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SINGULARITÉS DE KLEIN

par P. de la Harpe et P. Siegfried

« Ich bitte den Leser, sich Zeichnungen
anfertigen zu wollen oder sich geradezu an einem
leicht zu verschaffenden Modelle die in Betracht
kommenden Verhältnisse zu überlegen. Denn es

handelt sich um durchaus concrete Dinge, welche
vermittelst der genannten Hülfsmittel jedesmal leicht
erfasst werden, aber ohne dieselben der Vorstellung
gelegentlich Schwierigkeiten bereiten können. »

F. Klein, « Vorlesungen über das Ikosaeder... ».

Ces notes veulent être une introduction élémentaire à la géométrie
analytique complexe locale, centrée autour de quelques exemples simples.
Elles reprennent la matière de séminaires tenus à Genève et à Lausanne
entre 1974 et 1977. Elles abordent des sujets développés par Alan Durfee
dans ce même volume à l'intention des lecteurs plus savants [4].

Nous supposerons que le lecteur connaît, au moins en première approximation,

le contenu des chapitres I et II de [8]. C'est un bagage à deux ballots.
D'une part, soient k un entier positif et k0 l'anneau des germes de fonctions
holomorphes définies au voisinage de l'origine dans Cfc; le théorème de

préparation de Weierstrass dit comment l'étude d'un élément de (fe+ X)0 peut
se ramener à celle d'un élément dans l'anneau de polynômes k0 [zk+ J; il en
résulte en particulier que l'anneau intègre et local k(9 est aussi factoriel et
noethérien. D'autre part, nous utiliserons le vocabulaire rudimentaire
concernant les (germes d') ensembles analytiques plongés dans C" « sub-
variety »; voir section II.E de [8]). Nous ferons également un usage répété
de quelques propriétés des résultants et discriminants de polynômes,
auxquelles nous revenons ci-dessous.

Le premier chapitre traite des propriétés les plus élémentaires des
courbes planes, et offre ainsi une traduction géométrique de cas particuliers
des théorèmes de Weierstrass et Hensel (démontré au n° 1.2). Le second
chapitre est une introduction à la notion d'ensemble normal, et montre
qu'un ensemble analytique de dimension 2 qui se plonge dans C3 (qui y est
donc décrit par une équation et qu'on appelle une hypersurface dans C3)
et qui est normal n'a que des singularités isolées. On peut grossièrement
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classer les points d'une petite portion d'hypersurface dans C3 comme suit,
relativement à une projection convenable sur C2: d'abord ceux qui se

projettent hors du lieu discriminant, qui sont toujours lisses; puis ceux qui
se projettent sur un point lisse du discriminant, qui sont lisses lorsque la
surface est normale (voir II.2); ensuite ceux qui se projettent sur une singularité

du type {(x, y) e C2 | xy 0} dans le discriminant, et qui forment
l'objet du troisième chapitre; enfin les autres points normaux, dont on
trouvera au chapitre V des exemples classiques, et les points non normaux,
dont nous ne dirons rien. Le chapitre IV est une introduction à la notion
de désingularisation et offre en exemples les quotients de C2 par un groupe
cyclique d'isomorphismes analytiques [9]. Dans le dernier chapitre, nous
calculons explicitement les matrices d'intersection qui apparaissent dans les

désingularisations des quotients de C2 par un sous-groupe fini non cyclique
de SU (2); nous traitons en détail le cas du groupe binaire de l'icosaèdre et
donnons quelques indications sur les autres cas, plus simples. Suivant [20],
nous appelons singularité de Klein une singularité C2/G, avec G un sous-
groupe fini de SU (2) (ou, ce qui revient au même, de SL (2, C)); les matrices
d'intersection associées correspondent alors aux fameux diagrammes de

Dynkin des familles A, D et E.
Avant d'entrer dans le vif du sujet, nous souhaitons rappeler les faits

suivants; les références à Bourbaki sont données de manière canonique.
Nous désignons par A un anneau intègre (avec unité), par K son corps des

fractions, et parf g deux éléments de A.
Les éléments/et g sont étrangers si les seuls éléments de A qui divisent/

et g sont les unités, en d'autres termes si 1 est un pgcd de/et g [A, VI, §1,

n° 12]. Ils sont fortement étrangers s'il existe a et b dans A avec af + bg 1

[AC, III, §4, n° 1]. Deux éléments fortement étrangers sont étrangers (on
montre facilement que tout diviseur de/et de g est inversible); la réciproque
n'est pas vraie en général (comme le montrent les éléments X et Y de
Z [X, 7]), mais elle l'est si A est principal (Bezout).

Nous renvoyons à l'appendice III de [7] pour les définitions de résultant
et de discriminant. Nous désignons par P et g deux polynômes dans l'anneau
A [X], l'un au moins étant unitaire monique).

Les polynômes P et g sont fortement étrangers si et seulement si leur
résultant est inversible dans A (c'est au vocabulaire près le lemme 2 de

l'appendice III dans [7], et c'est essentiellement la proposition 1 de [AC,
III, §4, no 1]).

Supposons de plus A factoriel, et les deux polynômes P, g unitaires.
On sait que P et g sont étrangers dans A [X] si et seulement s'ils le sont en
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tant qu'éléments de K[X] [AC, VII, §3, n° 5, th. 2], ou encore si et seulement

si leurs facteurs irréductibles éléments extrémaux) sont non équivalents

deux à deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1],

ou enfin si et seulement si leur résultant n'est pas nul dans A (donc est

inversible dans K);cette dernière affirmation est à un oubli de détail près

le lemme 3 de l'appendice III de [7]. De même, les facteurs irréductibles

de P sont non équivalents entre eux si et seulement si son discriminant

n'est pas nul; on dit alors que Pest sans facteur multiple.

Soient B un second anneau intègre et -* un homomorphisme

appliquant 1 sur 1.; nous désignons par la même lettre l'homomorphisme

A[X\~* B[X\. Si Res et Dis dénotent respectivement le résultant

et le discriminant, il convient d'insister sur la propriété suivante, qui est

très utile malgré sa banalité:

cp (Res (P, Q))Res (P), cp (©)
ç) (Dis (P)) Dis (P))

Le cas le plus fréquent ci-dessous est celui ou (D) est l'anneau des

fonctions holomorphes sur un polycylindre D de Ck centré à l'origine, où

B k0 et où / est l'injection canonique. Précisons à ce sujet que

tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national

suisse de la recherche scientifique.

I. COURBES PLANES

1.1. Singularités des courbes planes et revêtements

Soit y un germe de courbe plane. On peut toujours supposer y donné par
les zéros d'un polynôme de Weierstrass (quitte à opérer un changement
linéaire de coordonnées). Plus précisément, il existe

1°) Un polycylindre D2 dans C2, centré à l'origine; nous noterons D,
sa trace sur la droite C Cx de C2 C2r

2°) Un polynôme de Weierstrass / (DJ [y] de degré n, c'est-à-dire

une fonctionf e & (D2) avec
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f(x,y) y" + al(x) y"1 + + an(x)

pour tout (x, y) e D2, où les aj sont des fonctions holomorphes
dans D1 qui s'annulent à l'origine.

Le germe y est alors représenté par yD {(x, y) e D2 | /{x, y) 0}.
Nous écrirons plus simplement y si D2 C2. On peut toujours remplacer
D2 par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit par restriction une application

h de yD sur D±. Si n 1, le changement de coordonnées (x,y)
(x, y-a (x)) montre que yD est lisse à l'origine; nous supposerons

désormais n > 2 (on prendra garde que ceci n'exclut pas tous les germes
lisses, comme le montre le cas de/ (x, y) y2 — x).

Proposition 1. Soit y un germe donné comme ci-dessus. Alors la
projection canonique de C2 sur C induit (après rétrécissement éventuel
de D2) un revêtement holomorphe à n feuilles

rc*: yt yD-{(0,0) } -» £>f -{ 0 }

Preuve. Le discriminant Dis (/) est un élément de (S (D1). Notons
Ev: 0 (Djl) -> C le morphisme d'évaluation g g (0); alors Ev (Dis (/)

Dis (Ev (/)). Or Ev (/) yn est un polynôme qui a par hypothèse
(n > 2) une racine multiple et son discriminant est nul. Par suite Dis (/)
s'annule à l'origine.

On peut supposer que le germe à l'origine / de/est sans facteur multiple,
de sorte que Dis (/) n'est pas nul. Mais Dis (/) est le germe de Dis (/).
Par suite la fonction Dis (/) n'est pas nulle, ses zéros sont isolés, et on
peut supposer (après rétrécissement de D2 au besoin) que Dis (/) ne
s'annule pas dans Z>*.

Soient aeD\ et Eva: (S (D^) -> C l'évaluation g \-^ g (a). Comme
Dis (Eva (/)) Eva (Dis (/)) # 0, le polynôme y h>/(a, y) n'a pas de

df *racine double; en d'autres termes — {a, y) ^ 0 si (a, y) e yD. Par suite la
ôy

dffonction— e(9(D2) ne s'annule pas sur y%. Le théorème des fonctions
dy

implicites affirme dans cette situation que y% est une courbe lisse et que
est un isomorphisme analytique local. Ses fibres ayant toutes le même

nombre n d'éléments, c'est de plus un revêtement.

Corollaire. Les singularités des courbes planes sont isolées.
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Proposition 2. On suppose / sans facteur multiple. Alors / est réductible

si et seulement s'il existe un polycylindre tel que/ ait un représentant

feO (D2) avec non connexe.

Preuve. Supposons/ /' /", avec/' et/" des polynômes de Weierstrass

non constants et sans facteur commun; leur résultant est donc un élément

non nul de 1&. On peut choisir un polycylindre et des représentants

fô et fî> de /' et f"tels(lue le résultant de fî> et f'ô soit une fonction de

©(£>!) sans zéro dans D'f. Un argument déjà utilisé dans la preuve de la

proposition 1 montre alors que fô et fD n'ont pas de zéro commun dans

D2 ~ {(0, 0)}. Par suite les ensembles

y' {(x,y)eD2\f'B(x,y)0 et x#0}
et

f {(x,y)eD2 \fD(x,y) 0 et x/0}
forment une partition en fermés non vides de y % qui n'est donc pas connexe.

Supposons réciproquement qu'il existe un polycylindre D2 tel que

l'espace total du revêtement associé 71*: y%-+ D\ admette une partition

en deux fermés non vides: y% y' u y"Par la proposition 1, le cardinal

ri de y' n n"1 (x) ne dépend pas du choix de x dans D*. Soient cp1 (x),

...,cpn(x) les zéros de la fonction y^f(x,y), numérotés de telle sorte

que (pj (x) e y' pour j < ri. Posons

f] (y-vjW) et /"O'J7) Il (y-vjW)
j= 1 j n' +1

pour tout (x, y) e D2. Les cpj ne sont en général pas holomorphes (seules

leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de

la proposition 1 que, pour tout disque a D*, on peut faire en sorte que

les cpj soient holomorphes dans A±. Par suite,/' et/" sont holomorphes au

voisinage de tout point (x9 y) avec x ^ 0, donc dans tout D2 par le théorème

d'extension de Riemann. En d'autres termes / /'/" est réductible.

Proposition 3. Supposons / irréductible. Alors il existe un nombre

positif r et une fonction holomorphe <p dans D (r) {t e C | | 11 < r}
f D (r) yD ttels que < soit un homeomorphisme.

Preuve, Avec les notations de la proposition 1, soient s le rayon de D1

et r la racine positive n-ième de s. Notons D (r)* le disque D (r) privé de

l'origine. Les applications de D (r)* sur D\ et (x,y)h>x de y%

surD* sont des revêtements holomorphes (proposition 1) connexes (propo-
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sition 2) à « feuilles de l'espace D* à groupe fondamental abélien. Il existe
donc un isomorphisme analytique 'P* rendant le diagramme

D(r)* -y*

\ / 71*

D?

commutatif. Comme est borné, il se prolonge par continuité en un
morphisme bijectif $:D(r)-*yD de la forme t\-> {tn,cp (t)) avec

(p e G (D (r)). C'est alors un exercice facile de topologie générale de montrer
que <P est un homéomorphisme.

Corollaire. Les courbes planes irréductibles sont des variétés topo-
logiques.

Notons qu'une courbe plane (plus généralement une sous-variété de

Ck) analytiquement singulière n'est jamais une variété différentiable ; voir
par exemple [14], §2.

