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SINGULARITES DE KLEIN

par P. DE LA HARPE ET P. SIEGFRIED

«Ich bitte den Leser, sich (..) Zeichnungen
anfertigen zu wollen oder sich geradezu an einem
leicht zu verschaffenden Modelle die in Betracht
kommenden Verhiltnisse zu iiberlegen. Denn es
handelt sich um durchaus concrete Dinge, welche
vermittelst der genannten Hiilfsmittel jedesmal leicht
erfasst werden, aber ohne dieselben der Vorstellung
gelegentlich Schwierigkeiten bereiten konnen. »

F. KLEIN, « Vorlesungen iiber das Ikosaeder... ».

Ces notes veulent étre une introduction élémentaire 3 la géométrie
analytique complexe locale, centrée autour de quelques exemples simples.
Elles reprennent la matiére de séminaires tenus & Genéve et a Lausanne
entre 1974 et 1977. Elles abordent des sujets développés par Alan Durfee
dans ce méme volume a l'intention des lecteurs plus savants [4].

Nous supposerons que le lecteur connait, au moins en premiére approxi-
mation, le contenu des chapitres I et IT de [8]. C’est un bagage a deux ballots.
D’une part, soient k un entier positif et 0 ’anneau des germes de fonctions
holomorphes définies au voisinage de 1’origine dans C*; le théoréme de
préparation de Weierstrass dit comment I’étude d’un élément de ;. 1,0 peut
se ramener a celle d’un élément dans I’anneau de polyndmes ,0 [z, ,]; il en
résulte en particulier que I’anneau intégre et local ,0 est aussi factoriel et
noethérien. D’autre part, nous utiliserons le vocabulaire rudimentaire
concernant les (germes d’) ensembles analytiques plongés dans C* (= « sub-
variety »; voir section ILE de [8]). Nous ferons également un usage répété
de quelques propriétés des résultants et discriminants de polyndmes, aux-
quelles nous revenons ci-dessous. .

Le premier chapitre traite des propriétés les plus élémentaires des
courbes planes, et offre ainsi une traduction géométrique de cas particuliers
les théorémes de Weierstrass et Hensel (démontré au n° I1.2). Le second
chapitre est une introduction & la notion d’ensemble normal, et montre
au’un ensemble analytique de dimension 2 qui se plonge dans C* (qui y est
donc décrit par une équation et qu’on appelle une hypersurface dans C?
¢t qui est normal n’a que des singularités isolées. On peut grossiérement
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classer les points d’une petite portion d’hypersurface dans C3 comme suit,
relativement & une projection convenable sur C2: d’abord ceux qui se
projettent hors du lieu discriminant, qui sont toujours lisses; puis ceux qui
se projettent sur un point lisse du discriminant, qui sont lisses lorsque la
surface est normale (voir II.2); ensuite ceux qui se projettent sur une singu-
larité du type {(x, y) € C2 | xy = 0} dans le discriminant, et qui forment
I'objet du troisiéme chapitre; enfin les autres points normaux, dont on
trouvera au chapitre V des exemples classiques, et les points non normaux,
dont nous ne dirons rien. Le chapitre IV est une introduction 2 la notion
de désingularisation et offre en exemples les quotients de C2 par un groupe
cyclique d’isomorphismes analytiques [9]. Dans le dernier chapitre, nous
calculons explicitement les matrices d’intersection qui apparaissent dans les §
désingularisations des quotients de C? par un sous-groupe fini non cyclique
de SU (2); nous traitons en détail le cas du groupe binaire de ’icosaédre et

donnons quelques indications sur les autres cas, plus simples. Suivant [20], | |

nous appelons singularité de Klein une singularité C2/G, avec G un sous-

groupe fini de SU (2) (ou, ce qui revient au méme, de SL (2, C)); les matrices [

d’intersection associées correspondent alors aux fameux diagrammes de
Dynkin des familles 4, D et E.

Avant d’entrer dans le vif du sujet, nous souhaitons rappeler les faits
suivants; les références a Bourbaki sont données de maniére canonique.
Nous désignons par 4 un anneau intégre (avec unité), par K son corps des
fractions, et par f, g deux éléments de A.

Les €léments f'et g sont étrangers si les seuls éléments de 4 qui divisent f
et g sont les unités, en d’autres termes si 1 est un pged de fet g [A, VI, §1,
n° 12]. Ils sont fortement étrangers s’il existe a et b dans 4 avec af + bg = 1

[AC, III, §4, n° 1]. Deux éléments fortement étrangers sont étrangers (on |

montre facilement que tout diviseur de fet de g est inversible); la réciproque
n’est pas vraie en général (comme le montrent les éléments X et Y de
Z [X, Y]), mais elle I’est si 4 est principal (Bezout).

Nous renvoyons a I’appendice III de [7] pour les définitions de résultant
et de discriminant. Nous désignons par P et Q deux polynémes dans ’anneau
A [X], 'un au moins étant unitaire (= monique).

Les polynémes P et Q sont fortement étrangers si et seulement si leur
résultant est inversible dans A (c’est au vocabulaire prés le lemme 2 de
I’appendice III dans [7], et c’est essentiellement la proposition 1 de [AC,
II1, §4, n° 1]).

Supposons de plus 4 factoriel, et les deux polyndmes P, Q unitaires.
On sait que P et Q sont étrangers dans 4 [X] si et seulement s’ils le sont en
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tant qu’éléments de K [X] [AC, VI, §3, n° 5, th. 2], ou encore si et seulement
si leurs facteurs irréductibles (= éléments extrémaux) sont non équivalents
deux 4 deux [A, VI, §1, n° 12, prop. 11 (DIV) et AC, VII, §3, n° 2, th. 1],
ou enfin si et seulement si leur résultant n’est pas nul dans 4 (donc est
inversible dans K); cette derniére affirmation est a un oubli de détail pres
le lemme 3 de Pappendice IIT de [7]. De méme, les facteurs irréductibles
de P sont non équivalents entre eux si et seulement si son discriminant
n’est pas nul; on dit alors que P est sans facteur multiple.

Soient B un second anneau intégre et ¢: 4 — B un homomorphisme
appliquant 1 sur 1; nous désignons par la méme lettre ’homomorphisme
A[X]— B[X). Si Res (,) et Dis () dénotent respectivement le résultant
et le discriminant, il convient d’insister sur la propriété suivante, qui est

trés utile malgré sa banalité:

@ (Res(P, Q)) = Res (¢ (P), ¢ (Q))
o (Dis(P)) = Dis(¢(P)).

Le cas le plus fréquent ci-dessous est celui ou 4 = O (D) est I'anneau des
fonctions holomorphes sur un polycylindre D de C* centré a l’origine, ou
B = ,0 et ol @: f+> f est I'injection canonique. Précisons a ce sujet que
tous les polycylindres du texte sont ouverts.

Le travail du premier auteur a été rendu possible par le Fonds national
suisse de la recherche scientifique.

I. COURBES PLANES

I.1. SINGULARITES DES COURBES PLANES ET REVETEMENTS

Soit y un germe de courbe plane. On peut toujours supposer y donné par
les zéros d’un polyndme de Weierstrass (quitte a opérer un changement
linéaire de coordonnées). Plus précisément, il existe

19) Un polycylindre D, dans C?, centré a l'origine; nous noterons D,
sa trace sur la droite C = C, de C* = C3,.

20) Un polyndéme de Weierstrass f € 0 (D,) [y] de degré n, c’est-a-dire
une fonction f € 0 (D,) avec
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o) =y +a,x)y ™ + ..+ a,(x)

pour tout (x,y) € D,, ou les a; sont des fonctions holombrphes |
dans D, qui s’annulent a I’origine.

Le germe y est alors représenté par y, = {(x,») e D, [ f(x,y) = 0}
Nous écrirons plus simplement y si D, = C2. On peut toujours remplacer |
D, par un pély’cylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit par restriction une applica-
tion = de y, sur Dy. Si n = 1, le changement de coordonnées (x, )
= (x, y— a (x)) montre que y, est lisse & origine; nous supposerons
désormais n > 2 (on prendra garde que ceci n ’exclut pas tous les germes

~lisses, comme me le montre le cas de f(x,y) = y - X).

ProposiTION 1. Soit y un germe donné comme ci-dessus. Alors la §
projection canonique de "C? sur C induit (apres retre01ssement éventuel
de D,) un revétement holomorphe a » feuilles

n*: yp =yp —{(0,0)} >Df =D, — {0}

Preuve. Le discriminant Dis (f) est un élément de @ (D,). Notons |
Ev: 0 (D,) = C le morphisme d’évaluation g+ g (0); alors Ev (Dis (f)
= Dis (Ev (f)). Or Ev (f) = " est un polyndme qui a par hypothése
(n > 2) une racine multiple et son discriminant est nul. Par suite Dis (/)
s’annule & I’origine.

