_k \lambda_k - \lambda_{k+1}} (v_{k-1})^{\lambda_k} = \xi_{k-1} \left(u_{k-1}, v_{k-1} \right).$$

Par suite les ζ_k définissent une fonction globale $\xi\colon M_{n,q}\to \mathbb{C}$. Les η_k et les ζ_k définissent de même η , $\zeta\colon M_{n,q}\to \mathbb{C}$. Notons que $\zeta^n=\xi\eta^{n-q}$. Il suffit en effet de vérifier cette relation sur l'ouvert dense $R_0\subset M_{n,q}$, et on a pour tout $(u,v)\in R_0$:

$$(\zeta(u,v))^n - (\xi(u,v))(\eta(u,v))^{n-q} = (uv)^n - (u^n v^q)(v)^{n-q} = 0.$$

Nous noterons $\rho: M_{n,q} \to A_{n,q}$ le morphisme défini par $\rho(P) = (\xi(P), \eta(P), \zeta(P))$.

PROPOSITION 16. Le morphisme $\rho: M_{n,q} \to A_{n,q}$ est surjectif, $\rho^{-1}(0, 0, 0) = \sigma_1 \cup ... \cup \sigma_s, \ \rho^{-1}\{(0, y, 0) \in A_{n,q} \mid y \in \mathbb{C}\} = \rho_{in}$ et $\rho^{-1}\{(x, 0, 0) \in A_{n,q} \mid x \in \mathbb{C}\} = \sigma_{fi}$.

Preuve. Il est immédiat que ρ ($\sigma_1 \cup ... \cup \sigma_s$) = (0, 0, 0).

Soit $P = (x, y, z) \in A_{n,q}$ avec $y \neq 0$. Posons $u_0 = z/y$ et $v_0 = y$; alors $\rho(u_0, v_0) = (u_0^n v_0^q, v_0, u_0 v_0) = P$. Soit $(u_k, v_k) \in \rho^{-1}(P) \cap R_k$; alors $\eta(u_k, v_k) = (u_k)^{\mu k} (v_k)^{\mu k+1} = y \neq 0$. Si $k \geq 1$, les entiers μ_k et μ_{k+1} sont strictement positifs, donc $u_k \neq 0$ et $v_k \neq 0$, de sorte que $(u_k, v_k) \in R_k \cap R_0$. Si k = 0, les équations $u_0^n v_0^q = x$, $v_0 = y$, $u_0 v_0 = z$ n'ont qu'une solution Nous avons ainsi montré que $\rho^{-1}(P)$ ne contient qu'un point, qui n'est pas dans la réunion des σ_k , et qui est dans σ_{in} si et seulement si P = (0, y, 0).

Soit $Q = (x, 0, 0) \in A_{n,q}$ avec $x \neq 0$ (rappelons que c'est un point singulier de $A_{n,q}$ si $q \neq n-1$). Pour $k \in \{0, 1, ..., s-1\}$, les équations $(u_k)^{\lambda_k} (v_k)^{\lambda_{k+1}} = x \neq 0$, $(u_k)^{\mu_k} (v_k)^{\mu_{k+1}} = (u_k)^{\nu_k} (v_k)^{\nu_{k+1}} = 0$ n'ont aucune solution. Par contre, les équations

$$(u_s)^{\lambda_s} = x \quad (u_s)^{\mu_s} (v_s)^{\mu_{s+1}} = (u_s)^{\nu_s} (v_s)^{\nu_{s+1}} = 0$$

ont précisément $\lambda_s = (n, q)$ solutions. Donc $\gamma^{-1}(Q)$ contient (n, q) points, donc aucun n'est dans la réunion des σ_k , et qui sont tous dans σ_{fi} .

Proposition 17. On a $\langle \sigma_k | \sigma_k \rangle = -b_k$ pour $k \in \{1, 2, ..., s\}$.

Preuve. Les diviseurs définis par les fonctions ξ , η et ζ sont respectivement

$$D_{\xi} = n\sigma_{in} + q\sigma_{1} + \dots + \lambda_{k}\sigma_{k} + \dots + (n,q)\sigma_{s}$$

$$D_{\eta} = \sigma_{1} + \dots + \mu_{k}\sigma_{k} + \dots + \mu_{s}\sigma_{s} + \frac{n}{(n,q)}\sigma_{fi}$$

$$D_{\zeta} = \sigma_{in} + \sigma_{1} + \dots + \nu_{k}\sigma_{k} + \dots + \nu_{s}\sigma_{s} + \frac{n-q}{(n,q)}\sigma_{fi}$$

Si on écrit provisoirement σ_0 pour σ_{in} et σ_{s+1} pour σ_{fi} , la première de ces formules et les calculs précédant la proposition 16 montrent qu'on a

$$0 = \langle D_{\xi} | \sigma_{k} \rangle = \lambda_{k-1} \langle \sigma_{k-1} | \sigma_{k} \rangle + \lambda_{k} \langle \sigma_{k} | \sigma_{k} \rangle + \lambda_{k+1} \langle \sigma_{k+1} | \sigma_{k} \rangle$$
d'où

$$\langle \sigma_k | \sigma_k \rangle = (-1/\lambda_k) (\lambda_{k+1} + \lambda_{k-1}) = -b_k$$

pour tout $k \in \{1, ..., s\}$. On pourrait aussi utiliser

ou

$$0 = \langle D_{\eta} | \sigma_k \rangle \Rightarrow \langle \sigma_k | \sigma_k \rangle = (-1/\mu_k) (\mu_{k+1} + \mu_{k-1}) = -b_k$$

$$0 = \langle D_{\zeta} | \sigma_k \rangle \Rightarrow \langle \sigma_k | \sigma_k \rangle = (-1/\nu_k) (\nu_{k+1} + \nu_{k-1}) = -b_k.$$