La proposition 3 exprime yD paramétriquement par x tn et

y (p(t) a0tm + a1tm+i + + aktm+k + (a0 =£0) ;

on montre facilement qu'on ne restreint pas la généralité en supposant
m > n. On écrit aussi

y a0xm/n + a1x(m+1)ln + + akx(m+k)/n +

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

1.2. Les tangentes en un point d'une courbe plane

Soient k un entier positif et Ev: k0 -> C l'évaluation à l'origine, qui
n'est autre que la projection canonique de l'anneau local k(9 sur son corps
résiduel.

Proposition 4. L'anneau local k0 est hensélien. En d'autres termes,
soient P ek0 [*] un polynôme unitaire et p, creC [/] des polynômes unitaires

étrangers tels que Ev (P) p a. Alors il existe des polynômes unitaires R

et S dans k(9 [t] avec P RS, Ev (R) p et Ev (S) a.

Attention : P n'est pas nécessairement un polynôme de Weierstrass.
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Preuve. Notons Ev (P) (t)P (0, t 0 ~~ A/) A avec ^i' "*'
distincts. (Dans cette preuve, les produits portent sur l'indicede 1 à n

les J~J' portent sur j de 2 à ri). Nous voulons montrer par induction sur n

qu'il existe des polynômes unitaires Pu ...,P„ dans k® [t] avec P

Ev (Pj) (t) Cette assertion étant trivialement vraie pour

1, on peut supposer ri i-' 2 et qu'elle est vraie pour tous les polynômes

dont l'évaluation a au plus n - 1 racines distinctes.

Supposons d'abord que P (0, 0) 0 et que Ev (P) t 1 Ü (/ ~ A») J-

Le théorème de préparation permet d'écrire

P(x,t) ii(r,()[fi + fl1(x)/1"1 + ...+flllW]
où u est un polynôme de k0 [t] inversible dans k+1& et où les cij sont des

germes dans k6qui sont nuls à l'origine. Par suite

Ev (P) (0 u (0, 0 f1 1 n' - àj)s/

et « (0, t) J7'(t-2J)SL Par hypothèse d'induction, il existe P2, ...,P„
dans k& [t] avec u ]J' Pj et Pj (0, pour j 2,On
achève en posant

P1(x,t) fi + a1(x)tsi"1 + +fls1(x).

Supposons au contraire que P (0,0) ^ 0. Soient 2eC tel que

P(0, A) 0 et PT le polynôme défini par PT (x, t) P(x, + A). Alors
PT est un produit de n facteurs P] par l'argument précédent et on achève

en posant Pj (x, t) P] {x, t-X) pour j 1,..., n.

Notons qu'il existe d'autres définitions (équivalentes à celle de la

proposition) pour un anneau local d'être hensélien; voir par exemple [AC,

III, §4, ex. 3].

Soient y, D2,f et yD comme au début de la section 1. Ecrivons la série

de Taylor de/ à l'origine sous la forme / (x, y) £ hj (x, y) (somme sur j
de j? à l'infini), où hj est un polynôme homogène de degré j en x et y et

où hp ^ 0. Le polynôme hp est un produit de facteurs linéaires. Quitte à

modifier les axes de coordonnées, on peut supposer que hp ne s'annule pas

sur la droite d'équation x 0, donc que hp (x, y) - c J~J (y~^jx)Sj avec c

un nombre complexe, Âl9..., des nombres complexes distincts, et sl9

sm des entiers positifs de somme p. Les droites d'équation y kj x
sont par définition les tangentes de y. Pour chaque entier j > p, on a

hj (0> y) proportionnel à yj, et hp (0, y) cyp avec c ^ 0. Par suite, / est

une fonction régulière d'ordre p en y; avec les notations du début de la
section 1, on a donc p n. Cet entier s'appelle la multiplicité de / à l'origine;

il ne dépend pas des coordonnées choisies sur C2.

L'Enseignement mathém., t. XXV, fasc. 3-4. 14
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Proposition 5. Si ya plusieurs tangentes, alors est réductible.

Preuve. Comme

f(x,y) y"+ a1(x)y"~1 ++ J
j n

l'ordre du zéro de at à l'origine est au moins (/= 1,«). Nous écrirons

/ - hn(x,y)^(x)/"1 + b2(x)yn~2

et (x) xI+1 Cj (x), où ct représente un germe holomorphe à l'origine
(i=1,n).

Si uet vdécrivent de petits voisinages de l'origine dans C, la fonction

(u, v)v*f(v, uv) est divisible par v". Définissons f e 2& par f(u,v)
v~"f(v, uv); on a donc

f(u,v) h„(l,u) +vc1(v)un~1+vc2(v)un~2 + +vcn(v).

L'évaluation Ev: x<9Cassocie au polynôme f e 2(9 [u] le polynôme
U h-> hn(1, u) de C [u].

Si y a plusieurs tangentes, il résulte de la proposition 4 que / est un

produit dans [u] de polynômes unitaires et de degrés respectifs r < n

et s <n.Définissons alors g et h dans [y] par g (x, y) xr g (y/x, x)
et h (x, y) xs h (y/x, x). Alors / gh et / est réductible.

La signification géométrique de/dans la preuve ci-dessus sera éclairée
au numéro suivant.

Par exemple, le polynôme réductible xy définit une courbe ayant deux
tangentes à l'origine. La réciproque à la proposition 5 n'est pas vraie car
le polynôme réductible x (x2 — j3) définit une courbe n'ayant qu'une tangente
à l'origine.

1.3. Eclatement et irréductibilité

Pour tout entier positif k, nous noterons h la projection canonique
de Ck+1 - {0} sur l'espace projectif Pk; nous écrirons (co0,...,œk) les
coordonnées d'un vecteur de Ck+1 et [z0,..., zk] les coordonnées homogènes
d'un point de Pk. Introduisons la variété



S(-i) {(l>o>Zi]> w)eP1 x C*+1 I wz\J) u {0}}
la restriction n(-r>à S(^k) de la seconde projection du produit P1 x Ck+1.

Nous écrirons aussi % \ S C2 lorsque k 1; cette application est alors

par définition Yéclatement de C2 à Vorigine.
Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont à

prendre dans {0, 1}.

Posons Uj {(.z0, Zjl) eC2 - {0} | Zj #0} et Uj - h(Uj). Soit

Pj : Uj -> C l'application qui associe à (z0, zx) le quotient zjz0 si y 0 et

le quotient z0/z1 si j 1; elle passe au quotient et définit une bijection

(pj-. Uj -> C. Les changements de cartes de l'atlas analytique ainsi défini
surP1 sont

et l'isomorphisme inverse.

Considérons ensuite la restriction 2(_k): S(_fc)-» P1 de la première

projection du produit P1 x Cfe+1. Posons j /L(_fc)_1 (Uj) et soient

les bijections définies par \j/0 ([z], co) (<p0 ([z])? a>0) et

\j/1 ([z], co) ([z]), cofe); les applications inverses sont respectivement

Les changements de cartes de l'atlas analytique ainsi défini sur S(_k) sont

C* x C — \j/0 (S(-k),onS(-k),i) *Ai (^'(-fc)Jon^,(-fc),i) ~~ x ^
(u,v) !-> (w_15 likv)

et l'isomorphisme inverse.

La variété S(_k) est donc l'espace total d'un fibré holomorphe en droites
de projection A(_fc): S(_k) -» Px. Les fonctions de transition associées au
recouvrement trivialisant (U0, U±) de P1 sont

C* VoiUonUJ-xp^UonUJ C*

et
(w,^)^([l,w]3 (?L uv,..., uV))

1], ...,*0) •

<Ai,o :
U0nU±^ C*

[z^zJi-Kzi/zo)*
et
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En particulier, le fibré X(_k) est la puissance tensorielle k-ième du fibré
canonique X 2(_1}. Nous avons construit 2(_fc) comme l'image inverse
du fibré canonique sur Pk par le « morphisme de Véronèse » de P1 dans Pk,
qui est une application de « degré » k. Le signe dans l'indice (- k) exprime
que la classe de Chern du fibré 2(_fc) évaluée sur la classe fondamentale est
négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes
raisons pour lesquelles la classe de Chern de est —k (multiplicativité
par produit tensoriel et multiplication par le degré); indiquons-en une
troisième qui n'utilise que des notions encore plus rudimentaires (voir par
exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe^rP1 —> S(_k) du fibré 2(_fe) décrite

par les applications

_
(U0^s(_kh0 s(_i)4
\u^(u,u) 1

[ i

Alors sa un zéro simple, en un point correspondant à l'origine de un
pôle d'ordre k +1, en un point correspondant à l'origine de Uu et n'a ni
autres zéros ni autres pôles. Les différentielles logarithmiques de s aux
voisinages de son zéro et de son pôle se représentent respectivement par
d{log u) u'1du, de résidu +1, et d(log -(k+\)u~l du, de

résidu -(fc + 1). Il en résulte que la classe de Chern du fibré L M vaut

l-(k + l)=-k. (>
L'application n: S -> C2 s'exprime dans les cartes standards par

je2 =iAo(^o)^C2

et

f c2 =^1(S1)^C2
1

(u,v)^(uv,v).
On appellera courbe exceptionnelle de l'éclatement n et on notera E la
courbe 71_1 (0, 0), qui est lisse et isomorphe à P1. Elle est donnée dans les

cartes par
E0 ij/0(EnS0) {(u,v)eC2 | v 0}

et
E± {(u,v)eC2\v =0}.

On notera que, en général, l'image de la section nulle du fibré 2(_fc) coïncide

avecjr(_t)-1(0).
** *
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Soient alors y, Z>2,/et yD ou y comme au début de la section 1. On

appelle transformée stricte de yD et on note n 1 (yD) ou yD l'adhérence dans

D2 tî"1 (ß2) de 71-1 (yV)> avec comme Plus baut y*D 7d ~ {°}-

Exemple L D2 C2 et f(x9y) xy. Alors y a deux composantes

irréductibles qui sont l'axe y' d'équation y 0 et l'axe y" d'équation

x 0, de sorte que y y' u y". Or y' est l'adhérence de {([^], coi) e S | co

(x, 0) et x # 0}, qui est {([z], co) e S | [z] [1,0]}. De même y"

{([z], co e S | [z] [0, 1]}. Dans les cartes standards:

^o(y') {(u,v)eC2 \u 0}

y' n S± y" n S0 0

{(u,v)ec2 |u 0}.

On retiendra que 7 est réunion de deux courbes lisses disjointes et que

(y) y u E est réunion de trois courbes lisses sans point triple et à

intersections transverses.
Plus généralement, si y est réunion de m droites distinctes dans C2

passant par l'origine, sa transformée stricte est réunion de m courbes lisses

disjointes coupant chacune la courbe exceptionnelle en un point et
transversalement.

Exemple 2. D2 C2 et /(x, y) x2 - y3. Alors y est l'adhérence
de {([z], co e S | co O3, *2) et feC*}, qui est {([*, 1], (t3, t2)) e S\

te C} c= Sv Dans les cartes, \j/0 (yr\S0) est l'adhérence de {(«, v) e C2 |

u t'1, v t3, te C*} et \f/1 (ynSJ celle de {(u, v) e C2 | u t,
v t2, t e C*}. Ecrit sans paramètre:

^o(ynSo) {(u,v)eC2\u3v 1}

*Ai (yriS±) {(u,v)eC2 \u2 v}

Par suite y est une courbe lisse, et n'1 (y) — y u E est réunion de deux
courbes lisses se coupant au seul point (0, 0). Cette intersection n'étant
pas transverse, on itère le procédé en espérant éliminer ce « défaut ».
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Au voisinage de ce point d'intersection, n'1 (y) définit un germe <5; on
le représente par la courbe <5, zéro de la fonction g e® (C2) définie par
g (x,y) y(x2—y). La transformée stricte est donnée dans les cartes par

\l/0(ônS0) {(u,v)e C2 \u(v—u) =0}
\l/± (ônSx) {(u,v) g C2 | u2v 1}

Par suite <5 est réunion de deux courbes lisses se coupant en un seul point
et transversalement; d'autre part n'1 (S) est réunion de trois courbes lisses

se coupant en un seul point, et transversalement deux à deux.