On peut supposer que le germe a l’ongme f de fest sans facteur multiple,
de sorte que Dis (f) n’est pas nul. Mais Dis (f) est le germe de Dis (f).
Par suite la fonction Dis (f) n’est pas nulle, ses zéros sont isolés, et on
peut supposer (aprés rétrécissement de D, au besom) que Dis (f) ne §
s’annule pas dans D7.

Soient a € DY et Ev,: 0 (D;) » C D’évaluation g+>g (a). Comme j
Dis (Ev, (f )) = Ev, (Dis (f )) # 0, le polynéme y+> f(a,y) n’a pas de

a .
racine double; en d’autres termes 6—f (a,y) # 0 si (a, y) € y5. Par suite 1a |
y .

0 : |
fonction 6_f € 0 (D,) ne s’annule pas sur 7;. Le théoréme des fonctions j§
y |

implicites affirme dans cette situation que 7y}, est une courbe lisse et que 7*
est un isomorphisme - analytique local. Ses fibres ayant toutes le méme §
nombre n d’éléments, c’est de plus un revétement. W

COROLLAIRE. Les singularités des courbes planes sont isolées.




211 —

PROPOSITION 2. On suppose f sans facteur multiple. Alors f est réduc-
tible si et seulement s’il existe un polycylindre D, tel que f ait un représentant
e 0 (D,) avec y non connexe.

Preuve. Supposons f = f’ f”,avec f’ et f " des polynomes de Weierstrass
non constants et sans facteur commun; leur résultant est donc un élément
non nul de ;0. On peut choisir un polycylindre D, et des représentants

0(D,) sans zéro dans D¥. Un argument déja utilisé dans la preuve de la
proposition 1 montre alors que fp et fp n’ont pas de zéro commun dans
D, — {(0, 0)}. Par suite les ensembles

v ={(,eD,|fp(x,y) =0 et x#0}
et
y" = {(x,)eD, | fp(x,») =0 et x#0}

forment une partition en fermés non vides de y 7, qui n’est donc pas connexe.

Supposons réciproquement qu’il existe un polycylindre D, tel que
Pespace total du revétement associé 7*: y% — D% admette une partition
en deux fermés non vides: y% = 3’ U 9”. Par la proposition 1, le cardinal
n' de 9/ A n~ ! (x) ne dépend pas du choix de x dans D¥. Soient ¢, (x),
s @, (x) les zéros de la fonction y > f (X, »), numérotés de telle sorte
que ¢; (x) € y" pour j < n'. Posons

n’ n
Fey =TI —e;®) et fn= 11 -¢;x)

j=1 j=n'+1
pour tout (x,y) € D,. Les ¢; ne sont en général pas holomorphes (seules
leurs fonctions symétriques élémentaires le sont). Il résulte néanmoins de
la proposition 1 que, pour tout disque 4; < D¥, on peut faire en sorte que
les ¢; soient holomorphes dans 4. Par suite, f' et f” sont holomorphes au
voisinage de tout point (x, y) avec x 5 0, donc dans tout D, par le théoréme
dextension de Riemann. En d’autres termes f = f'f" est réductible. ™

PROPOSITION 3. Supposons f irréductible. Alors il existe un nombre
positif 7 et une fonction holomorphe ¢ dans D (r) = {t eCI |t] <r}

el D(r) = v . . .
els que . soit un homéomorphisme.
t (2, 0 (1)

Preuve. Avec les notations de la proposition 1, soient s le rayon de D,
et r la racine positive n-iéme de s. Notons D (r)* le disque D (r) privé de
Porigine. Les applications ¢#+>¢" de D (r)* sur D} et (x,y)>x de y}
sur D} sont des revétements holomorphes (proposition 1) connexes (propo-

et fp de f' et f” tels que le résultant de fp et fp soit une fonction de

iy
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sition 2) & n feuilles de I’espace D} A groupe fondamental abélien. I ex1ste
donc un isomorphisme analytique ¢* rendant le diagramme
@* ‘
D (r)* 7D

commutatif. Comme &* est borné, il se prolonge par continuité en un |
morphisme bijectif @: D (r) > y, de la forme ¢ (¢",¢ (1)) avec
@ € O (D (r)). Cest alors un exercice facile de topologie générale de montrer
que & est un homéomorphisme. m

COROLLAIRE. Les courbes planes 1rreduct1bles sont des variétés z‘opo-
logiques.

Notons qu’une courbe plane (plus généralement une sous-variété de §
C*) analytiquement singuliére n’est jamais une variété différentiable; voir
par exemple [14], §2.

La proposition 3 exprime y, paramétriquement par x = ¢" et

= @) = apt™ + at™t + ... + a ™ + ... (ay, #0);
on montre facilement qu’on ne restreint pas la généralité en supposant
m 2> n. On écrit aussi

y = agx™" 4 a;x™TOM 44 g xR 4

et on parle alors du développement de Puiseux ou de la série fractionnaire
associé au germe considéré.

I.2. LES TANGENTES EN UN POINT D’UNE COURBE PLANE
Soient k un entier positif et Ev: ,0 — C I’évaluation a I’origine, qui
n’est autre que la projection canonique de I’anneau local 0 sur son corps
résiduel.

PropoOsITION 4. L’anneau local ;0 est hensélien. En d’autres termes,
soient P € .0 {t] un polyndme unitaire et p, ceC [¢] des polyndmes unitaires
étrangers tels que Ev (P) = p o. Alors il existe des polyndmes unitaires R
et S dans 0 [t] avec P = RS, Ev(R) = p et Ev(S) =

Attention : P n’est pas nécessairement un polyndme de Weierstrass.
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Preuve. Notons Ev (P)(¢) = P(0,17) = [[(t—A)"7, avec 4., 4
distincts. (Dans cette preuve, les produits [ portent sur I'indice j delan
et les [’ portent sur j de 2 & n). Nous voulons montrer par induction sur 7
quiil existe des polynémes unitaires Py, ..., P, dans ;0 [t] avec P = 11P;
et Ev(P))(t) = (t—4 1. Cette assertion étant trivialement vraie pour
n = 1, on peut supposer n > 2 et qu’elle est vraie pour tous les polynémes
dont 1’évaluation a au plus n — 1 racines distinctes.

Supposons d’abord que P (0,0) = 0 et que Ev (P) =1 ] ¢—4)7.
Le théoréme de préparation permet d’écrire

P(x;0) = u(x, ) [Ff14+a, () 117+ 4a, (X)]

oll u est un polynoéme de .0 [¢] inversible dans ;.0 et ol les a; sont des
germes dans .0 qui sont nuls & Porigine. Par suite

Ev(P)()) = u(0,0) 1 = 1 [ (t— )
et u(0,¢) = [] (¢—A,)". Par hypothése d’induction, il existe Py, ..., P,
dans ,0 [t] avec u = [['P; et P;(0,¢) = (t—Ay)"7 pour j = 2,..,n. On
achéve en posant
P (x,0) =t +a;, (x) 171 + ...+ as; (%)

Supposons - au contraire que P (0,0) # 0. Soient AeC tel que
P(0,2) =0 et PT le polyndme défini par PT (x, ) = P (x, t+4). Alors
PT est un produit de » facteurs P f par largument précédent et on achéve
en posant P; (x, ) = P? (x,t—A) pourj=1,..,n H

Notons qu’il existe d’autres définitions (équivalentes a celle de la pro-
position) pour un anneau local d’étre hensélien; voir par exemple [AC,
11, §4, ex. 3].

Soient y, D,, fet yp, comme au début de la section 1. Ecrivons la série
de Taylor de f a Iorigine sous la forme f (x, y) = Y, k; (x, y) (somme sur j
de p a Pinfini), ol 4; est un polyndme homogéne de degré j en x et y et
ol h, # 0. Le polyndme /%, est un produit de facteurs linéaires. Quitte a
modifier les axes de coordonnées, on peut supposer que %, ne s’annule pas
sur la droite d’équation x = 0, donc que 4, (x,y) = ¢ [[ (y—4;x)"7 avec ¢
un nombre complexe, A4, ..., 4,, des nombres complexes distincts, et s,
.., 8, des entiers positifs de somme p. Les droites d’équation y = 4; x
sont par définition les tangentes de y. Pour chaque entier j > p, on a
li; (0, ) proportionnel & y/, et &, (0, y) = cy® avec ¢ # 0. Par suite, f est
une fonction réguliére d’ordre p en y; avec les notations du début de la
section 1, on a donc p = n. Cet entier s’appelle la multiplicité de f a 1’ori-
gine; il ne dépend pas des coordonnées choisies sur C2. |

L’Enseignement mathém., t. XXV, fasc. 3-4. 14
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PROPOSITION 5. Si y a plusieurs tangentes, alors [ est réductible.