On peut remarquer qu'il n'existe aucun prolongement de la forme d'intersection à $Div(M) \times Div(M)$ qui jouisse encore des propriétés (j) à (v) du § 1. En effet, on aurait alors par exemple

$$0 = \langle D_{\xi} | \sigma_{in} \rangle = n \langle \sigma_{in} | \sigma_{in} \rangle + q \Rightarrow \langle \sigma_{in} | \sigma_{in} \rangle = -q/n$$

$$0 = \langle D_{\eta} | \sigma_{in} \rangle = 1 !!!$$

$$0 = \langle D_{\zeta} | \sigma_{in} \rangle = \langle \sigma_{in} | \sigma_{in} \rangle + \langle \sigma_{1} | \sigma_{in} \rangle \Rightarrow \langle \sigma_{in} | \sigma_{in} \rangle = -1$$

ce qui est plusieurs fois absurde.

COROLLAIRE.. La matrice d'intersection $\langle \sigma_j | \sigma_k \rangle_{1 \leq j,k \leq s}$ est définie négative. Si q = n - 1, c'est la matrice de Cartan A_{n-1} .

Remarque. Le déterminant de A_{n-1} est en valeur absolue l'ordre du groupe d'homologie $H_1(X_{n,n-1} - \{0\}, \mathbb{Z})$; voir [16], page 11.

Preuve. La matrice d'intersection est

Si D_k est son k-ième mineur principal, on a $D_s = -b_s D_{s-1} - D_{s-2}$. Il résulte de critères standards (voir par exemple [6], § 36, exercice 33) que la matrice d'intersection est négative définie. Si q = n - 1, on a s = n - 1 et par induction $D_s = \det(A_{n-1}) = (-1)^s n$.

Nous résumons les informations obtenues jusqu'ici dans le résultat suivant.

Théoreme A. Le morphisme ρ se relève en une désingularisation

$$\rho: M_{n,q} \to X_{n,q}.$$

Le schéma de Dynkin, qui a un sommet muni de l'entier $b_k = -\langle \sigma_k \mid \sigma_k \rangle$ pour chaque composante irréductible σ_k de la fibre exceptionnelle, et une arête liant les sommets définis par σ_j et σ_k si $\langle \sigma_j \mid \sigma_k \rangle \neq 0$, est

$$b_1 \quad b_2 \quad b_3 \quad b_s$$

$$\bullet - \bullet - \bullet - \dots - \bullet \qquad (\bullet = P^1)$$

Si q = n - 1, la matrice $\langle \sigma_j | \sigma_k \rangle_{1 \leq j,k \leq s}$ est la matrice de Cartan A_{n-1} .

Preuve. L'existence de ρ résulte de la proposition 8; les autres affirmations de ce qui précède.

IV.4. RELATION AVEC LES ÉCLATEMENTS

Soit $\pi: S \to \mathbb{C}^2$ l'éclatement de \mathbb{C}^2 à l'origine, comme en I.3. Considérons ici $T = \mathbb{C} \times S$ et $\tau: T \to \mathbb{C}^3$ l'application id $\times \pi$ qui est l'éclatement de \mathbb{C}^3 le long de la droite d'équations y = z = 0. On munit T comme en I.3 d'un atlas à deux cartes $\psi_j: T_j \to \mathbb{C}^3$ (j = 0, 1), avec les changements de cartes donnés par

$$\begin{cases}
\mathbf{C} \times \mathbf{C}^* \times \mathbf{C} = \psi_0 (T_0 \cap T_1) \to \psi_1 (T_0 \cap T_1) = \mathbf{C} \times \mathbf{C}^* \times \mathbf{C} \\
(x, y, z) \mapsto (x, 1/y, yz)
\end{cases}$$

et par l'isomorphisme inverse. L'application τ s'écrit dans les cartes

$$\tau_0: \begin{cases} \mathbf{C}^3 = \psi_0(T_0) \to \mathbf{C}^3 \\ (x, y, z) \mapsto (x, z, yz) \end{cases}$$

et

$$\tau_1: \left\{ \begin{array}{l} \mathbf{C}^3 = \psi_1(T_1) \to \mathbf{C}^3 \\ (x, y, z) \mapsto (x, yz, z) \end{array} \right.$$

La transformée stricte de $A_{n,q} = \{(x, y, z) \in \mathbb{C}^3 \mid z^n = xy^{n-q}\}$ apparaît dans une carte comme la surface lisse

$$\{(x, y, z) \in \psi_0(T_0) \mid y^n z^q = x\}$$

et dans l'autre comme

$$\{(x, y, z) \in \psi_1(T_1) \mid z^q = xy^{n-q}\} \approx A_{q,2q-n}.$$

Au niveau des normalisés, l'éclatement permet donc de « remplacer » $X_{n,q}$ par $X_{q,\lambda}$ avec $0 < \lambda < q$ et $\lambda = (2+r)q - n$ pour un entier positif

convenable r (nous avons utilisé ici les remarques qui précèdent la proposition 13). Avec les notations de la section 2, on a précisément $\lambda = \lambda_2$ et $2 + r = b_1$.