Au voisinage de ce point triple, n~1 (<S) définit un germe s. La remarque
à la fin de l'exemple 1 montre que e conduit à une transformée stricte qui
est réunion de trois courbes lisses disjointes coupant la courbe exceptionnelle

transversalement et en des points distincts.
En composant ces trois éclatements, on obtient une résolution de la

singularité y plongée dans C2, au sens du théorème 8.4 de [17]. En d'autres

termes, on obtient une variété lisse M et une application (: M C2 ayant
les propriétés suivantes :

1) C induit un isomorphisme de M — 1 (0) sur C2 - {0} ;

2) l'adhérence Ç~1 (y) de £~1 (y*) dans M est une courbe lisse;

3) C1 (y) est une réunion de courbes lisses sans point triple qui se

coupent transversalement.

Revenons au cas général et soit à nouveau n la multiplicité de/ à

l'origine; nous supposons comme à la section 2 que la droite d'équation x 0

n'est pas une tangente de y. Nous appellerons transformée stricte de la

fonction f et nous noterons / la fonction définie pour tout (u, v) e A 2

[j/0 (n_1 (Z>2) n S0) par/(m, v)v~nf(v, uv).

Proposition 6. Avec les notations déjà introduites:

(j) <Ao O»nS0) {{u, v) e A2 \f(u, 0}.

(jj) Si / est irréductible, alors/ s'annule en un seul point de E0 et y définit

un germe / g qui est irréductible.

(jjj) Supposons / irréductible et soient «et n les multiplicités de / et /;
alors n < n et n < n si et seulement si E0 est une tangente à y.
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Preuve. Supposons (w, v) e\//0 (7nn^o)j al°rs 71 o (w> v) (ü» wî;) e

donc/(v, uo) 0. Si ï; # 0, cela implique /(m, v) 0 par définition de/;
c'est encore vrai par continuité si v 0.

Supposons (w, v) g d 2 avec / (w, v) 0, alors / (710 (u, v)) vnf (w, v)

0, donc ^o"1 (w,^) e7i-1 (y^) n S0. Si v # 0, cela s'écrit ^0_1 (w>*0.

eyDnS0. Si v 0, la fônction ut->f(u, 0) est de la forme

Mh>c[] (u-kjf3 avec c non nul et 21? 2m distincts (voir la proposition

5). Elle s'annule donc aux points (Xp 0) de E0 ; ceux-ci étant en nombre

fini, leurs images inverses par \j/0 sont par continuité dans yD n S0. L'assertion

(j) en résulte.

Si / est irréductible, il n'y a qu'un Xd (voir la preuve de la proposition 4);

/ ne s'annule qu'en un point de E0 et y définit un germe /. L'application n

induit un homéomorphisme de S — E sur C2 — {0}, donc aussi de %
1 (y*D)

7d ~ (Jd^E) sur Jd- L'assertion (jj) résulte donc de la proposition 2.

Quitte à changer linéairement les coordonnées, on peut supposer que la

tangente à y est l'axe d'équation y 0. Pour tout (x, y) e D2, on a

maintenant

f(x,y) / + b1(x)yn~+ + bn(x)

et bt(x) xi+1 ct(x) où ct est holomorphe à l'origine. Pour tout
(u, v) e A 2, on a donc

f{u,v) un + vc1(v)un~1 + +vcn(v),

d'où en particulier n < n. Si n — n, alors / (w, v) £ hj (u, v) (somme de n

à l'infini) avec hn (u, v) un + vk (w, a) pour un polynôme homogène k
ad hoc, nul ou de degré n - 1 ; dans ce cas, la courbe E0 d'équation v 0

n'est pas tangente à \j/0 (yDnS0). Si n < n, alors /(u,v) Yjhj(u,v)

(somme de n à l'infini) avec /z~ divisible par v; dans ce cas, E0 est tangente

a *Ao (yDnS0). h

Exemple 3. D2 C2 et /(x, y) x5 + y2. On peut montrer brutalement

que / est irréductible. On peut aussi observer que la paire formée de
C2 - {0} et de y* se rétracte par déformation sur la paire formée de
S3 {(x, y) g C2 I x 12 + \y\2 1} et d'un nœud du tore : la rétraction
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applique un point (x, y) sur l'intersection avec S3 de l'image du chemin
C Rî -» C2

<
0 En particulier 7* est connexe et / est bien irréductible.

[t\->(t2x,t5y) ~

La transformée stricte de/ est donnée par

f(u,v) v~2(v5 +(uv)2) ii2 + v3

qui est comme / de multiplicité 2. La tangente de/ est la droite d'équation
u 0, qui est transverse à E0.

Soient alors D2 C2 et g (.x, j) x3 + j2 de sorte que g f (pas

g (x, y) x2 + y3 qui aurait comme tangente la droite d'équation x 0).

On a g («, v) u2 + v, qui est de multiplicité 1, et dont la tangente à

l'origine est bien E0.

Exemple 4. D2 C2 et f(x,y) y5 + x5y + g (x, y) avec g de

multiplicité 8 au moins. Montrons que / est réductible.

On a/ (w, v) u5 + uv + h {u, v) avec h d'ordre 3 au moins. Donc / a

deux tangentes, d'où l'assertion par les propositions 5 et 6 (jj).

II. SINGULARITÉS NORMALES DANS C3

II.l. Ensembles normaux

Si X est un ensemble analytique, Xrég désigne l'ouvert de ses points
réguliers; on sait qu'il est dense dans X. (Voir le corollaire de la proposition

1 si X est une courbe plane, l'argument de la proposition 7 ci-dessous

si X est une hypersurface dans Ck, et le théorème III. C.3 de [8] en général.)

Rappelons qu'un ensemble X est irréductible en un point p si X n'est

pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce

cas, on peut trouver un voisinage de p dont la trace sur XTég est connexe.

Réciproquement, s'il existe un bon voisinage U de P dans X dont la trace

sur Xrég est connexe, alors X est irréductible en p. (Voir la proposition 2

si X est une courbe plane, et la fin de la section III.C de [8] pour le cas

général.) Le terme de « bon voisinage » pour U signifie qu'il existe une
base de voisinages {Ua} de p dans X telle que chaque Ua - {p} soit un
rétracte par déformation de U — {/?}; voir [21].
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On appelle fonction faiblementholomorphe sur un voisinage ouvert

d'un point pdeXunefonction définie et holomorphe sur n ^rég {P}

qui est bornée sur K n XTég — {p} pour tout compact K de U; on dit que

l'espace X est normal en p si toute fonction de ce type admet un prolongement

(nécessairement unique par continuité) en une fonction holomorphe

sur U. Par exemple, X est normal en tous ses points réguliers (c'est un cas

particulier du théorème d'extension de Riemann) et n'est normal en aucun

de ses points réductibles (choisir un voisinage connexe U de p dans X et

une partition U0u U± de U n l"rég en ouverts disjoints non vides, puis

définir/comme valant 0 sur U0 et 1 sur U±). Soit (9X>P l'anneau des germes

de fonctions holomorphes au voisinage d'un point p de X; pour que X soit

normal en p, il faut et il suffit que 0XtP soit intégralement clos. (La nécessité

résulte immédiatement des définitions; pour la suffisance, voir par exemple

[18]; en général, la clôture intégrale de 0X>P coïncide avec l'anneau des

germes de fonctions faiblement holomorphes.)
C'est un corollaire facile de la proposition 3 qu'une courbe plane est

normale en un point si et seulement si elle y est lisse. Soient par exemple

alors / a un prolongement continu non holomorphe qui applique l'origine
de C2 sur 0, de sorte que y n'est pas normale à l'origine. Dans toute courbe

(plane ou non), on sait que les points normaux coïncident avec les points
lisses. L'objet de ce chapitre est d'examiner la nature des singularités des

surfaces normales dans C3.

Dans les sections suivantes, nous ferons un usage répété d'un théorème

de H. Cartan [3] : Soient M une variété lisse et G un groupe fini opérant

holomorphiquement sur M. Alors l'espace des orbites X M/G possède

une structure canonique d'ensemble analytique normal normal en

chaque point). Si n: M X est la projection canonique, U un ouvert de X,
et /: U C une application, alors / est holomorphe pour la structure en

question si et seulement si/% l'est sur
1 (U).

II.2. Les singularités des surfaces normales dans C3 sont isolées

Soit r un germe de surface plongé dans C3. On peut supposer T
donné par les zéros d'un polynôme de Weierstrass. Plus précisément, il
existe
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1°) Un polycylindre D3 dans C3, centré à l'origine; nous noterons D2

et Djl ses traces sur le plan d'équation z 0 et sur la droite d'équations

y z 0.

2°) Un polynôme de Weierstrass Fe (9 (D2) [z], c'est-à-dire une fonction

Fe (9 (D3) avec

F(x, y, z) zn + a±(x9y) zn_1 + + an(x9y)

pour tous (x, y, z) e D3, où les a,- sont des fonctions holomorphes
dans D2 qui s'annulent à l'origine.

La germe r est alors représenté par FD {(x, y, z) e D3 \ F(x, y, z) 0}.

Nous écrirons plus simplement r si D3 C3. On peut toujours remplacer

D3 par un polycylindre plus petit; en particulier, on pourra toujours

supposer que la projection canonique fournit une application surjective %

de FB sur D2. Si n 1, la surface FD est lisse à l'origine; nous supposerons
désormais n > 2.

Nous noterons yD l'ensemble analytique {(x, y) e D2 | Dis (F) (x, y)

0}. Nous allons voir que ce lieux discriminant définit un germe y de

courbe plane qui joue un rôle important dans l'étude de T.

Proposition 7. Le lieux discriminant est une courbe passant par

l'origine. Si D3 est suffisamment petit, alors y% yD - {0} est lisse et %

fournit par restriction un revêtement holomorphe rD ~ n~1 (yD) ^ D2 - yD

à n feuilles. De plus, si T est normal, alors rB rD - {0} est lisse.

Preuve. Les mêmes arguments que ceux de la preuve de la proposition 1

montrent: d'abord que Dis (F) est une fonction holomorphe dans D2 qui

s'annule à l'origine, et qui est non nulle — donc que yD est une courbe

plane passant par l'origine et qu'on peut supposer y % lisse; ensuite que %

se restreint en une projection de revêtement de FD ~ n'1 (y#} sur D2 - yD.

Soient alors (x0, y0) e y*D et À2 un voisinage de (x0,y0) dans Di tel

que yÂ soit lisse. Notons A 3 l'ouvert {(x, y, z) e D3 | (x, y) e A2}. On peut

supposer qu'on s'est donné des coordonnées (£, rj) sur un voisinage de A2

telles que A 2 soit le polycylindre défini par | £ | < 1 et | rj | < 1 et telles que

yA rj) e A 2\rj 0}. Nous noterons nA la restriction de % à TA.

La première partie de la preuve montre que la restriction de %A à

V {(£, r\9 z) eFÂ | rç # 0} est un revêtement holomorphe à n feuilles.

Soient Vl9...9Vk les composantes connexes de V. Pour chaque

j e {1,..., k}9 notons nf Vs A2 - yA la restriction de nA à Vf9 c'est un

revêtement holomorphe connexe à tîj feuilles (la somme des nj vaut n).
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L'application cj de {(s, t) e C2 | | s1 < 1 et 0 < | t1 < 1} dans À2 ~ 1a

donnée par Oj (s, t) (s, tni) est un revêtement du même type. Le groupe

fondamental de A2 - yA étant Z, il existe des isomorphismes analytiques

inverses l'un de l'autre cpj et xj/j rendant le diagramme
<pj

{(s,t)eC2\\s\ <1 et 0 < \ t\ < 1} —*— Vj

\
\ A2 - yÀ /

commutatif. Soient Vj l'adhérence de Vj dans A3 (elle est dans rA), iïj la

restriction de nA à Vj (qui est aussi l'unique extension continue de tzj à

Vj) et B {(s-, t) e C2 | | s \ < 1 et | t \ < 1}. Le théorème d'extension

de Riemann implique que cpj admet un prolongement holomorphe cpj:

B -> Vj. Nous montrons plus bas que Vj est ouvert dans FA \ en particulier

Vj est un ensemble normal. Le même théorème de Riemann implique

que ij/j admet un prolongement à Vj)Tég, et la définition de la normalité

implique que celui-ci s'étend en \//j : Vj B. Les morphismes (pj et xj/j sont

encore inverses l'un de l'autre; par suite Vj est isomorphe à B et FA est

lisse.