Preuve. Comme

@) =Y+ @Y 0,0 = 3 )

ordre du zéro de q; & I’origine est au moins i (i=1, ..., n). Nous écrirons
J0) = (6, 9) = b1y + 5, (0" + o+ by ()
et b; (x) = x'*1 ¢ (x), oul ¢ représente un germe holomorphe 4 Iorigine

@i=1, ..., n). ,
Si u et v décrivent de petits voisinages de lorigine dans C, la fonction

(u,v) = f (v, uv) est divisible par »". Définissons z €,0 par ]; (u,v) §
= v " f (v, uv); on a donc

F@,9) = Ry (L, u) +ve; @ u™t +ve, @) w2 + ... + ve, (v) .

L’¢évaluation Ev: ;0 — C associe au polyndme j: € 10 [u] le polyndme"
u>h, (1, u) de C [u]. N
Si y a plusieurs tangentes, il résulte de la proposition 4 que f est un

produit dans ;0 [1] de polynémes unitaires g~ et h de degrés respectifs r < n
et s < n. Définissons alors g et 4 dans ,0 [y] par g (x,y) = x’gN (y/x, x)
et h(x,y) = x° h (y/x, x). Alors f = gh et f est réductible. m

La signification géométrique de f dans la preuve ci-dessus sera éclairée
au numé€ro suivant. |

Par exemple, le polyndme réductible xy définit une courbe ayant deux .
tangentes a 'origine. La réciproque a la proposition 5 n’est pas vraie car
le polynéme réductible x (x* —»3) définit une courbe n’ayant qh’une tangente
a ’origine.

S

1.3. ECLATEMENT ET IRREDUCTIBILITE

Pour tout entier positif k, nous noterons 4 la projection canonique
de C**' — {0} sur I’espace projectif P*; nous é&crirons (@ ...y ) les
4 > k+ 1 z b
coordonnées d’un vecteur de C** 1 et [z,, ..., z,] les coordonnées homogeénes
d’un point de P*. Introduisons la variété |



— 215 —

Scciy = {([20, 21, W) €P* x CF* | w eh ' ([2& 267 2y, .., Z5]) U {0} }

et la restriction 7 -1 a S(_, de la seconde projection du produit Pl x CH L
Nous écrirons aussi 7: S — C? lorsque k = 1; cette application est alors

par définition I'éclatement de C*> a l’origine.
Ecrivons cela dans les cartes standards. Les indices j ci-dessous sont a

prendre dans {0, 1}.
Posons I~Jj = {(z9,21) €C? — {O}[zj # 0} et U; = h((NJj). Soit

(; i l~] ; = C P’application qui associe a (zo, z4) le quotient z,/z, sij = O et
le quotlent Zo/z4 si j = 1; elle passe au quotient et définit une bijection
:U; - C. Les changements de cartes de ’atlas analytique ainsi défini
sur P1 sont
{ C* = ¢ (UpnUy) = ¢ (UpnUy) = C*

ur>u-1

et 'isomorphisme inverse.

Considérons ensuite la restriction Ac_ypy: S_g) — P! de la premiére
projection du produit P* x C**'. Posons S(_4); = A1 ' (U;) et soient
1% S( _w.; = C? les bijections définies par ¥, ([z], @) = (¢, ([2]), @o) et
Uy (Iz], ) = (¢4 ([2]), @); les applications inverses sont respectlvement

(u,v) = ([1,u], (v,uv,...,u v))
et

(u,v) > ([u, 1], (v, u* 1o, ..., v)) .
Les changements de cartes de I’atlas analytique ainsi défini sur S._,, sont

{C* X C = Yo (S-1),0NS=1),1) 2 ¥1(S(-1y0NS(-1y,1) = C* x C
' (u, ) = (u"1, ut)

et 'isomorphisme inverse.

La variété S._,, est donc I’espace total d’un ﬁbre holomorphe en droites
de projection A_jy: S(—z — P;. Les fonctions de transition associées au
recouvrement trivialisant (U,, U,) de P! sont

U,nU; - C*
l,0103{ ° .

[0, z1] = (z4/20)*

U nU, - C*
l‘00,13{ ! °

[20, 1] = (2o/2,)* .
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En particulier, le fibré 1 _,, est la puissance tensorielle k-iéme du fibré
canonique A = A._;y. Nous avons construit Ac-ry comme l'image inverse
du fibré canonique sur P* par le « morphisme de Véronése» de P! dans P,
qui est une application de « degré » k. Le signe dans I'indice (— k) exprime
que la classe de Chern du fibré A _,, évaluée sur la classe fondamentale est
négative. Le lecteur savant aura reconnu ci-dessus au moins deux bonnes
raisons pour lesquelles la classe de Chern de Ac-xy est —k (multiplicativité
par produit tensoriel et multiplication par le degré); indiquons-en une
troisiéme qui n’utilise que des notions encore plus rudimentaires (voir par
exemple [7], chap. 0, §5, prop. 2).

Considérons la section méromorphe s: P! -~ S(-ry du fibré A _,, décrite
par les applications

Uy = S(-—k),o . Uy---— S(—k),l
So - et s i
u>(u,u) Uur--->(u,u ).

Alors s a un zéro simple, en un point correspondant a I’origine de U, un
pdle d’ordre k + 1, en un point correspondant 3 I’origine de U, et n’a ni-
autres zéros ni autres poles. Les différentielles logarithmiques de s aux
voisinages de son zéro et de son pdle se représentent respectivement par
d(logu) =u"'du, de résidu +1, et d(logu 1) = —(k+1)u" ! du, de
résidu —(k+1). Il en résulte que la classe de Chern du fibré A~y vaut
1 —-(k+1) = —k.
L’application 7: S — C? s’exprime dans les cartes standards par

. C* = Yo (So) » C?
' { (u,v) — (v, uv)

et
. {Cz =¥, (S) - C?

(u,v) = (uv,v).

On appellera courbe exceptionnelle de I’éclatement m et on notera E la
courbe #~* (0, 0), qui est lisse et isomorphe & P*. Elle est donnée dans les
cartes par

Ey = Yo (EnSy) = {(u,v)eC*|v = 0}
et

E; =Yy (EnS;) = {(u,1)eC*|v = 0}.

On notera que, en général, 'image de la section nulle du fibré A¢~xy coincide

avec m_, " (0).

*
* %
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Soient alors y, D,, f et yp ou y comme au début de la section 1. On
appelle transformée stricte de yp et on note 7~ ! (yp) ou yp ’adhérence dans
132 = g~ 1(D,) de n~ ! (y}), avec comme plus haut vy = yp — {0}.

Exemple 1. D, = C? et f(x,y) = xy. Alors y a deux composantes
irréductibles qui sont 'axe y’ d’équation y = 0 et I'axe y" d’équation
x = 0, de sorte que ; = ;’ U ;”. Or ;’ est I’adhérence de {([z], a)) eS | 0l
= (x,0) et x # 0}, qui est {([z], ®) eS[ [z] = [1,0]}. De méme 7" =
{([=], co) €S I [z] = [0, 1]}. Dans les cartes standards:

Vo) = {(,v)eC*|u = 0}
Y S =108 =2
Wi (") = {@,v)eC*|u = 0}.
On retiendra que ; est réunion de deux courbes lisses disjointes et que

7171 (y) = y U E est réunion de trois courbes lisses sans point triple et a
intersections transverses.

Plus généralement, si y est réunion de m droites distinctes dans C?
passant par 1’origine, sa transformée stricte est réunion de m courbes lisses
disjointes coupant chacune la courbe exceptionnelle en un point et trans-
versalement.

Exemple 2. D, = C? et f(x,y) = x* — y3. Alors ; est ’adhérence

de {([zhw)eS|w = (¢31? et teC*}, qui est {([t,1], (> t?)) eS|
te C} = Sy. Dans les cartes, ¥ (;mSO) est I'adhérence de {(u,v) € C? |
u=1"1 v =13 teC* et Y (1nSy) celle de {(,v)eC?|u = ¢,
v = t2, t € C*}. Ecrit sans paramétre:

Vo @nSo) = {(w,9) e C|ud = 1}

Vi nS) = {@,9)eC? u? =9},

Par suite y est une courbe lisse, et 771 (y) = 9 U E est réunion de deux
courbes lisses se coupant au seul pointy; ~* (0, 0). Cette intersection n’étant
pas transverse, on itére le procédé en espérant éliminer ce « défaut ».
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Au voisinage de ce point d’intersection, 7~ ! (y) définit un germe d; on
le représente par la courbe &, zéro de la fonction g € O (C?) définie par |
g (x, ) = y (x*—). La transformée stricte est donnée dans les cartes par

Vo (3nSe) = {(,9) e C* |u@—u) = 0}
V1 (6nSy) = {(@,2)eC? |u’y = 1} .