En cherchant à itérer l'argument jusqu'à trouver une surface lisse, on aurait précisément à considérer les suites numériques de la section 2.

V. L'ICOSAÈDRE ET LES SOUS-GROUPES FINIS NON CYCLIQUES DE *SU* (2)

V.1. LE CAS DE L'ICOSAEDRE

Soient $h: \mathbb{C}^2 - \{0\} \to P^1 = \mathbb{S}^2$ la projection canonique et $\delta: SU(2) \to SO(3)$ le revêtement universel (à deux feuillets) du groupe des automorphismes analytiques isométriques de P^1 (= du groupe des rotations de la sphère). Soient G le sous-groupe de SO(3) des rotations qui laissent invariant un icosaèdre régulier inscrit dans \mathbb{S}^2 , et $G = \delta^{-1}(G)$; nous noterons encore δ la projection canonique de G sur G. Le groupe G a 60 éléments; ses orbites sur \mathbb{S}^2 ont aussi 60 points à trois exceptions près qui sont

l'orbite $\underline{\mathscr{A}} = \{\underline{a_1}, ..., \underline{a_{12}}\}$ des sommets de l'icosaèdre l'orbite $\underline{\mathscr{B}} = \{\underline{b_1}, ..., \underline{b_{20}}\}$ des barycentres de ses faces l'orbite $\underline{\mathscr{C}} = \{\underline{c_1}, ..., \underline{c_{30}}\}$ des milieux de ses arêtes.

Le groupe G agit linéairement dans \mathbb{C}^2 ; ses orbites ont toutes 120 points, à la seule exception de l'origine.

Le quotient $X_{ico} = \mathbb{C}^2/G$ est un ensemble analytique, normal par le théorème de Cartan; il a un unique point non lisse, que nous noterons x_0 et qui est l'image canonique de l'origine de \mathbb{C}^2 . Nous renvoyons à [12], chapitre II, § 13 et/ou à [15], théorème 4.5 pour le résultat classique suivant (dont nous ne faisons pas usage ci-dessous): il existe une application poly-

nômiale $\phi: \mathbb{C}^2 \to \mathbb{C}^3$ qui fournit par passage au quotient un isomorphisme ϕ de X_{ico} sur la surface de \mathbb{C}^3 à singularité unique

$$A_{ico} = \{(x, y, z) \in \mathbb{C}^3 \mid z^5 = x^2 + y^3 \}.$$

Le but de cette section est d'exhiber une désingularisation de X_{ico} . La première étape consiste à remplacer l'unique singularité x_0 par trois singularités d'un type connu, et ceci grâce à un premier éclatement.

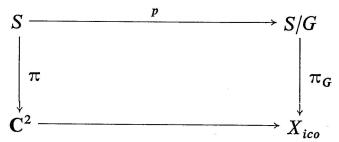
Le groupe SU(2) agit sur l'éclaté de \mathbb{C}^2 à l'origine: si $\sigma \in SU(2)$ et $([z], w) \in S \subset P^1 \times \mathbb{C}^2$, alors $\sigma([z], w) = (\delta(\sigma)[z], \sigma w)$. L'éclatement $\pi: S \to \mathbb{C}^2$ est alors équivariant pour SU(2). Avec les coordonnées locales de la section I.3, l'action d'un élément $\sigma = \begin{pmatrix} fg \\ hj \end{pmatrix}$ dans SU(2) sur S est décrite par

$$\begin{cases}
\{(u,v) \in \psi_0(S_0) \mid f + gu \neq 0\} \rightarrow \{(u,v) \in \psi_0(S_0) \mid j - gu \neq 0\} \\
(u,v) & \mapsto \frac{\left(\frac{h+ju}{f+gu}, fv + guv\right)}{\left(\frac{h+gu}{f+gu}, fv + guv\right)}
\end{cases}$$

et par

$$\begin{cases} \left\{ \left(u,v \right) \in \psi_1 \left(S_1 \right) \middle| j + hu \neq 0 \right\} \rightarrow \left\{ \left(u,v \right) \in \psi_1 \left(S_1 \right) \middle| f - hu \neq 0 \right\} \\ \left(u,v \right) & \mapsto & \left(\frac{fu + g}{hu + j} , \ huv + jv \right) \end{cases}$$

Nous noterons $p: S \to S/G$ le morphisme quotient. L'éclatement passe au quotient modulo G et définit un morphisme π_G , propre et surjectif, rendant le diagramme



commutatif. Si E est la fibre exceptionnelle de π , alors celle de π_G est $\pi_G^{-1}(x_0) = E/G$ et la restriction $S/G - E/G \to X_{ico} - \{x_0\}$ de π_G est un isomorphisme. Par suite, toute résolution de S/G fournit par composition avec π_G une résolution de X_{ico} .