Montrons enfin que Vj est ouvert dans rA. Soit p e Vj - Vj. Comme

rA est normal, il est irréductible en p et il existe un voisinage U de p dans

rA avec U' U n (Tj)rég connexe. Toujours en vertu du même théorème
de Riemann, l'ouvert U" {(£, rj, z) e U' \ rj # 0} est connexe (voir [8],

corollaire I.C.4). Montrons que U" est dans Vj. Si k 1, il n'y a rien à

vérifier. Si k > 1, supposons au contraire U" cj= Vj\ alors il existe i # j
avec U" n Vt non vide. Mais U" n Vj n'est pas vide non plus, d'où
l'absurdité puisque Vj et Vt sont des composantes connexes distinctes de V.

Donc U" est bien dans Vj9 et U' est dans Vj \ par suite U c: Vj. Ceci montre
que Vj est ouvert dans FA et achève la preuve. B

Corollaire. Les singularités des surfaces normales dans C3 sont
isolées.

On sait que, le corollaire est vrai pour toute surface, plongée ou non
dans C3. Un théorème d'Oka affirme que la réciproque du corollaire est

vraie; plus généralement, une hypersurface de Ck dont le lieu singulier est
de codimension au moins 2 dans l'hypersurface est un espace normal;
voir [19], pages 139-140.
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Il n'y a pas d'analogue ici au corollaire de la proposition 3, même pour
les surfaces normales; cela résulte par exemple des surfaces étudiées au

chapitre III. De fait, un théorème fondamental de Mumford affirme que
les singularités analytiques se détectent par le seul groupe fondamental.
Plus précisément, soient X une portion de surface plongée dans Ck et x0
un point de X; on suppose que X — {x0} est lisse. Soit S une petite sphère

centrée en x0. L'intersection X n S est une variété différentiable (si le

rayon de la sphère est suffisament petit) de dimension réelle 3 ; il est facile
de voir que le type topologique de cette variété ne dépend pas du rayon de

la sphère. Le théorème de Mumford affirme que le groupe fondamental
de X n S est trivial si et seulement si x0 est un point lisse de X [16].

II.3. Sur la normalisation

On appelle normalisation d'un ensemble analytique X la donnée d'un

ensemble normal X et d'un morphisme propre fini surjectif v : X -» X ayant

la propriété suivante: si A v"1 (X- Xrég), alors X - A est dense dans X

et la restriction de v est un isomorphisme de X — A sur XTég. Il est facile de

montrer que deux normalisations d'un même ensemble sont isomorphes

au sens convenable. C'est par contre un résultat très profond que tout

espace pbssède une normalisation (voir [5], appendice au chapitre 2, et

[18]); remarquons seulement que nous l'avons essentiellement montré
dans le cas très particulier des courbes planes. Nous utiliserons à plusieurs

reprises le résultat suivant, qui dit qu'on peut parfois «normaliser les

morphismes » (voir par exemple [5], page 2.28).

Proposition 8. Soient X et Y des ensembles analytiques, vx: X -> X

et vY: Y-+ Y leurs normalisations, et /: X -» Y une application
holomorphe telle que A f'1 (Lrég) soit dense dans X. Alors il existe une

application holomorphe /: X -» Y telle que vYf fvx.

Preuve. Soit A vx_1 (A). Comme A est dense dans X, il en est de

même de A n XTég, et vz_1 (AnXrég) est dense dans vx_1 (Xrég) lui-même

dense dans X; donc A est dense dans X.
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La restriction de fvxapplique A dans Ytég et se relève donc en F.

A vy~1 yrég). Si K est un compact de alors c L

— (fox) K)qui est compact ; F (AnK)est donc relativement compact dans Y

puisque vy est propre. Par suite, l'image par F de tout compact est relativement

compacte, ce qui veut précisément dire que F est bornée.

L'ensemble X- Aest contenu dans un sous-ensemble analytique

propre de XcarX- Aest dans/-1 (Y—Ytég). Comme X est normal, se

prolonge en un morphisme fo X—* Y. Il est évident que f est 1 unique

morphisme satisfaisant vy/ fvx.Sans l'hypothèse que A est dense dans X, il n'y a en général ni existence

ni unicité. En effet, soient d'abord Xun ensemble normal, S {(x, y) e C2|

xy 0} et / l'application de X sur le point double de S. Alors est

réunion disjointe de deux droites, l'image inverse par vs du point double

est formée de deux points, et/a plusieurs relèvements.

Ensuite, l'exemple ci-dessous montre qu'il peut n'exister aucune «

normalisée ». Soient T un tore de dimension complexe un, a une involution

sans point fixe de Tet Xletore T\a.Sur le fibré trivial x C,

considérons la relation d'équivalence

L'espace quotient Y est muni naturellement d'une structure de fibré

analytique 7i : Y-*X;siU est un ouvert trivialisant de X pour ce fibré, alors

n'1 (U) U x S avec S comme dans l'exemple précédent.

L'ensemble analytique X est lisse, donc normal; l'ensemble Fsing

Y- Yri„ est de codimension un dans Y (en particulier Y n'est pasreg

normal) et Y se fibre sur X avec pour fibre la réunion disjointe de deux

droites. Soit E vy-1 fFsing). Alors Y — E est homéomorphe à 7rég,

donc est connexe (car 7rég est l'image par L T de l'ensemble L — T x {0}

qui est connexe); comme il est dense dans Y, celui-ci est aussi connexe. Par

suite E est connexe, car c'est un rétracte de Y, et la restriction de vY à E
est le revêtement connexe à deux feuilles de Fsing.

et z z

et z z' 0
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Si /: X -> Y est la section nulle du fibré n, (de sorte que le A de la
proposition 8 est vide), il est alors évident que / ne se relève pas, car cela

impliquerait que le revêtement E 7sing / (X) soit trivial.

Y

f -

1

X ; Y
n

III. SINGULARITÉS NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.l. Les surfaces An>q et leurs normalisations

Soient n et q des entiers, avec n positif et q < n. Nous noterons An>q la
surface {(x, y, z) e C3 | zn xyn~q}.

Si n 1, les surfaces ainsi définies sont toutes lisses: l'isomorphisme
(x, y, z) (x, y, z-xy1-q) de C3 applique Aln sur l'hyperplan d'équation
z 0. De même, si q n, l'isomorphisme (x, y, z) t-> (x~zn, y, z) applique
An>„ sur l'hyperplan d'équation x 0. Nous supposerons désormais
n > 2 et q < n sauf mention expresse du contraire.

Si q n - 1, les dérivées partielles du polynôme zn — xyn~q z11 — xy
ne s'annulent simultanément qu'à l'origine, et An n_1 est lisse en dehors de

ce point (donc normale en vertu d'un théorème d'Oka rappelé en II.2).
Si q < n — 2, la surface An>q est lisse en dehors de la droite d'équations
y z 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que An q

n'est pas normale.
Soit Gn q

le groupe des isomorphismes de C 2 de la forme (s, t) (£% ^t)
où C est une racine n-ième de l'unité; c'est un groupe cyclique d'ordre n.
Nous noterons Xnq Yensemble des orbites, muni de sa structure canonique
d'ensemble analytique normal.

Si q 0, l'ensemble Xn>0 est lisse: l'application (s, t) (s, tn) passe
au quotient et définit un isomorphisme de Xn 0 sur C x (C/ (Z/nZ)) & C2.

Les espaces Xn>q et Xn>q, sont évidemment identiques si q' q (modulo n);
il suffit donc d'étudier les Xn q pour lesquels 1 < q < n (voir de plus la

proposition 13).
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Considérons le morphisme </>„>4: C2-» C3 défini par $„;4

(s", t", st"~q);sonimage est dans A„q et il définit par passage au quotient

un morphisme </>„,4: X„>4 -» Am,r Nous écrirons aussi et au lieu de

Ûn,q fin,q-

Proposition 9. Le morphisme (j>induit un homéomorphisme de 1 image

de {(5, 0 e C2|t#0} dans Z„i4 sur y, e A.,s | y é0}. Si n et

sont premiers entre eux, lui-même est un homéomorphisme de Xnq

sur An>r

Preuve. Montrons d'abord que (j> est surjectif et que l'image inverse

par 4> de tout point autre que l'origine est formée de n points.

Soit P (x,y,z)eA„<q avec y # 0. Choisissons une racine u-ième t

de y et posons szt_n+î.Alors

<$>(s, t) (zny~n+q,y, z)(x,y,

Soit (s', t')eC2avec cj>(s', t')<£(s, t). Il existe des racines u-ièmes Ç

et ri de l'unité avec s' £ s, t ' ri tet 1- Par suite 4'1 (p) a

n points.
Soit Q(x, 0, 0) e A„it avec x # 0. Choisissons une racine n-ième s

de x. Alors (j>~
1 Q){(Ca 0) e C2 | £ e C et £" 1} a w points.

Le groupe G„i4 agit librement sur {(s1, e # 0}, et même sur

C2 - {0} lorsque net qsont premiers entre eux. Il en résulte que la restriction

de ^ à l'image de {(s,t)eC2 | t#0} dans est injective dans tous

les cas, et que (j> lui-même est une bijection si (n, 1.

Montrons par exemple que $ est un homéomorphisme si - 1.

Pour tout nombre réel positif r, soient Kr l'image dans Xnq de

{(i,()eC2 | \s\ <ret| |<
et Lr l'intersection avec An>1de

{(x,y,z)eC3 | |x| < r", | y | < |z|

La restriction de </> à Kr est une bijection continue du compact Kr sur le

compact Lr ; c'est donc un homéomorphisme. Par suite, </> est un
homéomorphisme. M
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Corollaire. Si (n, q) 1, la surface Anq est topologiquement singulière

à l'origine.

Preuve. Pour tout r>0, le complémentaire de l'origine dans Lr est
homéomorphe au complémentaire du point central dans Kr. Il se rétracte
donc par déformation sur l'espace lenticulaire que définit l'action de G„ q
sur une petite sphère S3 centrée à l'origine de C2. (L'intérieur de L, est
donc un bon voisinage de l'origine dans An q au sens de la section II. 1.)
En particulier, le groupe fondamental du complémentaire de l'origine dans
Lr n'est pas trivial.

Remarquons que c'est aussi un corollaire immédiat de la proposition 9

fiue (An,q)rég est « connexe à l'origine»: (X,)reR* est une base de voisinages
de l'origine dans An q et Lr n (An q)[ég est connexe pour tout r e R*. D'autre
part, il est facile de vérifier que le polynôme z" - xy"~q est irréductible
dans 2& [z],donc aussi dans 3& (voir [8], lemme II.B.5). On vérifie ainsi
un cas particulier d'une affirmation énoncée à la section II. 1.

Proposition 10. Supposons q< n-2. Soient e C* et (c, 0, 0)
e An<q. Alors le voisinage {(x, y,z) e An>q 11 x - c | < | c |} de Q dans

A„a est isomorphe au produit direct du disque D {£ e C | | £ | < 1} et
de la courbe plane y{(y,z) e C2 [ z" yn~9}.

Preuve. Soit p :D-yC la fonction holomorphe définie par p (ç)"
1 + £ pour tout Çe Det p(0)1. Soit d une racine ième de

1/c. Considérons l'application a: D xy C3 définie par a (Ç, y, z)
(c 0 + O, dy,p(0 z). Pour tout (£, y, z) e D x y, on a

(p (Q z)" - c 1+0 (dy)"-" (1+ 0.
Par suite a définit un morphisme

D x y->{ (x,y,z)e An>i | | x - c | < | c | }.
qui applique (0, 0, 0) sur Q et d'inverse donné par

(x,y, z)v+(c~1x-l,d~1y,(p(c~1x^-l))_1z)

Corollaire. Supposons q< n -2.Si(n, q) A 1, la surface A„ti est

topologiquement singulière en tout point de l'axe d'équations 0.
Si (n, q)1, c'est une variété topologique au voisinage de Q qui n'est pas
normale en Q.

Preuve. Si (n, q)=£ 1, la courbe y a plusieurs branches à l'origine;
les intersections de petites sphères centrées à l'origine dans C2 avec
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y - {0} ne sont donc pas connexes et A„ q
est bien topologiquement singulière

en Q. Si (n, q)1, la surface est une variété topologique au voisinage

de Q en vertu du corollaire à la proposition 3. Reste à montrer que *
n'est pas normal. Cela résulte de la proposition 7, ou de l'argument direct

qui suit.
Soient a,beZavec an + b n-q)1, et i -* C la fonction

définie par $ (£, y, z) j J
Z

g.
J Q

• Alors */> n'est pas

holomorphe, mais i/i" l'est car ij/ ({, y, z)" j. L'anneau des germes en Q

de fonctions holomorphes n'est donc pas intégralement clos.