Par suite 6 est réunion de deux courbes lisses se coupant en un seul point
et transversalement; d’autre part 7~ ! () est réunion de trois courbes lisses
se coupant en un seul point, et transversalement deux a deux.

Au voisinage de ce point triple, 7~ ' (§) définit un germe &. La remarque

a la fin de I’exemple 1 montre que ¢ conduit & une transformée stricte qui i

est réunion de trois courbes lisses disjointes coupant la courbe exception-
nelle transversalement et en des points distincts.

En composant ces trois éclatements, on obtient une résolution de la
singularité y plongée dans C?2, au sens du théoréme 8.4 de [17]. En d’autres

termes, on obtient une variété lisse M et une application {: M — C? ayant 8

les propriétés suivantes:
1) ¢ induit un isomorphisme de M — {~* (0) sur C* — {0};
2) I’adhérence Z‘ 1(y) de {71 (y*) dans M est une courbe lisse;

3) {1 (y) est une réunion de courbes lisses sans point triple qui se
coupent transversalement. '

Revenons au cas général et soit a nouveau # la multiplicité de f a 1’ori-
gine; nous supposons comme a la section 2 que la droite d’équation x = 0
n’est pas une tangente de y. Nous appellerons transformée stricte de la

fonction f et nous noterons f la fonction définie pour tout (u,v) € 4, B

= o (n 1 (D;) A S,) par £ (u, v) = 07" f (v, w).

PrOPOSITION 6. Avec les notations déja introduites:
(§) Wo (75nSo) = {(wv) €45 | £ (wv) = O},
(jj) Si f est irréductible, alors } s’annule en un seul point de E et y définit
un germe f e ,0 qui est irréductible.
(jjj) Supposons f irréductible et soient n et n les multiplicités de f et/}';

alors n <<metn < nsi et seulement si E, est une tangente a y.




Preuve. Supposons (4, v) €W (ypNSy); alors mq (4, v) = (v, uv) € ¥p,

donc f (v, uv) = 0. Si v # 0, cela implique f (u, v) = 0 par définition de f;
c’est encore vrai par continuité si v = 0.

Supposons (u,v) € 4, avec ]N‘(u, v) = 0, alors f(n, (1, v)) = V" f (%, v)
=0, donc Yo L (w,v)en * (yp) NSy Siv # 0, cela s’écrit o L (u,v)

~

eypnSy. Si v=0, la fonction u r—»}(u, 0) est de la forme
u—>c[] (u—2,)* avec ¢ non nul et 4y, ..., 4, distincts (voir la proposi-
tion 5). Elle s’annule donc aux points (4;, 0) de E,; ceux-ci €tant en nombre

fini, leurs images inverses par /, sont par continuité dans y, N S,. L’asser-
tion (j) en résulte.
Si f est irréductible, il n’y a qu’un 4; (voir la preuve de la proposition 4);

]; ne s’annule qu’en un point de E, et y définit un germe f. L’application =
induit un homéomorphisme de S — E sur C2 — {0}, donc aussi de #~* (y%)

= vy, — (ypnE) sur y%5. Lassertion (jj) résulte donc de la proposition 2.

Quitte & changer linéairement les coordonnées, on peut supposer que la
tangente & y est 'axe d’équation y = 0. Pour tout (x, y) € D,, on a main-
tenant

f(x,3) =" +b (x)y " + ... +b,(x

et b, (x) = x*1¢;(x) ou ¢ est holomorphe a lorigine. Pour tout
(u,v) € 4,, on a donc

~

f(u,v) =u" +ve,@u""* + ... +vc,(),

d’ou en particulier n < n. Sin = n, alors f (4, v) = ) h; (4, v) (somme de 7

a linfini) avec h, (u,v) = u" + vk (u, v) pour un polynéme homogene k
ad hoc, nul ou de degré n — 1; dans ce cas, la courbe E, d’équationv = 0

n’est pas tangente a Y, (ypNSy). Si n < n, alors f(u, V) = Z;zj (u, v)

(somme de z a I'infini) avec Aj; divisible par v; dans ce cas, E, est tangente
ay, (ypNSo)

Exemple 3. D, = C* et f(x,y) = x° + y%. On peut montrer brutale-
ment que f est irréductible. On peut aussi observer que la paire formée de
C* — {0} et de y* se rétracte par déformation sur la paire formée de
3% = {(x,»)) eC?|x|* + |y|* = 1} et d’un nceud du tore: la rétraction
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applique un point (x, y) sur D’intersection avec S* de ’image du chemin
R¥ - C?
te (x, t°y)
La transformée stricte de f est donnée par

En particulier y* est connexe et f est bien irréductible.

f(u,v) =172 (v° +(wv)?) = u? + 03

qui est comme f de multiplicité 2. La tangente de fest la droite d’équation

u = 0, qui est transverse a E,,. B N
Soient alors D, = C? et g (x,y) = x*> + y* de sorte que g = f (pas

g (x,») = x* + y? qui aurait comme tangente la droite d’équation x = 0).

On a g (u,v) = u® + v, qui est de multiplicité 1, et dont la tangente 2
I’origine est bien E,. :

Exemple 4. D, = C* et f(x,y) = >+ x°y +g(x,y) avec g de
multiplicité 8 au moins. Montrons que f est réductible.

Onaf(u,v) = u + uv + h(u,v) avec h d’ordre 3 au moins. Donc f a
deux tangentes, d’ol I’assertion par les propositions 5 et 6 (jj).

II. SINGULARITES NORMALES DANS C?

I1.1. ENSEMBLES NORMAUX

Si X est un ensemble analytique, X, désigne I'ouvert de ses points

ég

réguliers; on sait qu’il est dense dans X. (Voir le corollaire de la proposi- |

tion 1 si X est une courbe plane, 'argument de la proposition 7 ci-dessous
si X est une hypersurface dans C¥, et le théoréme III. C.3 de [8] en général.)

Rappelons qu’un ensemble X est irréductible en un point p si X n’est
pas au voisinage de p réunion de deux sous-ensembles propres. Dans ce
cas, on peut trouver un voisinage de p dont la trace sur X, est connexe.
Réciproquement, s’il existe un bon voisinage U de P dans X dont la trace
sur X, est connexe, alors X est irréductible en p. (Voir la proposition 2
si X est une courbe plane, et la fin de la section III.C de [8] pour le cas
général.) Le terme de « bon voisinage » pour U signifie qu’il existe une
base de voisinages {U,} de p dans X telle que chaque U, — {p} soit un

rétracte par déformation de U — {p}; voir [21].
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On appelle fonction faiblement holomorphe sur un voisinage ouvert U
d’un point p de X une fonction définie et holomorphe sur U n X, — {P}
qui est bornée sur K n X, — {p} pour tout compact K de U; on dit que
Iespace X est normal en p si toute fonction de ce type admet un prolonge-
ment (nécessairement unique par continuité) en une fonction holomorphe
sur U. Par exemple, X est normal en tous ses points réguliers (c’est un cas
particulier du théoréme d’extension de Riemann) et n’est normal en aucun
de ses points réductibles (choisir un voisinage connexe U de p dans X et
une partition U, u U; de Un X, en ouverts disjoints non vides, puis
définir £ comme valant 0 sur U, et 1 sur U,). Soit O, 'anneau des germes
de fonctions holomorphes au voisinage d’un point p de X; pour que X soit
normal en p, il faut et il suffit que Oy , soit intégralement clos. (La nécessité
résulte immédiatement des définitions; pour la suffisance, voir par exemple
[18]; en général, la cloture intégrale de Oy , coincide avec I’anneau des
germes de fonctions faiblement holomorphes.)

C’est un corollaire facile de la proposition 3 qu’une courbe plane est
normale en un point si et seulement si elle y est lisse. Soient par exemple

y—{0} >C
(x, y)=>x[y;

alors f a un prolongement continu non holomorphe qui applique 'origine
de C2 sur 0, de sorte que 7 n’est pas normale & ’origine. Dans toute courbe
(plane ou non), on sait que les points normaux coincident avec les points
lisses. L’objet de ce chapitre est d’examiner la nature des singularités des
surfaces normales dans C>.