Comme tout quotient de P^1 par un groupe fini, l'ensemble analytique E/G est homéomorphe à P^1 lui-même. On sait d'ailleurs expliciter: consi-

dérons par exemple la fonction méromorphe
$$\begin{cases} \mathbf{C} & \longrightarrow \mathbf{C} \\ z & \longrightarrow \frac{H^3}{1728f^5} & \text{où } H(z) \end{cases}$$

$$= -(z^{20}+1) + 228(z^{15}-z^5) - 494z^{10} \text{ et } f(z) = z(z^{10}+11z^5-1); \text{ son prolongé à la droite projective } E \text{ passe au quotient et définit l'homéo-}$$

morphisme $E/G oup P^1$ (voir [12], § 13 et § 14). Mais nous voulons plutôt étudier le plongement de E/G dans S/G, c'est-à-dire le morphisme p au voisinage de E. Les points de S où le sous-groupe d'isotropie de G n'est pas trivial sont précisément ceux de $\mathscr{A} \cup \mathscr{B} \cup \mathscr{C}$, considéré comme sous-ensemble de $E = \pi^{-1}$ (0). Par suite S/G est un ensemble analytique lisse, sauf aux trois points $\alpha = \mathscr{A}/G$ $\beta = \mathscr{B}/G$ et $\gamma = \mathscr{C}/G$. La prochaine étape consiste à analyser la singularité de S/G en α .

Choisissons un point \underline{a} de $\underline{\mathscr{A}}$ et soit a la droite correspondante dans \mathbb{C}^2 . Le sous-groupe d'isotropie de \underline{G} en \underline{a} est cyclique à 5 éléments. Son image inverse G_a par δ est le sous-groupe des éléments de G laissant (globalement) invariante la droite a; il est cyclique d'ordre 10. Choisissons des coordonnées sur \mathbb{C}^2 telles que a soit la droite d'équation y=0 et que les éléments de G_a soient représentés par des matrices $\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$ où ω est une racine dixième de l'unité. L'action d'un tel élément sur S s'écrit alors dans les cartes

$$\begin{cases}
\mathbf{C}^2 = \psi_0(S_0) \to \psi_0(S_0) \\
(u, v) \mapsto (\omega^{-2}u, \omega v)
\end{cases}
\begin{cases}
\mathbf{C}^2 = \psi_1(S_1) \to \psi_1(S_1) \\
(u, v) \mapsto (\omega^2u, \omega^{-1}v)
\end{cases}$$

Le choix des coordonnées permet donc de considérer que G_a agit linéairement. En comparant avec le chapitre III, on voit de plus que la singularité en α est du type $\mathbb{C}^2/G_a = \mathbb{C}^2/G_{10,8} = X_{10,8}$. On montre de même que les singularités en β et γ sont respectivement du type $X_{6,4}$ et $X_{4,2}$.

Il n'y a donc plus qu'à recoller les résultats du chapitre IV. Il existe ainsi un voisinage U_{α} de α dans S/G (ne contenant ni β ni γ), un voisinage V_{α} du point singulier dans $X_{10,8}$, une variété lisse W_{α} isomorphe à ρ^{-1} (V_{α}) , des isomorphismes κ_{α} et K_{α} rendant commutatif le diagramme

$$W_{\alpha} \xrightarrow{K_{\alpha}} \tilde{\rho}^{-1}(V_{\alpha}) \xrightarrow{\leftarrow} M_{10,8}$$

$$\downarrow \rho_{i,\alpha} \qquad \qquad \downarrow \tilde{\rho}$$

$$S/G \longleftrightarrow U_{\alpha} \xrightarrow{\kappa_{\alpha}} V_{\alpha} \xrightarrow{\leftarrow} X_{10,8}$$

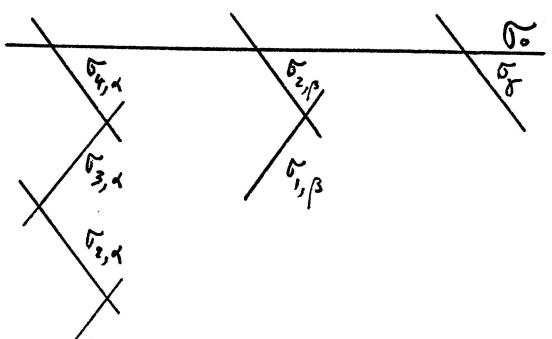
et des données analogues correspondant à β et γ . Les variétés W_{α} , W_{β} et W_{γ} se recollent en une variété lisse M_{ico} ; les morphismes $\rho_{i,\alpha}$, $\rho_{i,\beta}$ et $\rho_{i,\gamma}$ se recollent en une désingularisation $\rho_i \colon M_{ico} \to S/G$. De plus, on a les propriétés suivantes:

- (a) Notons \tilde{a}/G l'image par p de la transformée stricte de a. Alors κ_{α} applique $(\tilde{a}/G) \cap U_{\alpha}$ sur $[\{(0,t)\}/G_{10,8}] \cap V_{\alpha}$ et $(E/G) \cap U_{\alpha}$ sur $[\{(s,0)\}/G_{10,8}] \cap V_{\alpha}$. L'isomorphisme K_{α} applique ρ_i^{-1} $(\tilde{a}/G) \cap W_{\alpha}$ et ρ_i^{-1} $(E/G) \cap W_{\alpha}$ dans les courbes notées σ_{in} et σ_{fi} à la section IV.3.
- (β) De même, ρ_i est au-dessus de β du même type que $M_{6,4} \to X_{6,4}$. L'isomorphisme κ_{β} fait correspondre E/G à $\{(s,0)\}/G_{6,4}$ et K_{β} fait correspondre $\rho_i^{-1}(E/G)$ au σ_{fi} de $M_{6,4}$.
- (γ) De même, ρ_i est au-dessus de γ du même type que $M_{4,2} \to X_{4,2}$. L'isomorphisme κ_{γ} fait correspondre E/G à $\{(s,0)\}/G_{4,2}$ et K_{γ} fait correspondre ρ_i^{-1} (E/G) au σ_{fi} de $M_{4,2}$.

Par suite, $\pi_G \rho_i : M_{ico} \to X_{ico}$ est une résolution de la singularité x_0 de $X_{ico} = \mathbb{C}^2/G$. Sa fibre exceptionnelle contient 8 courbes irréductibles sans point triple, à intersections transverses, toutes isomorphes à P^1 , et que nous noterons comme suit:

$$\begin{split} &\sigma_0 = \stackrel{\sim}{\rho_i^{-1}}(E/G) \\ &\sigma_{j,\alpha} \quad \text{correspondant aux } \sigma_j \text{ de } M_{10,8} \ (j=1,2,3,4) \\ &\sigma_{j,\beta} \quad \text{correspondant aux } \sigma_j \text{ de } M_{6,4} \quad (j=1,2) \\ &\sigma_{\gamma} \quad \text{correspondant à } \sigma_1 \text{ dans } M_{4,2}. \end{split}$$

Les calculs de la section IV.3 montrent que l'intersection de deux de ces courbes est 0 ou 1, et vaut 1 si et seulement si elles se coupent dans le diagramme suivant:



Les auto-intersections des $\sigma_{j,\alpha}$, $\sigma_{j,\beta}$, σ_{γ} sont toutes -2 vu la proposition 17 et la propriété de la forme d'intersection rappelée à la section IV.1 sous (vj). Pour connaître la matrice d'intersection de la résolution $\pi_G \rho_i$: $M_{ico} \to X_{ico}$, il reste donc à calculer l'auto-intersection de σ_0 .

Proposition 18. On a $\langle \sigma_0 | \sigma_0 \rangle = -2$.

Première étape de la preuve : définition de la fonction holomorphe \tilde{F} sur M_{ico} .

Ecrivons $\mathscr{A} = h^{-1}(\mathscr{A}) \cup \{0\} = \{a_1, ..., a_{12}\}$ où chaque a_j est une droite de \mathbb{C}^2 passant par l'origine. La transformée stricte \mathscr{A} de \mathscr{A} consiste en 12 « droites » disjointes de S; comme nous l'avons déjà fait ci-dessus (pour définir $\alpha \in E/G$), on peut identifier $\mathscr{A} \cap E$ à \mathscr{A} .

Soit φ un polynôme homogène de degré 120 sur \mathbb{C}^2 invariant par G et s'annulant sur \mathscr{A} . (Un tel polynôme s'obtient en multipliant un polynôme de degré 1 nul sur a_1 par ses transformés par G.) Soit $f = \varphi \cdot \pi$, qui s'annule sur E et sur les transformés strictes a_j des a_j ; plus précisément

$$D_f = nE + \sum_{j=1}^{12} 10\tilde{a}_j$$

où n est un entier que l'on calcule ci-dessous. La fonction f est invariante par G, donc définit une fonction holomorphe F sur S/G. La « droite » $\stackrel{\sim}{a/G}$ est l'image par p de chacune des « droites » $\stackrel{\sim}{a_j}$. La fonction F s'annule donc sur E/G et sur $\stackrel{\sim}{a/G}$ avec

$$D_F = \frac{n}{120} (E/G) + 12 (a/G).$$

Enfin, la fonction annoncée \tilde{F} est la composition $F\rho_i$.

Deuxième étape: calcul du diviseur de F.

Considérons à nouveau sur \mathbb{C}^2 les coordonnées (x, y) telles que a_1 soit l'axe d'équation y = 0 et tel que les éléments du groupe d'isotropie G_{a_1} soient représentés par $\begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}$ avec $\omega^{10} = 1$. Alors $\varphi(x, y)$ $= y^{10} \prod_{k=1}^{11} (x - \lambda_k y)^{10}$ avec les λ_k des nombres complexes distincts

(exercice facile: l'un d'entre eux est nul). Puis, avec π_0 et π_1 comme à la section I.3, $f_0 = \varphi \pi_0 : \psi_0(S_0) \to \mathbb{C}$ et $f_1 = \varphi \pi_1 : \psi_1(S_1) \to \mathbb{C}$ sont donnés par