Proposition 11. Pour tout couple (n, q) avec n>2et^<n — 1, le

morphisme (j)n}q: Xn>q -» An>q est la normalisation de An>q. Cest un

isomorphisms si et seulement si q n - 1.

Preuve. Cela résulte de ce qui précède et du théorème de Cartan rappelé

à la section II. 1.

On pourrait montrer que les surfaces An>q, Anjq-n, A„>q-2n, sont non

isomorphes deux à deux; par suite, Xn>q est la normalisation d'une infinité

d'ensembles analytiques distincts.

III.2. Les discriminants des A„a et les ouverts A**

Soient à nouveau n et q des entiers avec h > 2 et q < n. Notons

Fe20[z] le polynôme z" - xyn~q. A un facteur numérique près, son

discriminant est une puissance de xyn~q. Soient en effet A1?..., ses racines,

qui sont dans une extension convenable du corps des quotients de 2(9 ; alors

Dis (F) rKn_1 (IM") (IM1
nn(xyn-q)"(-ï)'lF(x,y,Gr1 (-1)""1 n" (x/"«)""1

(tous les produits étant sur jde 1 à n). Comme à la section II.2, désignons

par n: A„a -> C2 la restriction à Alhq de la projection canonique (x, y, z)

Nous noterons C** l'espace C2 privé du lieu discriminant

y {(x, y)eC2| xy0} et A** l'image inverse par n de C**. La pro-
position 7 ou un examen direct montre que n se restreint en un revêtement

holomorphe à n feuilles
n:** : A** -* C**

L'Enseignement mathém., t. XXV, fasc. 3-4. 15
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Nous notons ci-dessous Fond Y)legroupe fondamental d'un espace
topologique Y; nous n'aurons à considérer que des cas où ce groupe est
abélien, ce qui nous autorise à ne pas marquer de point base sur Y.

Le groupe fondamental de C** C* x C* est le groupe abélien libre
sur deux générateurs représentés par les lacets

f [0,1] -» C* f [0,1] -+ C*
ltm* (e(t),1) | -* (1,

avec e (/) exp (ilnt) pour tout t e [0, 1], Nous identifierons désormais
Fond (C**) et ces deux générateurs a Z2 et sa base canonique.

Proposition 12. Le groupe fondamental de A** est abélien libre sur
deux générateurs. Son image dans Z2 Fond (C**) définie par le revêtement

7i** est engendrée par (n, 0) et (q, 1).

Preuve. L'application <p de {u, v)eC2 | # 0} dans A** définie par
cp(u,v) (u"vq, v,uv) est un isomorphisme d'inverse (x, y, z) i-> (z/y, y).

Donc Fond (A**) est bien isomorphe à Z2, et son image par dans
Fond (C*/) est aussi l'image de Z2 Fond (C„**) dans Z2 Fond (C*/)
induite par

f { (u>v)£C2 | uv#0 } - { (x, C2| # 0 }
1 (u,v)t-> («V, v)

Remarquons que les applications g : i n'q~" et
f Al*- Ut, 1,0» (C, fj, th
{ (x, y,z) t-> (x, y yz)

S°nt ^omorphismes inverses l'un de l'autre.

Continuons à noter X„>q[respectivement X„q_„] l'espace normalisé de
An,q [resp. Anq_n], mais « oublions » provisoirement sa description comme
quotient de C2 par Gnq;comme illustration de la section II.3, nous allons
montrer que Xnqet X„<q_n sont isomorphes.

Soit (f). Xnq_n—> An q_n la normalisation; on peut considérer g comme
une application de «/:„) dans Elle est évidemment bornée,

et se prolonge en g : Xn q_„ -* Anq.Laproposition 8 alfirme que g se relève
en G: Xnq_n ~> Xnq.De même h (ou son prolongement évident An
-> An>q_n)se relève en H: Xn<q -> Comme sont inverses
l'un de l'autre une fois restreints aux ouverts non vides U *
et G (U),on a G ET-1. "'4

La proposition suivante montre qu'il y a d'autres isomorphismes entré
les XnA.



— 231 —

Proposition 13. Pour tout entier positif d, les espaces Xdn>dq et Xn>q

sont isomorphes.

r A * * —> A* *
Première preuve. L'application # : j (^q^ (£V»+*, rç, 0 ^ Un

isomorphisme d'inverse h décrit par h (x, y, z) (xd, z). Le même argument

que ci-dessus montre que g, considérée comme application de

fanjq'1 (A*n%) dans .4*/, se relève et se prolonge en G: XànM -»

et que h définit de même H: XWj(Z -> avec G H

Seconde preuve. Soit <p:C2-+C2 défini par (p (i, 0 (a?, Pour

tout k e {0, 1, da - 1}, considérons e(k/dn) dans et e_{kjn)

dans G„^. Alors

(p(e(kldn)(s,t)) (e(kldri)dqs,(e(kldri)t)d)

(e (k/n)qs, e (k/n) td) e (k/n) (p (s, t)

et cp définit un morphisme cp: Xdndq -> Il est évident que <p et <p sont

surjectifs.
Montrons que 9 est injectif. Soient (w, 0 et (s, t) des points de C2 dont les

images par cp sont congrues modulo Gn q. Il existe donc k e {0, 1,..., n — 1}
tel que (w, vd) (e (£/«)* s, e (&/rc) 0). Par suite, il existe aussi j e

{0,1,..., d - 1} avec v e (j/d) e (k/dn) t. La transformation e ((jn + k)/dn)
de Gdn>dq applique alors (s, t) sur

(e ((jn + k)ldn)dqs, e ((jn + k)ldn) t)

1=8 (^Qq)e(kqln) s,e(jld)e(kldn)t) (w,0,
de sorte que (s, 0 et (w, v) sont congrus modulo Gdn dq.

Par suite (p est bijectif. On peut montrer comme dans la preuve de la
proposition 9 que (p est un homéomorphisme. Comme cp

~1 est un morphisme
sauf a priori au point singulier et comme Xn>q est normal, cp~1 est un
morphisme en tout point et cp est un isomorphisme. B

Nous laissons au lecteur le soin de vérifier que l'automorphisme (w, y)
(v9 u) de C2 définit, lorsque qqr 1 (modulo n), un isomorphisme de

Xn>q sur Xn>q>. On peut montrer qu'il n'existerai d'autres isomorphismes
que ceux écrits jusqu'ici: si Xn q et Xn>>q, sont isomorphes avec (n, q)
~ (n\ q') 15 alors n nf et q q' ou qq' 1 (modulo n); voir [21],
théorème 2.
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Si q n — 1, nous avons vu que $ est un isomorphisme de Xn„_1
sur An>n^1; en d'autres termes que la dimension de plongement de la singularité

normale Xnn_1 est 3. On sait calculer en général la dimension de

plongement de Xnq: si (n, q) 1 et avec les notations de la section IV.2,
s

elle vaut 3 + £ En particulier, la réciproque à l'assertion
k=i

ci-dessus est aussi vraie: si (n, q) 1 et si Xn>q se plonge dans C3, alors

q n — 1. Voir [22], fin du § 3.

III.3. Classification

Soit r un germe de surface plongé dans C3. Reprenons les notations

de la section II.2; supposons que le lieu discriminant exhibe

une singularité consistant en un point double avec croisement normal — en

d'autres termes, supposons qu'on puisse choisir les coordonnées de telle

sorte que yD {(x, y) e D2 | xy 0}. Nous noterons D** l'espace

D2 — 7d et r£* son image inverse par n; la projection se restreint en un

revêtement à n feuilles 7r**: D* *. On identifie comme à la section

précédente le groupe fondamental de D* * à Z2.

Proposition 14. Il existe un polycylindre E2 dans C2, un morphisme

p**: j-** _>£** et des entiers n, q avec 0 < q < n et (n, q) 1 tels

que p** induise une injection de Fond (r£*) sur le söus-groupe de

Fond (F* *) Z2 engendré par (n, 0) et (#, 1).

Preuve. Soit C l'image de Fond(r^*) dans Z2 définie par 7i**. C'est

un sous-groupe d'indice fini de Z2 car 71** est un revêtement fini. Par suite

G contient des éléments de la forme (k, 0); soit

a inf { | fc | | (fe, 0) e G et k #0}.

On peut choisir un vecteur (è, c) formant avec (a, 0) une base de G, tel

que 0<è<aetc>0.
Soit d le plus grand commun diviseur de a et b (avec d a si b est nul).

Soient E2 { (w, v) e C2 | (wd, e Z>2 } et E%* { (u, v)sE2\uv
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L'application 7C**: (u, v) h» (wd, vc) de £** sur D** es^ un revêtement

holomorphe connexe à de feuilles, et induit une injection de Fond (E2

sur le sous-groupe de Z2 Fond (D* *) engendré par (<d, 0) et (0, c).

Ce groupe contenant G, il existe un morphisme p** rendant le

diagramme
77 * *^2

commutatif. Au niveau des groupes fondamentaux, p** induit un iso-

morphisme de Fond (r£ *) sur le sous-groupe de Z2 Fond (F* *) engendré

par (a/d, 0/c) et (bjd, c/c). M

Proposition 15. Avec les notations de la proposition 14, le germe r
normalisé de T est isomorphe au germe de Xn A au point singulier.

Preuve. Soient -»-E**comme dans la preuve précédente et

7i**: A**C** comme dans la section précédente. Soient { (x,z)
e C3 | (x, y) eE2) et n** la restriction de n*'* à A**n V. Les revêtements

p** et n'y * définissent le même sous-groupe de Fond (E* *). Il existe donc
des morphismes g et h, inverses l'un de l'autre, rendant le diagramme

9
A * * V ^ =± 7-* *

An,q n V h 1 D

commutatif. Le morphisme g est borné car n l'est et p** est propre; de

même, h est borné. Le raisonnement usuel (voir par exemple celui qui
précède la proposition 13) montre que p et A permettent de définir un

isomorphisms du normalisé de An>qn V avec rD, c'est-à-dire du gernie de

Xn
q au point singulier avec T. fl
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IV. RÉSOLUTIONS DES QUOTIENTS DE C2

PAR UN GROUPE CYCLIQUE FINI

IV. 1. Définitions et premiers exemples

Si X est un ensemble analytique, une résolution *) de X est la donnée

d'une variété complexe lisse X et d'une application holomorphe propre

surjective p: Y-» X ayant la propriété suivante: si A p-1 (X- Yrég),

alors X — A est dense dans X et la restriction de p est un isomorphisme

de X — A sur XTég. (Le terme n'a donc pas ici le même sens qu'à la section
1.3, où il s'agissait d'une «situation relative» où un ensemble analytique

courbe) étant plongé dans une variété plan).) Lorsque X - XIég
est réduit à un point x0, on appelle fibre exceptionnelle de la résolution le

sous-ensemble analytique p-1 (x0) de X.

Exemple 1. Soit X { (x, y, z) e C3 | x2 + y2 + z2 0 }, qui est

une surface lisse en dehors de l'origine; le changement de variables Ç ix
+ y, rj ix - y montre que X est isomorphe à A2)L'image Q de ses

points réguliers par la projection canonique h: C3 — {0} ->P2 est une
courbe projective lisse { [x, y, z] eP2 | x2 + y2 + z2 0 }. On en précise
la nature grâce à l'application homogène

cp :

C2 -> C3

(s, t) (s2+t2),i(s2-t2), St

elle factorise en un morphisme (p: P1 -+ Q qui est bijectif et qui est donc

un isomorphisme.
Considérons S { ([z], w)eP2 x C3 | weh'1 ([z]) u { 0 } } et la

restriction n: S -> C3 de la seconde projection. On montre comme en 1.3

que S est une variété lisse, qui est incidemment l'espace total du fibré
canonique sur P2. Le morphisme n est propre, induit un isomorphisme de

S — 7r_1(0) sur C3 — { 0 }, et sa «fibre exceptionnelle» est 7i_1(0)
P2; c'est par définition Yéclatement de C3 à l'origine.

x) On dit parfois « désingularisation » au lieu de « résolution ».
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Posons X { ([z], w) e S \ [z] e g }; l'application A : X-+ Q définie

par A ([z], w) [z] est la restriction à g du fibré canonique de P2. Alors

l'application p: XX qui envoie ([z], w) sur w est une résolution de X
avec fibre exceptionnelle E p-1 (0) isomorphe à P1.