Dans les sections suivantes, nous ferons un usage répété d’un théoréme
de H. Cartan [3]: Soient M une variété lisse et G un groupe fini opérant
holomorphiquement sur M. Alors I'espace des orbites X = M/G possede
une structure canonique d’ensemble analytique normal (= normal en
chaque point). Si n: M — X est la projection canonique, U un ouvert de X,
et f: U — C une application, alors f est holomorphe pour la structure en
question si et seulement si f 7 I’est sur =~ (U).

y = {(x,»)eC*|x* =y} et f: {

11.2. LES SINGULARITES DES SURFACES NORMALES DANS C3 SONT ISOLEES

Soit I' un germe de surface plongé dans C3. On peut supposer I’
donné par les zéros d’un polyndme de Weierstrass. Plus précisément, il
¢xiste
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10) Un polycylindre D, dans C?, centré a 1’origine; nous noterons D,
et D, ses traces sur le plan d’équation z = 0 et sur la droite d’équa-
tionsy = z = Q.

20) Un polynéme de Weierstrass F € 0 (D) [z], c’est-2-dire une fonction
Fe0(D;) avec

F(x,y,2) = 2" +a; (x, ) 21 + ... + a,(x,¥)

pour tous (x, y, z) € D3, ou les a; sont des fonctions holomorphes
dans D, qui s’annulent a I’origine.

La germe I est alors représenté par I', = {(x, », 2) € D3 | F(x,y,z) = 0}.
Nous écrirons plus simplement I' si D3 = C?>. On peut toujours remplacer
D, par un polycylindre plus petit; en particulier, on pourra toujours
supposer que la projection canonique fournit une application surjective ©
de I', sur D,. Sin = 1, la surface I'j, est lisse a I’origine; nous supposerons
désormais n > 2.

Nous noterons 7y, l’ensemble analytique {(x,y) € D, | Dis (F) (x, y)
= 0}. Nous allons voir que ce lieux discriminant définit un germe y de
courbe plane qui joue un réle important dans I’étude de I

PropoSITION 7. Le lieux discriminant est une courbe passant par
’origine. Si Dj est suffisamment petit, alors vp = 7p — {0} estlisseetn
fournit par restriction un revétement holomorphe I', — ™~ Y(yp) = D, — yp
a n feuilles. De plus, si I" est normal, alors I’ 5 = I'p — {0} est lisse.

Preuve. Les mémes arguments que ceux de la preuve de la proposition 1
montrent: d’abord que Dis (F) est une fonction holomorphe dans D, qui
s’annule & Porigine, et qui est non nulle — donc que y, est une courbe
plane passant par I’origine et qu’on peut supposer v lisse; ensuite que 7 |
se restreint en une projection de revétement de I', — = * (yp) sur D, — yp.

Soient alors (Xq, ¥o) € 75 €t 4, un voisinage de (x,, yo) dans D, tel
que 7, soit lisse. Notons 4 3 'ouvert {(x, y,2) € D, | (x,y) € 4,}. On peut
supposer qu’on s’est donné des coordonnées (¢, #7) sur un voisinage de 4,
telles que A, soit le polycylindre défini par | & | < 1et|n| < 1 et telles que
4 ={¢& ned, | n = 0}. Nous noterons m, la restriction de = a I
La premiére partic de la preuve montre que la restriction de 7y a
V=A{¢&nz2ely [ n # 0} est un revétement holomorphe & n feuilles.

Soient Vi, ..., V; les composantes connexes de V. Pour chaque
je{l, ...k}, notons m;: V; > A, — y,la restriction de m4 a V;; c’est un
revétement holomorphe connexe a n; feuilles (la somme des n; vaut n).




— 223 —

L’application o; de {(s,#) e C*||s]| <1 et 0< | 2| < 1} dans 4, — 7,
donnée par o; (s, ) = (s, t"7) est un revétement du méme type. Le groupe
fondamental de 4, — vy, étant Z, il existe des isomorphismes analytiques
inverses 'un de lautre ¢; et /; rendant le diagramme

0
{(5,H)eC*||s] <1 et O<|t] <1} =V
N /
AN /
AN /
\AZ _"’YA/

commutatif. Soient V; 'adhérence de V; dans 4; (elle est dans I’ 4), T; la
restriction de 7, & V; (qui est aussi I'unique extension continue de 7; a
V)et B={(s¢)eC*||s|<1et]|t]<1} Le théoréme d’extension
de Riemann implique que ¢; admet un prolongement holomorphe @;:
B — V. Nous montrons plus bas que V; est ouvert dans I'4; en particulier
V; est un ensemble normal. Le méme théoréme de Riemann implique
que ¥; admet un prolongement a (V). et la définition de la normalite
implique que celui-ci s’étend en ¥;: ¥V; > B. Les morphismes @; et i/; sont
encore inverses I'un de l'autre; par suite V;est isomorphe & B et I' est
lisse.

Montrons enfin que V; est ouvert dans I',. Soit p € V; — V;. Comme
I'; est normal, il est irréductible en p et il existe un voisinage U de p dans
I'yavec U' = U n (I'y), connexe. Toujours en vertu du méme théoréme
de Riemann, Pouvert U" = {(£, n,2z) e U’ | n # 0} est connexe (voir [8],
corollaire 1.C.4). Montrons que U” est dans V. Si k = 1, il n’y a rien 2
vérifier. Si k > 1, supposons au contraire U” ¢ V;; alors il existe i # j
avec U” N V; non vide. Mais U" n V'; n’est pas vide non plus, d’ou I’ab-
surdité puisque V; et V; sont des composantes connexes distinctes de V.
Donc U” est bien dans V;, et U’ est dans V;; par suite U< V. Ceci montre
que V; est ouvert dans I', et achéve la preuve. B

COROLLAIRE. Les singularités des surfaces normales dans C® sont
isolées.

On sait que. le corollaire est vrai pour toute surface, plongée ou non
dans C3. Un théoréme d’Oka affirme que la réciproque du corollaire est
vraie; plus généralement, une hypersurface de C* dont le lieu singulier est
de codimension au moins 2 dans I’hypersurface est un espace normal;
voir [19], pages 139-140.
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Il n’y a pas d’analogue ici au corollaire de la proposition 3, méme pour
les surfaces normales; cela résulte par exemple des surfaces étudifes au
chapitre III. De fait, un théoréme fondamental de Mumford affirme que
les singularités analytiques se détectent par le seul groupe fondamental.
Plus précisément, soient X une portion de surface plongée dans C* et x, §
un point de X; on suppose que X — {x,} est lisse. Soit S une petite sphére
centrée en x,. L’intersection X n .S est une variété différentiable (si le
rayon de la sphére est suffisament petit) de dimension réelle 3; il est facile |
de voir que le type topologique de cette variété ne dépend pas du rayon de
la sphére. Le théoréme de Mumford affirme que le groupe fondamental
de X N S est trivial si et seulement si x, est un point lisse de X [16].

- T1.3. SUR LA NORMALISATION

On appelle normalisation d’'un ensemble analytique X la donnée d’un

ensemble normal X et d’'un morphisme propre fini surjectif v: X — X ayant
la propriété suivante: si 4 = v~ (X— X,,,), alors X — A est dense dans X

et la restriction de v est un isomorphisme de X — A4 sur X,,. Il est facile de
montrer que deux normalisations d’un méme ensemble sont isomorphes
au sens convenable. C’est par contre un résultat trés profond que tout
espace posséde une normalisation (voir [5], appendice au chapitre 2, et
[18]); remarquons seulement que nous l’avons essentiellement montré
dans le cas trés particulier des courbes planes. Nous utiliserons a plusieurs
reprises le résultat suivant, qui dit qu’on peut parfois « normaliser les
morphismes » (voir par exemple [5], page 2.28).

PrROPOSITION 8. Soient X et Y des ensembles analytiques, vy: X —» X

et vy: Y - Y leurs normalisations, et f: X — Y une application holo-
morphe telle que 4 = f~* (Y,,) soit dense dans X. Alors il existe une

application holomorphe f~ X - Y telle que vy f~ = fvy.

Preuve. Soit A = vy~ ! (4). Comme A4 est dense dans X, il en est de
méme de 4 N X, et vy~ ' (AN X,,,) est dense dans vy~ ' (Xps,) lui-méme

~

dense dans A; ; donc /I est dense dans X.
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La restriction de fvy applique A dans Yieq ©t SE reléve donc en F:
A - v, 1 (Y- Si K est un compact de X, alors (fvx) (AnK) = L

=(fvy) (K) qui est compact; F (AnK) est donc relativement compact dans ¥
puisque v, est propre. Par suite, I'image par F de tout compact est relative-
ment compacte, ce qui veut précisément dire que F est bornée.