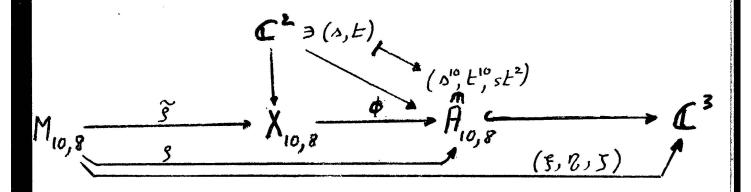
$$f_0(u,v) = \varphi(v,uv) = u^{10} v^{120} \prod_{k=1}^{11} (1 - \lambda_k u)^{10}$$
$$f_1(u,v) = \varphi(uv,v) = v^{120} \prod_{k=1}^{11} (u - \lambda_k)^{10}.$$

Comme $E_j = \psi_j(S_j \cap E) = \{(u, v) \in \mathbb{C}^2 \mid v = 0\} (j = 0, 1)$, les diviseurs de f et de F sont

$$D_f = 120 E + \sum_{j=1}^{12} 10 \tilde{a}_j \qquad D_F = E/G + 12 (\tilde{a}/G).$$

Troisième étape: calcul du diviseur de \tilde{F} au voisinage de ρ_i^{-1} (α).

Soit H_{α} : $X_{10,8} \to \mathbb{C}$ l'application définie par le polynôme $s^{10}t^{120}$ sur \mathbb{C}^2 . Rappelons des sections précédentes que l'on a



et que

$$\phi^{-1} \left[\left\{ (x,0,0) \right\} \right] = \left\{ (s,0) \right\} / G_{10,8} \qquad \phi^{-1} \left[\left\{ (0,y,0) \right\} \right] = \left\{ (0,t) \right\} / G_{10,8}$$

$$\tilde{\rho}^{-1} \left[\left\{ (s,0) \right\} / G_{10,8} \right] = \sigma_{fi} \qquad \tilde{\rho}^{-1} \left[\left\{ (0,t) \right\} / G_{10,8} \right] = \sigma_{in}$$

$$\tilde{\rho}^{-1} \left[\left\{ (0,0) \right\} / G_{10,8} \right] = \sigma_{1} \cup \sigma_{2} \cup \sigma_{3} \cup \sigma_{4}.$$

Par suite

$$D_{H_{\alpha}} = \left[\{ (s,0) \} / G_{10,8} \right] + 12 \left[\{ (0,t) \} / G_{10,8} \right]$$

et le diviseur de $H_{\alpha}\rho = \xi \eta^{12}$ est $D_{\xi} + 12 D_{\eta}$.

Si F_{α} est la restriction de F à U_{α} , il résulte de l'expression de D_F que $F_{\alpha} \kappa_{\alpha}^{-1}$ et la restriction de H_{α} à V_{α} ont même diviseur, donc que D_F^{\sim} au voisinage de ρ_i^{-1} (α) correspond à D_{ξ} + 12 D_{η} . En recopiant dans la preuve

de la proposition 17 et avec les notations introduites peu avant la proposition 18, on voit que D_F^{\sim} est donné dans le voisinage de $\rho_i^{-1}(\alpha)$ par

$$10 \,\sigma_{in,\alpha} + 8 \,\sigma_{1,\alpha} + 6 \,\sigma_{2,\alpha} + 4 \,\sigma_{3,\alpha} + 2 \,\sigma_{4,\alpha} + 12 \,(\sigma_{1,\alpha} + 2 \,\sigma_{2,\alpha} + 3 \,\sigma_{3,\alpha} + 4 \,\sigma_{4,\alpha} + 5 \,\sigma_0)$$

ou encore par

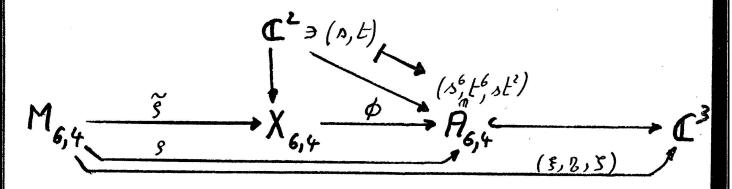
$$60 \sigma_0 + 50 \sigma_{4,\alpha} + \dots$$

ou les points représentent un diviseur dont le support est disjoint de $|\sigma_0|$.

Quatrième étape: calcul de D_F^{\sim} au voisinage de $\rho_i^{-1}(\beta)$ et de $\rho_i^{-1}(\gamma)$.

On peut choisir U_{β} de telle sorte qu'il ne rencontre pas a/G. Le diviseur de la restriction F_{β} de F à U_{β} coı̈ncide alors avec $(E/G) \cap U_{\beta}$.

Soit $H_{\beta}: X_{6,4} \to \mathbb{C}$ l'application définie par le polynôme t^{120} sur \mathbb{C}^2 . Rappelons que



Par suite, le diviseur de H_{β} est 20 [{ (0, t) }/ $G_{6,4}$] et le diviseur de $H_{\beta}\hat{\rho}$ = η^{20} est 20 D_{η} . On voit donc que D_{F} est donné dans le voisinage de $\rho_{i}^{-1}(\beta)$ par

$$20 \left(\sigma_{1,\beta} + 2 \,\sigma_{2,\beta} + 3 \,\sigma_0\right) = 60 \,\sigma_0 + 40 \,\sigma_{2,\beta} + 20 \,\sigma_{1,\beta} \,.$$

De même, il est donné au voisinage de ρ_i^{-1} (γ) par

$$30 (\sigma_{\gamma} + 2 \sigma_{0}) = 60 \sigma_{0} + 30 \sigma_{\gamma}.$$

Dernière étape: calcul de l'auto-intersection de σ_0 .