Plus généralement, soit Xd un cône de degré d dans Cfe+1 ayant une

singularité isolée à l'origine, de sorte que Qd h(Xd-{0}) est lisse dans

Pk. Soient S l'espace total du fibré canonique sur Pk et n: S -> Ck+1

l'éclatement de Cfe+1 à l'origine. Posons Xd { ([z], w) e S | [z] e Qd }. Alors

la restriction p : Xd -> Xd de % est une résolution de Xd avec fibre
exceptionnelle isomorphe à Qd.

Exemple 2. Soit X { (x, y, z, t) e C4 | x2 + y
2 + z2 + £2 0 }, qui

s'écrit en d'autres coordonnées { (vu v2, w1? w2) e C4 | }
et qui est un ensemble de dimension 3 lisse en dehors de l'origine. La sous-

variété correspondante g de P 3 est une surface lisse. L'application

- f C2 x C2 -> C4
^ ' 1 ((«1, u2), (m3, tt4)) (U1M3, W2W45 «^4, u2u3)

factorise en un morphisme bijectif P1 x p1 -> g, donc en un isomor-
phisme. (La vérification de la bijectivité est un exercice facile. Le fait que
les morphismes bijectifs sont des isomorphismes, qui est élémentaire en
dimension 1, est pour les dimensions supérieures un théorème non banal:
voir par exemple [2], page 179.)

Le procédé décrit à la fin de l'exemple 1 consiste à poser

X {([z], w) eP3 x C4 | [z] eg et we h_1 ([z]) n { 0 } }

et

f X ->X
9 ' 1 ([>]> vv) h-> w

*

C'est une résolution avec fibre exceptionnelle de dimension 2 dim (Z)
- 1 isomorphe à P1 x p1.

On peut aussi considérer

Y {([z],^, w) eP1 x C2 x C2 | ïi et w dans h~x ([z]) u { 0} }

qui est l'espace total de la somme de Whitney de deux fibrés canoniques
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sur P1.Alors cr : < est aussi une résolution de avec
w) !- (Î>, w)

fibre exceptionnelle de dimension 1.

Cet exemple montre en particulier que la fibre exceptionnelle d'une

résolution p: X ->XavecX à point singulier unique ne dépend pas
seulement du germe de X en x0, mais aussi fortement de p. Toutefois,
lorsqu'on se restreint à des espaces X de dimension deux, on peut lever
cette ambiguïté: il existe en effet dans ce cas une unique « résolution minimale

» pour tout germe de surface avec singularité isolée, et la fibre
exceptionnelle d'une telle résolution en un point singulier ne dépend que du
germe de la singularité; voir [13], chapitre V.

Rappelons qu'un diviseur D dans une variété lisse M (ci-dessous
toujours connexe) est une famille Dß,nß)ßsB où les Dß sont des sous-ensembles
analytiques fermés de codimension un dans où les nß sont des entiers
rationnels, et où la famille { ß e B\Dß nest finie pour tout
compact K de M. On écrit aussi D —f. nßDß, et nous noterons I D I

ßsB
le support de D,c'est-à-dire le sous-espace topologique de M qui est réunion
des ensembles Dß pour lesquels nß # 0.

Soit / : M->C une fonction méromorphe non nulle. Soient Zf [resp.
Pf]l'ensemble des zéros [resp. des pôles] de/ ; on sait que ce sont des sous-

ensembles de codimension 1 dans M(ou l'ensemble vide); voir [8], VIII.B.4.
Soit (Zf,i)tsil'ensemble des composantes connexes des points réguliers
de Zf. Pour chaque ieI, soient Dt l'adhérence de ZfA dans M et nl l'ordre
du zéro de/en un point de ZfA (qui est indépendant du choix de ce point);
on sait que { ie I|| Dt| n K#4>}est fini pour tout compact K de M.
On définit de même (Pfj)JeJ puis, pour chaque jeJ, l'ensemble irréductible

Dj et l'ordre «, du pôle de/ en un point de Pfj. On appelle diviseur
de la fonction f et on note Df le diviseur - YniDj-

'

Les diviseurs de M forment pour l'addition naturelle un groupe abélien
Div (M), et ceux à supports compacts un sous-groupe Divc (M).

Si M est de dimension deux, on définit une forme d'intersection

J Div (M) x Divc (M) -> Z
{ (D,E)i->< D I Ê >

dont l'existence repose sur la dualité de Poincaré et dont nous utiliserons
les propriétés suivantes:

(j) < | > est bilinéaire;
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(jj) la restriction de < | > à Divc (M) x Divc (M) est symétrique;

(jjj) si D1 et D2 sont des courbes irréductibles lisses à intersections

transverses, D±\ D2 } est le cardinal de | D1 | n | D2 |»

(jv) si / : M -•* C est une fonction méromorphe, <( Dy | £> 0 pour
tout £ e Divc (M) ;

(v) si D est irréductible à support compact, <D | D > est l'évaluation

de la classe de Chern du diviseur D sur la classe fondamentale [D].

(vj) Soient M' une variété lisse, U [respectivement U'] un ouvert de

M [resp. de M'], et (f>: U U' un isomorphisme. Si De Div (M)
et E e Divc (M) ont leurs supports dans U, alors < (j) (D) | 0 (E) >

-<2>|£>.
Voir par exemple le § 9 de [11].

Soit p: XXune résolution d'un ensemble Xde dimension deux avec

une unique singularité en x0; supposons que la fibre exceptionnelle soit

connexe et que ses composantes irréductibles soient des courbes lisses sans

point triple et à intersections transverses. (Les exemples ci-dessous montrent
l'intérêt de cette situation aussi bien que les résultats généraux; voir pour
ceux-ci [13], théorème 5.12.) On associe à p sa matrice d'intersection (^j):
si Eu ...,En sont les composantes irréductibles de la fibre exceptionnelle

E p-1 (x0) cz X (qui sont en nombre fini car p est propre), alors etJ
< Et | Ej Cette matrice est bien définie à conjuguaison près par une

matrice de permutation.
Dans l'exemple 1 ci-dessus, cette matrice est réduite au nombre —2;

donnons-en deux raisons.

La fibre exceptionnelle E & P1 est irréductible; c'est la section nulle

du fibré en droites À: X-> Q. Or l'isomorphisme cp\P1-+Q est défini

par l'application (p : -» Clyz9 et celle-ci s'écrit aussi (avec u is, v

-it, Ç ix+y et rj ix— y):

^uv £>nz

(u, v) t-> (v2, u2, uv)

Par suite, l'image inverse par cp du fibré X sur Q est le fibré noté 2(_2) à
la section 1.3; il résulte de la propriété (v) ci-dessus que < E | Ey — 2.

Soient d'autre part *S,(_2) comme en 1.3 et/ : £(_2> C le composé de

ft(-2): ^(-2) C3 et de la première projection x: C3-> C. Soit A la
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transformée stricte de l'axe d'équation x y 0 dans C3. Alors
Df 2A+E,d'oùpar (jv) ci-dessus

<X>/|£> 2<A|£> + <0

et par (jjj) <E\Ey -2.

Exemple 3. Soit S^k) comme à la section 1.3, avec deux cartes — disons
deux copies i£0 et de C2 — recollées selon l'isomorphisme que nous
écrirons ici

f {(w,v) gR0 | u ^ 0} -> {(u,v)eR1 \v # 0 }

| (u,v)t->(ukv} 1 /u)

Considérons d'une part les fonctions f 0, rj0, Ç0: R0 -> C définies par

Co (u>v) *7o («» *0 v Co (m, v) wz;

et d'autre part les fonctions rju Ci* Ri C définies par

CiO,^) « rj1(uiv) uvk Ci (m,v) uï^"1.

On vérifie sans peine que ces données définissent trois fonctions globales
C, 77, c* £(-*) -> c satisfaisant l'égalité Cfc Cf7fe~\ donc aussi une
application p: -> Le lecteur s'assurera à titre d'exercice que p est

une résolution de Ak l, que la matrice d'intersection se réduit au nombre

— k, et que p se relève en p: S(_k) — Xk)1. L'application p résout donc la
singularité définie par le groupe cyclique

{(Te(»)sA",(c2) I i
Si k 2, on retrouve l'exemple 1.

Citons enfin sans démonstration le théorème suivant: pour toute singularité

isolée de dimension deux et pour toute désingularisation (minimale
ou non), la matrice d'intersection associée est négative définie. Les exemples
ci-dessus offrent une première illustration de ce résultat. Voir [16], § 1.

IV.2. Trois suites numériques définies par n et q

Le contenu des paragraphes 2 et 3 se trouve dans [9].
Soient n et q des entiers avec 0 < q < n.
Posons X0 n et X± q. Définissons ensuite les entiers A2,..., bu b2,...

par l'algorithme euclidien suivant:
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A2 blX1 — A0 avec b>2 et 0 < A2 At

A3 fi2A2 — Ai avec ^2 > 2 et 0 < A3 < A2

Soit s le plus grand entier pour lequel As soit non nul, de sorte que

As fi5_i 2S_! - As_2 avec fi5_i >0 et 0 < As < As_i

0 fis As-

On vérifie sans peine que As est le plus grand commun diviseur de et

ce qui s'écrit As (n,q). On définit As+1 0. On peut remarquer que les

équations ci-dessus s'écrivent aussi

nA2q,A3

- »î — y » •••>
^ q À2

Às-2 *
1

D'où

&s-r -T^= b.-i ~
As-1 As-1

W
I.- h

4
b2 -

1

bs

ce que certains auteurs notent plus économiquement

- bl~llb2 - -1 /fis-
q _/ _/

On définit ensuite les suites (pk)k_0 s+i et (vA=o s+ i Par

M0 0 v0 1

Mi 1 Vi 1

M2 &i Mi - j"o v2 fi3 vx - v0

Ms fis-ift-i-A-2
fis + l fis^s - /V-l

Vs fis-l Vs-1 - Vs_2

Vs-ti bsvs- vs_i
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Lemme. Pour tout ke{0,1,...,j}ona:
(a) 4 + (n-q)fik nvk

(b) 4ùt+i 4+IÄ n

(c) Hk+iVk -Wk+i 1 •

De plus

et

0 Ho </il < < J«s+1
"

(n, q)

a.„1 V0 < < < Vs + 1

Cn,q)

Preuve. Les relations (a), (b) et (c) sont banales si 0 et si 1.
Pour k>2,elles résultent des calculs élémentaires suivants:

4+i + (n-q)fik+1 bkXk- 4_1 + (n-q) (&fcAù-/4-i)
bk(lk+(n— <ÙHk) — (Xk_k+(n— q)pkbknvk

nvk+1(k l,...,s);

4+IÄ+2 -4+2Ä+1 4+1(^+1^+1 -4) -(4+i4+i-4)Ä+I
ä 4ft+i - 4+1Ä (fc l,..., s —1);

A+2Vt+l -Ä+l^i+l (4+1Ä+1 -a) Vft+1 - Ä+i(4+1Vt+1 -V*)
ßk+iVk - Hkvk+1 l,...,s-l).

En particulier, comme 2S+1 0, on a 0 + («-9) /is+1 «vs+1 et 2s/is+1

n,d'où [is+1 — - et vs+1 Enfin, comme > 24 (m,«) (n,
pour k1,..., j, on a

Pk+l/Ù: (bk1) k-k — 1 Hk ßk-1 ••• ùl — Ù0 ^ 0
et

V*+1 - vt > > vt - v0 > 0

ce qui achève la preuve. H
Nous reviendrons à .plusieurs reprises sur les exemples décrits dans le

tableau suivant:
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n 10 8 6 4

Q 8 6 4 2

s 4 3 2 1

(Wo^k^s + i (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) (4,2,0)

(y-k)o^fk^s+i 0,1,2,3,4,5) (0,1,2,3,4) (0,1,2,3) (0,1,2)

(v/c)0^Jt^s+ 1 1,1,1,1,1,1) (1,1,1,1,1) (1,1,1,1) (1,1,1)

IV.3. Les résolutions p: Mn q -> An>q ou p: Mn>q *- 2^

Soient à nouveau n et q comme à la section 2, dont on reprend toutes
les notations.