L’ensemble ); — 2 est contenu dans un sous-ensemble analytique
propre de Xcar X — A est dans £~ (Y~ Y,e). Comme X est normal, F se
prolonge en un morphisme fN X - Y. 1l est évident que f est I'unique

morphisme satisfaisant vy f = fvy. B
Sans Phypothése que 4 est dense dans X, il n’y a en général ni existence
ni unicité. En effet, soient d’abord X un ensemble normal, S = {(x, y) € C?|

xy = 0} et f Papplication de X sur le point double de S. Alors S est
réunion disjointe de deux droites, I'image inverse par vg du point double
est formée de deux points, et f'a plusieurs relévements.

Ensuite, ’exemple ci-dessous montre qu’il peut n’exister aucune « nor-
malisée ». Soient T un tore de dimension complexe un, ¢ une involution
sans point fixe de T et X le tore T)o. Sur le fibré trivial L = T X C, consi-
dérons la relation d’équivalence

14

sia=a et z = z'
z

(a,z) ~(a’',2') {

ou sia=0(a) e z

L’espace quotient ¥ est muni naturellement d’une structure de fibré ana-
Iytique ©: ¥ — X; si U est un ouvert trivialisant de X" pour ce fibre, alors
11 (U) = U x S avec S comme dans I’exemple précédent.

L’ensemble analytique X est lisse, donc normal; l’ensemble Y,

= Y — Y,, est de codimension un dans Y (en particulier ¥ n’est pas

normal) et Y se fibre sur X avec pour fibre la réunion disjointe de deux

. . _ f— 1 i r \
droites. Soit E = vy~ ' (Yg,). Alors Y — E est homéomorphe a Y,
donc est connexe (car Y, est 'image par L — Y del’ensemble L — T' x {0}
qui est connexe); comme il est dense dans Y, celui-ci est aussi connexe. Par
suite E est connexe, car c’est un rétracte de Y, et la restriction de vy 2 E
est le revétement connexe a deux feuilles de Y.
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Sif: X — Y est la section nulle du fibré =, (de sorte que le 4 de la pro-
position 8 est vide), il est alors évident que f ne se reléve pas, car cela
impliquerait que le revétement £ — Y . = f(X) soit trivial.

Y

Vx

III. SINGULARITES NORMALES
AVEC DISCRIMINANTS A CROISEMENTS NORMAUX

III.1. LES SURFACES A4,, ET LEURS NORMALISATIONS

Soient n et g des entiers, avec n positif et g << n. Nous noterons A, ,.1a
surface {(x, y,z) € C*| 2" = x)""9}.

Si n = 1, les surfaces ainsi définies sont toutes lisses: I’isomorphisme
(x, y,2) = (x, ¥, z—xy' "% de C? applique 4, sur 'hyperplan d’équation
z = 0. De méme, si ¢ = n, 'isomorphisme (x, y, z) - (x—2", y, z) applique
A,, sur T’hyperplan d’équation x = 0. Nous supposerons désormais
n > 2 et g < n sauf mention expresse du contraire.

Sig = n — 1, les dérivées partielles du polynéme z" — x)" "% = z" — xy
ne s’annulent simultanément qu’a I’origine, et 4, ,_, est lisse en dehors de
ce point (donc normale en vertu d’un théoréme d’Oka rappelé en II.2).

Si g <n — 2, la surface 4, , est lisse en dehors de la droite d’équations &

y = z = 0; nous vérifions ci-dessous que ces points sont .effectivement
tous singuliers; la proposition 7 montre donc que 4, , n’est pas normale.

Soit G, , le groupe des isomorphismes de C? de la forme (s, ¢) > ({%, (1)
ou { est une racine n-iéme de 'unité; c’est un groupe cyclique d’ordre n.
Nous noterons X, , 'ensemble des orbites, muni de sa structure canonique
d’ensemble analytique normal.

Si g = 0, Pensemble X, o est lisse: I'application (s, z) — (s, t") passe
au quotient et définit un isomorphisme de X, , sur C x (C/ (Z/nZ)) ~ C>.
Les espaces X, , et X, .- sont évidemment identiques si ¢’ = ¢ (modulo n);
il suffit donc d’étudier les X, , pour lesquels 1 < g < n (voir de plus la
proposition 13).
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Considérons le morphisme ¢, ,: c?-C? défini  par Pn.q (5, 7)
= (s", t", st""9); son image est dans 4, , et il définit par passage au quotient

un morphisme ¢, 1 X, , = 4,4 NoUus écrirons aussi ¢ et ¢ au lieu de

hn.q €L Gn,qr

PROPOSITION 9. Le morphisme ¢ induit un homéomorphisme de I'image
de {(s, 1) e C? ] t # 0} dans X, , sur {(x,,2) €A, |y #0} Sinetgq
sont premiers entre eux, ¢ lui-méme est un homéomorphisme de X, ,

sur A, ;.

Preuve. Montrons d’abord que ¢ est surjectif et que I'image inverse

par ¢ de tout point autre que Iorigine est formée de n points.
Soit P = (x,y,z) € 4,, avec y # 0. Choisissons une racine n-iéme

de y et posons s = z¢~""4. Alors
¢(s,0) = ("y"",y,2) = (x,),2).

Soit (s, ¢") € C* avec ¢ (s',¢") = ¢ (s, 7). Il existe des racines n-iémes {

et 1 de I'unité avec s’ = (s, t" = ntet {n""% = 1. Par suite ¢~ (P) a

n points.
Soit QO = (x,0,0) € 4, , avec x # 0. Choisissons une racine n-ieéme s

de x. Alors ¢~ (Q) = {({(5,0) e C* | { e Cet (" = 1} an points.

Le groupe G, , agit librement sur {(s,2) e C? l t # 0}, et méme sur
C* — {0} lorsque n et g sont premiers entre eux. 11 en résulte que la restric-
tion de ¢ & I'image de {(s, t) € C* | t # 0} dans X, , est injective dans tous
les cas, et que ¢ lui-méme est une bijection si (1, g) = 1.

Montrons par exemple que ¢ est un homéomorphisme si (n, ¢) = 1.
Pour tout nombre réel positif r, soient K, I'image dans X, , de

{(5,) e C* || s| <r et |21] <r}
¢t L, lintersection avec 4, , de
(5, 9,2)eC || x| <, |y] <, |z| <r'trma)

La restriction de ¢ a K, est une bijection continue du compact K, sur le
compact L,; c’est donc un homéomorphisme. Par suite, ¢ est un homéo-
morphisme. &
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COROLLAIRE. Si (n,g) = 1, la surface A,,, est topologiquement singu-
liere a l’origine.

Preuve. Pour tout r > 0, le complémentaire de ’origine dans L, est
homéomorphe au complémentaire du point central dans K,. 1l se rétracte
donc par déformation sur I’espace lenticulaire que définit I’action de G,,
sur une petite sphére S> centrée & I'origine de C2. (L’intérieur de L, est
donc un bon voisinage de 1’origine dans 4 A, , au sens de la section II.1.)
En particulier, le groupe fondamental du complémentaire de I’origine dans
L, n’est pas trivial. m

Remarquons que c’est aussi un corollaire immédiat de la proposition 9
que (A, ,)., est « connexe  origine»: ( L,),r x est une base de voisinages
de l’origine dans 4, , et L, N (4, ,@reg €St connexe pour tout e R¥. D’autre |
part, il est facile de vérifier que le polyndme z" — x)" ¢ est irréductible
dans ,0 [z], donc aussi dans ;0 (voir [8], lemme II.B.5). On vérifie ainsi
un cas particulier d’une affirmation énoncée a la section II.1.

ProPOSITION 10. Supposons ¢ <<n — 2. Soient c € C* et Q = (c, 0, 0)
€ 4,4 Alors le voisinage {(x,»,2) €4, ||x —c|<]|c]|} de Q dans §
Ay, est isomorphe au produit direct du disque D = {£eC || &| < 1} et
de la courbe plane y = {(y,2) e C*| z* = "7},

Preuve. Soit p: D — C la fonction holomorphe définie par p (&)
= 1+ & pour tout £ e D et p(0) = 1. Soit d une racine (n—g)-iéme de
1/c. Considérons I'application «: D x y — C3 définie par o (&, y, 2)

= (c(1+&), dy, p (&) z). Pour tout (¢, y,z) € D X 7y, on a

P z) —c(Q+H @)™ =1+ ("—y") = 0.
Par suite o définit un morphisme
Dxy-{(x,y,2)€d,,|lx—c|<]|c|}.
qui applique (0, 0, 0) sur Q et d’inverse donné par
(x,y,2)=(c"'x—=1,d7y, (p(cx - D)™'z). m

COROLLAIRE. Supposons ¢ <n — 2. Si (n, q) # 1, la surface A, , est |
topologiquement singuliére en tout point de I’axe d’équations y = z = 0.
Si(n,g) = 1, c’est une Varlete topologique au voisinage de Q qui n’est pas
normale en Q.