En résumé:

$$D_{\widetilde{F}} = 60 \,\sigma_0 + 50 \,\sigma_{4,\alpha} + 40 \,\sigma_{2,\beta} + 30 \,\sigma_{\gamma} + \dots$$

où les points représentent un diviseur dont le support est disjoint de $|\sigma_0|$. De l'équation $\langle D_F | \sigma_0 \rangle = 0$, on déduit alors

$$60 \langle \sigma_0 | \sigma_0 \rangle + 50 + 40 + 30 = 0$$

et la proposition.

Remarques. On aurait pu partir d'un polynôme φ' invariant par G et nul sur \mathcal{B} . On aurait alors obtenu les diviseurs associés à η^{12} sur $M_{10,8}$, $\xi \eta^{20}$ sur $M_{6,4}$ et η^{30} sur $M_{4,2}$, d'où un diviseur associé à une fonction F' de la forme

$$D_{F'} = 60 \sigma_0 + 48 \sigma_{4,\alpha} + 42 \sigma_{2,\beta} + 30 \sigma_{\gamma} + \dots$$

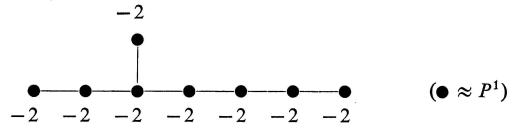
et une équation

$$60 \langle \sigma_0 | \sigma_0 \rangle + 48 + 42 + 30 = 0$$

On aurait enfin pu partir d'un polynôme φ'' nul sur \mathscr{C} , d'où des diviseurs associés à η^{12} sur $M_{10,8}$, η^{20} sur $M_{6,4}$ et $\xi\eta^{30}$ sur $M_{4,2}$ et une équation

$$60 \langle \sigma_0 | \sigma_0 \rangle + 48 + 40 + 32 = 0$$
.

COROLLAIRE. Le schéma de Dynkin associé à la résolution $\pi_G \rho_i \colon M_{ico} \to X_{ico}$ est



et la matrice d'intersection associée est la matrice de Cartan E_8 .

V. 2. Le cas des autres polyèdres réguliers •

Nous noterons dans cette section \underline{G}_{ico} [respectivement \underline{G}_{oct} , $\underline{G}_{t\acute{e}t}$, \underline{D}_n] le sous-groupe de SO (3) des rotations qui laissent invariant un icosaèdre régulier [resp. octaèdre régulier, tétraèdre régulier, polygone plan régulier à $n \ge 3$ sommets] inscrit dans S^2 et G_{ico} [resp. G_{oct} , $G_{t\acute{e}t}$, D_n] son image

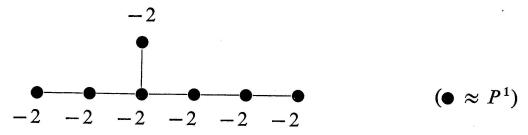
inverse par δ^{-1} dans SU(2). La section précédente est l'étude de l'espace $X_{ico} = \mathbb{C}^2/G_{ico}$, qui a un unique point singulier et qu'on a dit être isomorphe à la surface

$$A_{ico} = \{(x, y, z) \in \mathbb{C}^3 \mid z^5 = x^2 + y^3 \}.$$

Soit X_{oct} le quotient de \mathbb{C}^2 par G_{oct} . Il est isomorphe à la surface

$$A_{oct} = \{(x, y, z) \in \mathbb{C}^3 \mid z^2 = x(x^2 - y^3)\}.$$

On peut en construire, comme pour le cas précédent, une désingularisation $M_{oct} \rightarrow X_{oct}$. Les calculs du chapitre IV relatifs à $X_{8,6}$, $X_{6,4}$ et $X_{4,2}$ et un calcul analogue à celui de la proposition 18 montrent que le diagramme de Dynkin associé est



et que la matrice d'intersection est la matrice de Cartan E_7 .

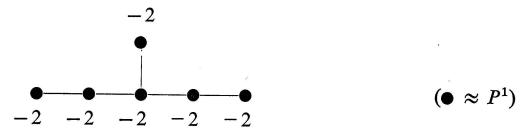
Contrairement à G_{ico} , le groupe G_{oct} n'est pas parfait. Son groupe dérivé est $G_{t\acute{e}t}$ et son abélianisé \mathbb{Z}_2 . Le quotient $X_{t\acute{e}t}$ de \mathbb{C}^2 par $G_{t\acute{e}t}$ = (G_{oct}, G_{oct}) est isomorphe à la surface

$$A_{t\acute{e}t} = \{(x, y, z) \in \mathbb{C}^3 \mid z^4 = x^2 + y^3 \}.$$

(Pour l'isomorphisme, voir [12], chap. II, § 12 et [15], § 4.) On trouve aussi

$$A_{t\acute{e}t} = \{ (x', y', z') \in \mathbb{C}^3 \mid y'^3 = x'(x' - z'^2) \},$$

ce qui correspond au changement de coordonnées $x=x'-z'^2/2, y=-y', z=z'/2$. On obtient cette fois $M_{t\acute{e}t}\to X_{t\acute{e}t}$, où $M_{t\acute{e}t}$ se fabrique en recollant deux copies de $M_{6,4}$ et une copie de $M_{4,2}$. Le diagramme de Dynkin associé est



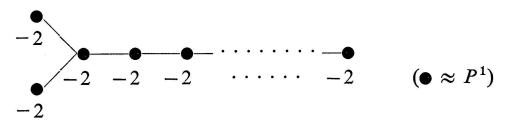
et la matrice d'intersection est la matrice de Cartan E_6 .