Pour chaque k g { 0, 1,..., s }, désignons par Rk une copie de C2,

par (uk, vk) ses coordonnées canoniques, et par Rk [resp. R^] l'ouvert de

ses points de première [resp. seconde] coordonnée non nulle. Pour
k e { 1,..., s }, soit

f R*-i - K

c'est un isomorphisme dont l'inverse applique (uk, sur
Notons P0>1 la variété obtenue en recollant et selon 0, déjà considérée

à l'exemple 3 de la section 1. Soient ensuite 01>2 la variété obte ue
en recollant P0jl et R2 selon cpuetP0;1 s Mnq la variété obtenue
en recollant Po,i,...,s-i Rs selon Nous identifierons chaque Rk
à son image dans Mnq.Lavariété Mn<q est une surface lisse dans laquelle
chaque Rk est un ouvert dense (de fait un ouvert de Zariski).

Pour chaque k e{ 1,s }, considérons la courbe

Gk {(uk_1,vk_1)eRk_t\vk_l0} u { 0}
qui est lisse et isomorphe à P1. Notons encore oin et afi les courbes lisses
non compactes définies respectivement par { (u0, v0) e P0 | m0 ® }
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et { (us, vs) e Rs | vs — 0 }. Ces courbes n'ont pas d'intersection triple
et n'ont deux à deux que des intersections transverses. On vérifie
facilement que

1 si k 1
<°to K>

< °j i <**>'

<ff/; K>

0 sinon
1 si |jf - | 1

0 si | j| > 2

1 si k s

0 sinon

f/c :

nu

Pour chaque k e {0,1,s }, considérons enfin les fonctions

Ru c

-» C

Rk -> c4:
Si > 1 et x 0, alors

4 (%-1 («4-i, »4 -1)) (K-i)'Jfc w*_ l)Ah
1 \Vn

'4-1
(«4-l)** *+1(W4-l)* 4-l(«*-l,»4-l).

Par suite les 4 définissent une fonction globale C. Les tjk et
les 4 définissent de même tj, £: M„A -+ C. Notons que Ç" 47n~4. Il
suffit en effet de vérifier cette relation sur l'ouvert dense R0 <= M„ q, et
on a pour tout (u, v) eR0 :

(Ç(u,v))n ~(Ç(u,v))(ri(u,»))"-«(uvf 0.
Nous noterons p: Mnq A„ q

le morphisme défini par p (P) (£(P),
n(P),UP)).

Proposition 16. Le morphisme p : -> est surjectif, p-1 (Ö, 0,0)
- ffi U u as,p-1 { (0, j, 0) 6 J„>4 | 6 C } et p-1 { (x, 0, 0)
6 A„>q| x e C } afi.

Si de plus n, q)1, la restriction de p fournit une bijection de
S

- u aksur A„>q - { 0 }.
fc l
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Preuve. Il est immédiat que p {ax u u crs) (0, 0, 0).

Soit P (x, y, z) e An>q avec y ^ 0. Posons u0 z/y et

alors p (i/Q, v0) (wX> ^o> wo^o) Soit *>*) GP_1 (p) n alors

*7 (%>^) (ukYk(vkYk+1 y ¥= 0. Si k > 1, les entiers et pk+1 sont

strictement positifs, donc uk =£ 0 et vk =£ 0, de sorte que (uk, vk) e Rk n R0.
Si k 0, les équations i/Jvg x, v0 j>, u0v0 z n'ont qu'une solution
Nous avons ainsi montré que p-1 (P) ne contient qu'un point, qui n'est

pas dans la réunion des ak, et qui est dans ain si et seulement si P (0, y, 0).

Soit Q (x, 0,0)eAnq avec x # 0 (rappelons que c'est un point
singulier de An>q si q # n — 1). Pour k e { 0,1,..., £ — 1 }, les équations
(uk)Xk (vk)Xk+1 X # 0, (Wfcrw+1 (ukYk (Vk)vk+1 0 n'ont aucune
solution. Par contre, les équations

(usy° x (usys(vsys+1 (tOvw+1 o

ont précisément Xs {n, q) solutions. Donc y"1 (Q) contient (n, q) points,
donc aucun n'est dans la réunion des ok, et qui sont tous dans afi.

Proposition 17. On a < ak | ak — — bk pour k e { 1, 2,..., s }.

Preuve. Les diviseurs définis par les fonctions £, rj et Ç sont respectivement

Dç — nain + + + + + (n, g)<rs

n w
Dn — o*! + ....+ pk ak + ....+ crs + cr/£

+ <Tl + + Gk + + vs crs + afi(n,q)

Si on écrit provisoirement a0 pour ain et as+1 pour afi, la première de ces
formules et les calculs précédant la proposition 16 montrent qu'on a

o < Dç | ak \ ak-11 ak> + K &k | Gk + K+1 < °"/c+i | Gk

d'où

(jk\ &k y (~ îMfe) (^/c+i+^fe-i) ~ bk

pour tout k e s). On pourrait aussi utiliser

0 < A, | 0* > => < o* | o* > — ~ 1/P*) (f*k+i +Pk-1) —

ou

0 < Dç | tffc > => < or* | (7* > - 1/Vft) (vÄ+1 + - bk.
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On peut remarquer qu'il n'existe aucun prolongement de la forme
d'intersection à Div(M) x Div(M) qui jouisse encore des propriétés (j) à

(v) du § 1. En effet, on aurait alors par exemple

0 < Of | <Jin> n< <rin | (Jin>+ q=> < <jin|> - qjn

0 <D,| ainy1!!!

0 < D;|C7in>< ain|<Tta > + < ^! | o-in > ^> < trin | o-,„ > -1

ce qui est plusieurs fois absurde.

Corollaire.. La matrice d'intersection | es* définie

négative. Si q « - 1, c'est la matrice de Cartan An_1.

Remarque. Le déterminant de An_1 est en valeur absolue l'ordre du

groupe d'homologie H1 1 - { 0 }, Z); voir [16], page 11.

Preuve. La matrice d'intersection est

-b1 1 0 0 0 0

1 -b2 1 0 0 0

0 1 —• b2 1 0 0

_
0 0 0 0 1 -bs

_

Si Dk est son k-ième mineur principal, on a Ds — bsI)s-1 — Ds_ 2.

Il résulte de critères standards (voir par exemple [6], § 36, exercice 33)

que la matrice d'intersection est négative définie. Si q n — 1, on a

s n — 1 et par induction Z>s dét 04n_i) (~l)s/z.

Nous résumons les informations obtenues jusqu'ici dans le résultat

suivant.

Theoreme A. Le morphisme p se relève en une désingularisation

P • Mn>q —> Xn,q •



— 245 —

Le schéma de Dynkin, qui a un sommet muni de l'entier bk— — < ok j Qk >

pour chaque composante irréductible ak de la fibre exceptionnelle, et une

arête liant les sommets définis par Gj et ok si < Gj | ak > =# 0, est

bi bx ^3 K

Si q n - 1, la matrice < Gj | Gk )iest la matrice de Cartan

Preuve. L'existence de p résulte de la proposition 8; les autres affirmations

de ce qui précède.

IV.4. Relation avec les éclatements

Soit n : S-> C2 l'éclatement de C2 à l'origine, comme en 1.3. Considérons

ici T C x S et i:T -+ C3 l'application id x % qui est Y

éclatement de C3 le long de la droite d'équations y z 0. On munit T
comme en 1.3 d'un atlas à deux cartes xj/j: Tj C3 (j 0, 1), avec les

changements de cartes donnés par

C x C* x C ^(TonTi) xl/1(T0nT1) C x C* x C

(x, y, z) t-> (x, 1/v, yz)

et par l'isomorphisme inverse. L'application t s'écrit dans les cartes

C3 <Ao (T0)- C3

(x,y, z) h^(x, z,yz)t0:

et

C3 C3

(x, y, z) i-> (x, yz, z)

La transformée stricte de Anq { (x, y, z) g C3 | zn xyn~q } apparaît
dans une carte comme la surface lisse

{(x,y, z)eil/0(T0)\ynzqx}
et dans l'autre comme

{(x, y,z)e I^ (TJ | z« xyn~q } » AqM.n.

Au niveau des normalisés, l'éclatement permet donc de « remplacer »

Xniq par XqjX avec 0 < X < q et X (2 + r) q - n pour un entier positif
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convenable r(nous avons utilisé ici les remarques qui précèdent la proposition

13). Avec les notations de la section 2, on a précisément
et 2 + rbt.

En cherchant à itérer l'argument jusqu'à trouver une surface lisse,
on aurait précisément à considérer les suites numériques de la section 2.

V. L'ICOSAÈDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.l. Le cas de l'icosaedre

Soient h:C2— { 0 } -> P1 S2 la projection canonique et S: (2)
SO (3) le revêtement universel (à deux feuillets) du groupe des auto-

morphismes analytiques isométriques de du groupe des rotations
de la sphère). Soient Gle sous-groupe de SO (3) des rotations qui laissent
invariant un icosaèdre régulier inscrit dans S2, et S'1 (G); nous
noterons encore <5 la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S2 ont aussi 60 points à trois exceptions près
qui sont

l'orbite $£_ { at,..., al2 } des sommets de l'icosaèdre

l'orbite 3# { bu b20} des barycentres de ses faces

l'orbite P' {c1,...,c30 } des milieux de ses arêtes.

Le groupe Gagit linéairement dans C2; ses orbites ont toutes 120 points,
à la seule exception de l'origine.

Le quotient XicoC 2IGest un ensemble analytique, normal par
le theoreme de Cartan ; il a un unique point non lisse, que nous noterons
x0 et qui est l'image canonique de l'origine de C2. Nous renvoyons à [12],
chapitre II, § 13 et/ou à [15], théorème 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application

polynomial (j):C2 — C3 qui fournit par passage au quotient un isomorphisme
0 de Xico sur la surface de C3 à singularité unique

Ac {(x, y, z)eC3| z5 x2 + }
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Le but de cette section est d'exhiber une désingularisation de XiCo.

La première étape consiste à remplacer l'unique singularité x0 par trois
singularités d'un type connu, et ceci grâce à un premier éclatement.

Le groupe SU(2) agit sur l'éclaté de C2 à l'origine: si a e SU(2) et

([z], w) e S c= P1 x C2, alors a ([z], w) (5 (g) [z], gw). L'éclatement
7i : S C2 est alors équivariant pour SU (2). Avec les coordonnées locales

de la section 1.3, l'action d'un élément g — ] dans (2) sur S est
wv

décrite par

{(u,v)etJ/0(S0) \f+ gu ^ 0} {(u,v)e\]/0 (S0) \j - gu ^ 0 }
fh + ju

(«,!') f + gu
fv + guv

et par

{(u,v)e\j/1(S1) |j + hu#0} -+{(u,v)e\l/1(S1) | 0}
fu + g

(u,v)
hu +j

huv + jv

Nous noterons p: SS/G le morphisme quotient. L'éclatement passe
au quotient modulo G et définit un morphisme nG9 propre et surjectif,
rendant le diagramme

S/G

kg

Ŷ ico

commutatif. Si E est la fibre exceptionnelle de n, alors celle de est 1 (x0)
CiG et la restriction S/G—E/G —> Xico — { x0 } de nG est un isomor-

phisme. Par suite, toute résolution de S/G fournit par composition avec
: une résolution de Xico.
Comme tout quotient de P1

par un groupe fini, l'ensemble analytique
E/G est homéomorphe à P1 lui-même. On sait d'ailleurs expliciter: consi-

C --- — C

H3 oùdérons par exemple la fonction méromorphe
z - -

1728/5
494z10 et/(z) z(z10+ llz5— 1); son- (z20 + l) + 228 (z15-z5)

prolongé à la droite projective E passe au quotient et définit l'homéo-
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morphisme E/G -> P1 (voir [12], § 13 et § 14). Mais nous voulons plutôt
étudier le plongement de EjG dans S/G, c'est-à-dire le morphisme p au
voisinage de E. Les points de S où le sous-groupe d'isotropie de G n'est
pas trivial sont précisément ceux de u & vj considéré comme sous-
ensemble de E n 1 (0). Par suite S/G est un ensemble analytique lisse,
sauf aux trois points a stf/G ß &JG et y &/G. La prochaine
étape consiste à analyser la singularité de S/G en a.