Preuve. Si (n,q) # 1, la courbe y a plusieurs branches & I’origine;
les intersections de petites sphéres centrées a I’origine dans C2 avec
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y — {0} ne sont donc pas connexes et A, , est bien topologiquement singu-
liere en Q. Si (n, ¢) = 1, la surface est une variété topologique au voisinage
de O en vertu du corollaire a la proposition 3. Reste a montrer que D %Xy
n’est pas normal. Cela résulte de la proposition 7, ou de I'argument direct
qui suit. .

Soient a, b € Z avec an + b(n—q) = 1, et Y: D x y— C la fonction

a b :
définie par ¥ (&, y,2) = {y z S% vz #0
0 si y=2z=

holomorphe, mais " lest car ¥ (¢, y, 2)* = y. L’anneau des germes en Q
de fonctions holomorphes n’est donc pas intégralement clos. m

. Alors { n’est pas

PROPOSITION 11. Pour tout couple (n,q) avec n > 2 et ¢ <n — 1, le
morphisme @, ,: X, , = An,q €St la normalisation de 4, , C’est un iso-

morphisme si et seulement sig = n — L.

Preuve. Cela résulte de ce qui précéde et du théoréme de Cartan rappelé
a la section II.1. =

On pourrait montrer que les surfaces 4, ;, Ay g-ns A, ;- 2n --- SONt NON
isomorphes deux a deux; par suite, X, , est la normalisation d’une infinité

d’ensembles analytiques distincts.

II1.2. LES DISCRIMINANTS DES A,, ET LES OUVERTS A"

Soient & nouveau #n et g des entiers avec n > 2 et g < n. Notons
Fe ,0[z] le polyndme z" — xy"~% A un facteur numérique prés, son
discriminant est une puissance de xy"~%. Soient en effet 4, ..., 4, ses racines,
qui sont dans une extension convenable du corps des quotients de ,0; alors

oF
Dis (F) = [15- () = [Ty~ = ([Indy) A1)

= nt (xyn—q)n ( - 1)nF (x’ v, 0)—1 — ( — 1)n-—1 n" (xyn—%n—l

(tous les produits étant sur j de 1 & n). Comme a la section II.2, désignons
par n: 4, , - C? la restriction & 4, , de la projection canonique (x, ¥, 2)
> (x, ). Nous noterons C** I’espace C? privé du lieu discriminant
y = {(x,y) e C*| xy = 0} et 4, 'image inverse par = de C**. La pro-
position 7 ou un examen direct montre que 7 se restreint en un revétement

holomorphe a » feuilles
REE L ARE o CF

L’Enseignement mathém., t. XXV, fasc. 3-4. 15
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Nous notons ci-dessous Fond (Y) le groupe fondamental d’un espace §
topologique Y; nous n’aurons i considérer que des cas ol ce groupe est |
abeélien, ce qui nous autorise a ne pas marquer de point base sur Y.

Le groupe fondamental de C** = C* x C* est le groupe abélien libre
sur deux générateurs représentés par les lacets

[0,1] —» C* . [0,1] - C*
tmeon (e

avec e(¢) = exp (i2nt) pour tout ¢ € [0, 1]. Nous identifierons désormais
Fond (C*¥) et ces deux générateurs 3 Z2 et sa base canonique.

ProposITION 12. Le groupe fondamental de A4* . est abélien libre sur §
deux générateurs. Son image dans Z? = Fond (C**) définie par le revéte-
ment 7** est engendrée par (n, 0) et (g, 1).

Preuve. L’application ¢ de {u, v) € C? | uv # 0} dans 4.} . définie par
¢ (u,v) = ("% v, uv) est un isomorphisme d’inverse (x, y, z) - /y, ).
Donc Fond (4,,*) est bien isomorphe & Z2, et son image par n** dans
Fond (C},*) est aussi I'image de Z2 = Fond (C.*) dans Z2 = Fond (C}*) |
induite par '

{W@,0)eC?|uv # 0} > {(x,y) e C2 [xy # 0}
{ (u, v) = (W™, v) L
(ot
(€, 1, (&, m, /),

sont des isomorphismes inverses ’'un de Iautre.

Remarquons que les applications g:
k% &k
. { Anaq e Ansq_n
(X, ¥, 2) = (x, y, yz)
Continuons a noter X, 4, [respectivement X,,,-n] Pespace normalisé de
A,,q [resp. 4, ,_,], mais « oublions » provisoirement sa description comme B
n,q p n’q hl> - |
quotient de C? par G,,4; comme illustration de la section I1.3, nous allons
montrer que X,,,q et X,,,q_,, sont isomorphes. |
Soit ¢: X, ,_, = A, ._1a normalisation , on peut considérer g comme
n,g—n n,g—n )

une application de ¢~ * (4,,%,) dans 4%, Elle est évidemment bornée,

et se prolongeeng: X, ,_, — A,,q- La proposition 8 affirme que g se reléve
en G: X, ,_,— X, ,. De méme % (ou son prolongement évident An g
~ A, ,-,) se reléve en H: Xog = X, q—n. Comme G et H sont inverses
'un de Iautre une fois restreints aux ouverts non vides U = ¢~ (ArE,
et G(U),ona G = H™ L, |

La proposition suivante montre qu’il y a d’autres isomorphismes entre
les X, ,.
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PROPOSITION 13. Pour tout entier positif d, les espaces Xy, 44 €t Xy 4
sont isomorphes.
| Adn dg Art;c
&)= n,0)
isomorphisme d’inverse 4 décrit par & (x, y, z) = (x%, y, z). Le méme argu-
ment que ci-dessus montre que g, considérée comme application de
banag” - (Adnag) dans ALF, se reléve et se prolonge en G: Xy, 40 = &g
et que & définit de méme H: X, , - Xy, 4 avec G = H™ L

Premiére preuve. L’application g : { est un

Seconde preuve. Soit (p C? » C? défini par ¢ (s 1) = (s, t%. Pour
tout ke{0,1,..,dn — 1} considérons e (k/dn) dans Gy, ., et e (k/n)
dans G, ,. Alors

¢ (e (kjdn) (s, ) = (e (kjdn)"s, (e (k/dn) £)%)
— (e (Kfnyis, e (kjn) ) = e(kfn) ¢ (s, 1)

et @ définit un morphisme ¢: X, 4, > X, ,. 11 est évident que ¢ et ¢ sont
surjectifs.
Montrons que ¢ est injectif. Soient (u, v) et (s, ¢) des points de C? dont les

~

images par ¢ sont congrues modulo G, .. Il existe donc k € {0, 1, ..., n — 1}
tel que (u,v%) = (e (k/n)®s, e(k/n)t%). Par suite, il existe aussi je
{0,1,...,d — 1} avecv = e (j/d) e (k/dn) t. La transformation e ((jntk)/dn)
de G;,.4, applique alors (s, 7) sur

(e((jn + k)/dn)dqs,\g ((jn +k)/dn) t)
= (e(jq) e(kq/n) s, e(jld) e (k[dn)t) = (u,v),

de sorte que (s, ¢) et (4, v) sont congrus modulo Gy, 4,.

Par suite @ est bijectif. On peut montrer comme dans la preuve de la
proposition 9 que ¢ est un homéomorphisme. Comme ¢~ ! est un morphisme
sauf a priori au point singulier et comme X, , est normal, @~ 1 est un
morphisme en tout point et ¢ est un isomorphisme. & '

Nous laissons au lecteur le soin de vérifier que ’automorphisme (u, v)
> (v, u) de C?* définit, lorsque gq’ = 1 (modulo ), un isomorphisme de
X4q sur X, . On peut montrer qu’il n’existe pas d’autres isomorphismes
que ceux écrits jusqu’ici: si X, , et X, , sont isomorphes avec (n, q)
=(m'yq) = 1,alorsn = n' et q = q’ ou qq' = 1 (modulo n); voir [21],
théoréme 2.
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Si ¢ = n — 1, nous avons vu que ¢ est un isomorphisme de X, ,_,
sur A, ,—; en d’autres termes que la dimension de plongement de la singu-
larité normale X, ,_, est 3. On sait calculer en général la dimension de
plongement de X, ,: si (n, g) = 1 et avec les notations de la section IV.2, |

elle vaut 3 + ) (b,—2). En particulier, la réciproque & I’assertion
k=1

ci-dessus est aussi vraie: si (n,g) = 1 et si X, , se plonge dans C3, alors
q = n — 1. Voir [22], fin du § 3.