L'analogue du théorème A de la section IV.3 s'énonce donc comme suit.

Théorème E. Les désingularisations des ensembles analytiques à singularité unique \mathbb{C}^2/G , où G est l'un des trois groupes polyédraux binaires G_{ico} , G_{oct} , $G_{tét}$, définissent les schémas de Dynkin E_8 , E_7 et E_6 .

Le dernier théorème résume la situation qu'on obtiendrait en étudiant le cas des groupes diédraux binaires (voir [1]).

Théorème D. Soient $n \ge 3$ et X_n l'ensemble analytique quotient de \mathbb{C}^2 par le groupe diédral binaire D_n (à 4n éléments). On obtient une désingularisation $M_n \to X_n$, où M_n se fabrique en recollant deux copies de $M_{4,2}$ et une copie de $X_{2n,2}$. Le schéma de Dynkin associé est



et la matrice d'intersection est la matrice de Cartan D_n .

On trouvera des renseignements complémentaires dans bien d'autres articles parmi lesquels nous citerons [10] et [20].

RÉFÉRENCES

- [1] Behnke, K. und O. Riemenschneider. Diedersingularitäten. Abh. Math. Sem. Univ. Hamburg 47 (1978), pp. 210-227 et Infinitesimale Deformationen von Diedersingularitäten. Manuscripta 20 (1977), pp. 377-400.
- [2] BOCHNER, S. and W. T. MARTIN. Several complex variables. Princeton University Press 1948.
- [3] CARTAN, H. Quotient d'un espace analytique par un groupe d'automorphismes. Algebraic geometry and algebraic topology, a symposium in honor of S. Lefschetz, pp. 90-102, Princeton University Press 1957.
- [4] DURFEE, A. H. Fifteen characterizations of rational double points and simple critical points. L'Enseignement math. 25 (1979), pp. 131-163.
- [5] FISCHER, G. Complex analytic geometry. Springer Lecture Notes 538 (1976).
- [6] GODEMENT, R. Cours d'algèbre. Hermann 1963.
- [7] GUENOT, J. et R. NARASIMHAN. Introduction à la théorie des surfaces de Riemann. L'Enseignement math. 21 (1975), pp. 123-328.
- [8] GUNNING, R. C. and H. Rossi. Analytic functions of several complex variables. Prentice Hall 1965.
- [9] HIRZEBRUCH, F. Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen. *Math. Ann. 126* (1953), pp. 1-22.

- [10] Über Singularitäten komplexer Flächen. Rend. Mat. 25 (1966), pp. 213-252.
- [11] HIRZEBRUCH, F., W. D. NEUMANN and S. S. KOH. Differentiable manifolds and quadratic forms. Dekker 1971.
- [12] Klein, F. Vorlesungen über das Ikosaeder und die Auflösung der Gleichung vom fünften Grade. Teubner 1884.
- [13] LAUFER, H. B. Normal two-dimensional singularities. Princeton University Press 1971.
- [14] MILNOR, J. Singular points of complex hypersurfaces. Princeton University Press 1968.
- [15] On the 3-dimensional Brieskorn manifolds M(p, q, r). Knots, groups, and 3-manifolds, papers dedicated to the memory of R. H. Fox (Neuwirth éditeur), pp. 175-225, Princeton University Press 1975.
- [16] Mumford, D. The topology of normal singularities of an algebraic surface and a criterion for simplicity. *Publ. Math. Inst. des Hautes Etudes Sci.* 9 (1961), pp. 229-246.
- [17] Algebraic geometry I, complex projective varieties. Springer 1976.
- [18] NARASIMHAN, R. Introduction to the theory of analytic spaces. Springer Lecture Notes 25 (1966).
- [19] OKA, K. Sur les fonctions analytiques de plusieurs variables. Iwanami Shoten, Tokyo 1961.
- [20] PINKHAM, H. Singularités de Klein I et II. Séminaire sur les singularités des surfaces, Ecole polytechnique, 12 et 26 octobre 1976.
- [21] PRILL, D. Local classification of quotients of complex manifolds by discontinuous groups, *Duke Math. J. 34* (1967), pp. 375-386.
- [22] RIEMENSCHNEIDER, O. Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). *Math. Ann. 209* (1974), pp. 211-248.

(Reçu le 14 août 1978)

Pierre de la Harpe

Section de Mathématiques Case postale 124 CH-1211 Genève 24

Pierre Siegfried

Grünweg 4 CH-8400 Winterthur