Choisissons un point a de et soit a la droite correspondante dans C2.
Le sous-groupe d'isotropie de G en a est cyclique à 5 éléments. Son image
inverse Ga par ô est le sous-groupe des éléments de G laissant (globalement)
invariante la droite a\ il est cyclique d'ordre 10. Choisissons des coordonnées
sur C telles que a soit la droite d'équation y 0 et que les éléments

de Ga soient représentés par des matrices
® °1)oùco est une racine

\0 co 1J
dixième de 1 unité. L action d'un tel élément sur S s'écrit alors dans les
cartes

| C2 lAo (So) - *0 (So) JC2=^ (S,) » ^ (Si)
\ (u,v) i->(co 2u,cov) | (u,v) y->{co2u, co'h)

Le choix des coordonnées permet donc de considérer que Ga agit
linéairement. En comparant avec le chapitre III, on voit de plus que la singularité
en a est du type C2/Ga C2/G1Qj8 Z10>8. On montre de même que les
singularités en ß et y sont respectivement du type X6A et X4 2.

Il n'y a donc plus qu'à recoller les résultats du chapitre IV. Il existe
ainsi un voisinage Ua de a dans S/G (ne contenant ni ß ni y), un voisinage

Va du point singulier dans X± 0j8, une variété lisse Wa isomorphe à p~1 (Fa),
des isomorphisms Ka et Ka rendant commutatif le diagramme

Pi, a

SIG < => u„ > V c— ^ XI a ycc a10,8

et des données analogues correspondant Les variétés Wx, Wß et
W7 se recollent en une variété lisse Mlesmorphismes p*'ß et piy
se recollent en une désingularisation pp. Mico ^ S/G. De plus, on a les
propriétés suivantes:
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(a) Notons ä/Gl'image par pde la transformée stricte de a. Alors kx
applique (ä/G) n Ua sur [{(ô,/)}/G1M]nF, et n Ux

sur [{ (j, 0) }/G10 8] n Va. L'isomorphisme Ka applique pf1 (ä/G)

n Wa et pf1 (E/G) n Wa dans les courbes notées cin et afi à la
section IV.3.

(fi)De même, pt est au-dessus de ß du même type que X6A.
L'isomorphisme Kß fait correspondre E/G à { (.y, 0) }/G6A et Kß

fait correspondre pf1 (E/G) au afi de M6 A.

(y) De même, pt est au-dessus de y du même type que M4 2 -> X4 2-

L'isomorphisme Ky fait correspondre E/G à { 0, 0) }/G4 2 et Ky

fait correspondre p"1 (E/G) au afi de M4A.

Par suite, nGpt: Mico —> Xicoestune résolution de la singularité x0 de
%ico C2/G. Sa fibre exceptionnelle contient 8 courbes irréductibles sans
point triple, à intersections transverses, toutes isomorphes àP1, et que nous
noterons comme suit:

<r0 Pi1 (E/G)
Oj,x correspondant aux ajdeMl 0 8 (j 1, 2, 3, 4)
<?j,ß correspondant aux aJ de M6 4 (j 1, 2)

ay correspondant à a2 dans M4 2.

Les calculs de la section IV.3 montrent que l'intersection de deux de ces
courbes est 0 ou 1, et vaut 1 si et seulement si elles se coupent dans le
diagramme suivant:
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Les auto-intersections des ajA,sont toutes -2 vu la proposition
17 et la propriété de la forme d'intersection rappelée à la section IV. 1

sous (vj). Pour connaître la matrice d'intersection de la résolution jrGp,:
Mico -* Xico, il reste donc à calculer l'auto-intersection de cr0.

Proposition 18. On a < a0|a0>-2.
Première étape de la preuve : définition de la fonction holomorphe F

sur MiC0.

Ecrivons sdh'1 (<>u { 0 } { a12 } où chaque est

une droite de C2 passant par l'origine. La transformée stricte s// de sé
consiste en 12 « droites » disjointes de ; comme nous l'avons déjà fait
ci-dessus (pour définir a 6 E/G), on peut identifier ïn£ài.

Soit (p un polynôme homogène de degré 120 sur C2 invariant par
et s annulant sur srf. (Un tel polynôme s'obtient en multipliant un
polynôme de degré 1 nul sur al par ses transformés par Soit /
qui s annule sur E et sur les transformés strictes aj des aj ; plus précisément

12 „Df n E+ 10 aj
7=1

ou n est un entier que 1 on calcule ci-dessous. La fonction f est invariante
par G,donc définit une fonction holomorphe sur S/G. La « droite »

a/G est l'image par p de chacune des « droites » ap La fonction s'annule

donc sur E/G et sur a/G avec

Dr ~{E/G) + n(a/G)

Enfin, la fonction annoncée F est la composition Fpt.

Deuxième étape : calcul du diviseur de F.

Considérons à nouveau sur C2 les coordonnées (x,y) telles que al
soit l'axe d'équation y0 et tel que les éléments du groupe d'isotropie

Gh soient représentés par \ avec co10 1. Alors cp

\0 co J
il

y10 n (x_4>010 avec les Xk des nombres complexes distincts



(exercice facile: l'un d'entre eux est nul). Puis, avec n0 et n1 comme à la

section 1.3, f0 (p7i0:\l/0 (S0) C et f ± <pn1:\l/1(S1)-+C sont

donnés par

f0(u,v) q>(v9uv) w1(V20 fi (!""4W)10
/c=i
il

„120 TT 3 yioq>(uv,v) v120 n (u-Xky
k= 1

Comme Ey xf/j (SjnE) { (u, v) e C2 | v 0 } (7 0, 1), les diviseurs

de / et de F sont
12

Df 120 E + £ 10 a,- E/G + 12 (a/O)
j=1

-1Troisième étape : calcul du diviseur de F au voisinage de pt (a).

Soit Ha\ X10>8 -> C l'application définie par le polynôme s10/120

sur C2. Rappelons des sections précédentes que l'on a

<C*" 3

M £
.1

— £

et que

^'[{(x.O.O)}] {(s, 0) }/G10,8 ^[{(O.y.O)}] {(0,01/0,0,8

P[{ (S> 0) }/G10j8] (Jfi p [{ (0, 0 }/OlQ>8] <7;„

p'1[{(0, 0)}/Glo>8] 0-, u u <73 u cr4

Par suite

[{(s,0)}/G10>8] + 12 [{ (0, 0 }/G10,8]

et le diviseur de Hap O]12 est Ds + 12 D,r
Si Fa est la restriction de Fà Ua, il résulte de l'expression de Dfque

Fa Ka~1 et la restriction de Hx à Faont même diviseur, donc que D~ au
voisinage depf1 (a) correspond à Dç+ 12 Dv En recopiant dans la preuve
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de lä proposition 17 et avec les notations introduites peu avant la proposition

18, on voit que Dp est donné dans le voisinage de pj1 (a) par

10 0"*«,a + 8 <Jl a + 6(t2,<z + 4cr3>a + 2cr4(X

+ 12 (o"l a + 2 G2\a + 3 cr3a + 4 cr4 a + 5 (70)

ou encore par

ou les points représentent un diviseur dont le support est disjoint de | cr0-1.

Quatrième étape : calcul de Dp au voisinage de pf1 (ß) et de pï1 (y).

On peut choisir XJß de telle sorte qu'il ne rencontre pas ajG. Le diviseur
de la restriction Fß de F à Uß coïncide alors avec (EjG) n Uß.

Soit Hß \ X6A -> C l'application définie par le polynôme t120 sur C2.
Rappelons que

Par suite, le diviseur de Hß est 20 [{(0, t) }/G6A] et le diviseur de Hßp
rj20 est 20 Dn. On voit donc que Dp est donné dans le voisinage de

Pi"1 (ß) par

20 iGi,ß + 2 o2iß + 3 a0) 60 a0 +40 a2 ß + 20 al ß

De même, il est donné au voisinage de pï1 (y) par

60 gq + 50 (74a +

L

30 (öTy + 2 <70) — 60 <7q + 30 gy.

Dernière étape : calcul de l'auto-intersection de cr0.

En résumé:

Dp — 60 c0 + 50c4a + 40(T2>ß + 30<7y +
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où les points représentent un diviseur dont le support est disjoint de | cr0 |.

De l'équation < Dp | cr0 0, on déduit alors

60 < cr0 | 0*0 > + 50 + 40 + 30 0

et la proposition.

Remarques. On aurait pu partir d'un polynôme (pr invariant par G

et nul sur J1. On aurait alors obtenu les diviseurs associés à r\12 sur M10>8,
Çrj20 sur M6A et r\30 sur d'où un diviseur associé à une fonction F'
de la forme

Dp> 60 <70 + 48 <j4(X + 42 G2,ß + 30 (7y +

et une équation
60 ^ (7Q J (Tq y + 48 + 42 + 30 0

On aurait enfin pu partir d'un polynôme q>" nul sur #, d'où des

diviseurs associés à rj12 sur M10>8, q20 sur M6A et Çq30 sur M4t2 et une équation

60 < cr0 | <70 + 48 + 40 + 32 0

Corollaire. Le schéma de Dynkin associé à la résolution nGPi : Mico
Xico est

-2

• • • • • • • (l^P1)
-2 -2 -2 -2 -2 -2 -2

et la matrice d'intersection associée est la matrice de Cartan Es

V. 2. Le cas des autres polyèdres réguliers «

Nous noterons dans cette section Gico [respectivement Goct9 Gtét, Dn]
le sous-groupe de SO (3) des rotations qui laissent invariant un icosaèdre
régulier [resp. octaèdre régulier, tétraèdre régulier, polygone plan régulier
à n > 3 sommets] inscrit dans S2 et Gico [resp. GoCt, Gtét, Dn] son image
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inverse par <5 1 dans SU (2). La section précédente est l'étude de l'espace
C l^ico' *luia tin unique point singulier et qu'on a dit être isomorphe

à la surface

Aico {(x,y, z) e C3 \ z5 x2 + y3 }
Soit Xoct le quotient de C2 par Goct. Il est isomorphe à la surface

Act {(X y,z)eC3 | z2 x (x2 -y3) }
On peut en construire, comme pour le cas précédent, une désingularisation
Moct -> Xoct. Les calculs du chapitre IV relatifs à X86, X64 et X4 2 et
un calcul analogue a celui de la proposition 18 montrent que le diagramme
de Dynkin associé est

-2

• • • • • • (• « P1)
-2 -2 -2 -2 -2 -2

et que la matrice d'intersection est la matrice de Cartan
Contrairement à Gtco, le groupe Goct n'est pas parfait. Son groupe

dérivé est Gtét et son abélianisé Z2. Le quotient Xtét de C2 par Gtét
(ßoct, Goct) est isomorphe à la surface

Atét{(x, y,z)e C3 | z4x2 + y3}

(Pour l'isomorphisme, voir [12], chap. II, § 12 et [15], § 4.) On trouve aussi

Aé,{(*', V', z')eC3\y'3 x' (x' -z'2)},
ce qui correspond au changement de coordonnées x x' - z'2/2,y
z z'ß.Onobtient cette fois Mtit Xtét, où Mtét se fabrique en recollant
deux copies de M6 4 et une copie de MA 2- Le diagramnïc de Dynkin
associé est

-2

•—•—•—•—• (• « p1)
-2 -2 -2 -2 -2

et la matrice d'intersection est la matrice de Cartan E6.
L'analogue du théorème A de la section IV.3 s'énonce donc comme

suit.
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Théorème E. Les désingularisations des ensembles analytiques à

singularité unique C2/G, où G est l'un des trois groupes polyédraux binaires

Gico, Goct, Gtét, définissent les schémas de Dynkin Es, En et E6.
Le dernier théorème résume la situation qu'on obtiendrait en étudiant

le cas des groupes diédraux binaires (voir [1]).

Théorème D. Soient n > 3 et Xn l'ensemble analytique quotient de

C2 par le groupe diédral binaire Dn (à 4n éléments). On obtient une désin-

gularisation Mn -+ Xn, où Mn se fabrique en recollant deux copies de

2 et une copie de X2„t2> Le schéma de Dynkin associé est

-2
et la matrice d'intersection est la matrice de Cartan Dn.

On trouvera des renseignements complémentaires dans bien d'autres
articles parmi lesquels nous citerons [10] et [20].
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