I11.3. CLASSIFICATION

Soit I' un germe de surface plongé dans C3. Reprenons les nota-
tions de la section II.2; supposons que le lieu discriminant exhibe
une singularité consistant en un point double avec croisement normal — en-
d’autres termes, supposons qu’on puisse choisir les coordonnées de telle
sorte que yp = {(x,y)e D, |xy = 0}. Nous noterons D;* Iespace
D, — ypet I't* son image inverse par 7; la projection se restreint en un
revétement 2 » feuilles 7**: I'h* — D, *. On identifie comme 2 la section
précédente le groupe fondamental de DS * & Z>2.

PROPOSITION 14. 11 existe un polycylindre E, dans C2, un morphisme
p**:I'k* 5 EF™ et des entiers n, ¢ avec 0 <g <n et (n,g) =1 tels
que p** induise une injection de Fond (I';*) sur le sous-groupe de
Fond (E*) = Z? engendré par (n, 0) et (g, 1). |

Preuve. Soit G 1'image de Fond (I'},*) dans Z?* définie par n**. Clest
un sous-groupe d’indice fini de Z? car n** est un revétement fini. Par suite
G contient des éléments de la forme (k, 0); soit

a =inf{|k| | (k,00eG et k#0}.

On peut choisir un vecteur (b, ¢) formant avec (g, 0) une base de G, tel

que 0 <b<aetc>0. |
Soit d le plus grand commun diviseur de a et b (avec d =a si b est nul).

Soient E, = {(u,v) eC*| @’ v)eD,} et Ef* = {(w,v)€E,|uv #0}.
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L’application x**: (u,v) = (%, v°) de E; * sur D}* est un revétement
holomorphe connexe & dc feuilles, et induit une injection de Fond (E5™)
sur le sous-groupe de Z2 = Fond (D5 *) engendré par (d,0) et (0, ¢).
Ce groupe contenant G, il existe un morphisme p** rendant le dia-
gramme

ES*

* 3k * %k
I'p D, ™

commutatif. Au niveau des groupes fondamentaux, p** induit un iso-
morphisme de Fond (I'j *) sur le sous-groupe de Z* = Fond (E; *) engendré
par (a/d, 0/c) et (b/d, c/[c). H

PrOPOSITION 15. Avec les notations de la proposition 14, le germe I’
normalisé de I' est isomorphe au germe de X, , au point singulier.

Preuve. Soient p**: 'y * —» E; * comme dans la preuve précédente et

n**: An ¥ — C** comme dans la section précédente. Soient V' = {(x,, 2)
eC?|(x,y) € E, } et my * la restriction de n** & A, " N V. Les revétements
p** et i * définissent le méme sous-groupe de Fond (E; *). Il existe donc
des morphismes g et 4, inverses I'un de ’autre, rendant le diagramme

g
AXEn P e=——7F—TI3*
| AN /
Y /

commutatif. Le morphisme g est borné car n 'est et p** est propre; de
méme, A~ est borné. Le raisonnement usuel (voir par exemple celui qui
précéde la proposition 13) montre que g et 4 permettent de définir un iso-

morphisme du normalisé de 4, , NV avec I'j, c’est-a-dire du germe de

X, 4 au point singulier avec I'. ®
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‘IV. RESOLUTIONS DES QUOTIENTS DE C?
PAR UN GROUPE CYCLIQUE FINI

IV.1. DEFINITIONS ET PREMIERS EXEMPLES

Si X est un ensemble analytique, une résolution ') de X est la donnée
d’une variété complexe lisse X et d’une application holomorphe propre

surjective p: X — X ayant la propriété suivante: si 4 = p~1 (X — X

alors X — A est dense dans X et la restriction de p est un isomorphisme

de X — A sur X, (Le terme n’a donc pas ici le méme sens qu’a la section |
L.3, ou il s’agissait d’une « situation relative » ol un ensemble analytique
(= courbe) étant plongé dans une variété (= plan).) Lorsque X — Xieg

est réduit & un point x,, on appelle fibre exceptionnelle de la résolution le

sous-ensemble analytique p~1 (x,) de X.

Exemple 1. Soit X = {(x,»,2)eC?|x?>+ y*+ 22 =0}, qui est
une surface lisse en dehors de I'origine; le changement de variables ¢ = ix
+ y, n = ix — y montre que X est isomorphe a4 4, ;. L’image Q de ses
points réguliers par la projection canonique A: C*> — {0} — P2 est une
courbe projective lisse { [x, v, z] € P2 |‘x2 + y? + z?> = 0 }. On en précise
la nature grice a I’application homogéne

C2—>C3

e (L o)

~

elle factorise en un morphisme ¢: P! — Q qui est bijectif et qui est donc
un isomorphisme. |

Considérons S = {([z], w)eP? x C*|weh ' ([Z)U{0}} et la
restriction n: S — C? de la seconde projection. On montre comme en I1.3]
que S est une variété lisse, qui est incidemment I’espace total du fibré cano-
nique sur P%. Le morphisme m est propre, induit un isomorphisme de
S—7n"1() sur C*~ {0}, et sa «fibre exceptionnelle» est #~* (0)
= P?; C’est par définition I’éclatement de C> a l’origine.

1) On dit parfois « désingularisation » au lieu de « résolution ».
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Posons X = {([z], w)e S | [zZ1€ @ }; P'application A: X — O - définie
par A ([z], w) = [z] est la restriction & Q du fibré canonique de P2. Alors

I’application p: Xo X qui envoie ([z], w) sur w est une résolution de X
avec fibre exceptionnelle E = p~* (0) isomorphe & P*.

Plus généralement, soit X¢ un cone de degré d dans C**' ayant une
singularité isolée & I’origine, de sorte que Q¢ = h (X?—{0}) est lisse dans
P*. Soient S I’espace total du fibré canonique sur P* et n: § — C*** Iécla-

tement de C**! & Porigine. Posons X4 = {(lz}, w) e S| [z21 € @*}. Alors

la restriction p: X4 —» X? de m est une résolution de X* avec fibre excep-
tionnelle isomorphe & Q%

Exemple 2. Soit X = {(x,,2z,t)eC*|x* + y2 +z> + > =0}, qui
gécrit en d’autres coordonnées { (vq,v,, Wy, wy) € C*| v wy = v,wy }
et qui est un ensemble de dimension 3 lisse en dehors de I’origine. La sous-
variété correspondante Q de P? est une surface lisse. L’application

o { CZ X CZ — C4
Q:
((up u,), (us, u4)) > (UgUs, Uplly, Ugliy, Uslls)

factorise en un morphisme bijectif P! x P! - Q, donc en un isomor-
phisme. (La vérification de la bijectivité est un exercice facile. Le fait que
les morphismes bijectifs sont des isomorphismes, qui est €lémentaire en
dimension 1, est pour les dimensions supérieures un théoréme non banal:
voir par exemple [2], page 179.)

Le procédé décrit a la fin de ’exemple 1 consiste a poser

)}z{([z],w)eP3xC4|[z]eQ et weh'l([z])m{O}}

. )N( - X
. ([z], w) = w~
(est une résolution avec fibre exceptionnelle de dimension 2 = dim (X)

~ 1 isomorphe & P! x P1,
On peut aussi considérer

et

Y = {([z],v,w)eP' x C* x C* | v et w dans h™'([z])uU {0}}

qui est I’espace total de la somme de Whitney de deux fibrés canoniques

e e e I B e e e B e e el A
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f’——) X
([z],v, w) = (v, w)

fibre exceptionnelle de dimension 1.
Cet exemple montre en particulier que la fibre exceptionnelle d’une

sur P1. Alors ¢ : { est aussi une résolution de X avec

résolution p: X — X avec X & point singulier unique x, ne dépend pas
seulement du germe de X en x,, mais aussi fortement de p. Toutefois,
lorsqu’on se restreint & des espaces X de dimension deux, on peut lever
cette ambiguité: il existe en effet dans ce cas une unique « résolution mini-
male » pour tout germe de surface avec singularité isolée, et la fibre excep-
tionnelle d’une telle résolution en un point singulier ne dépend que du
germe de la singularité; voir [13], chapitre V.

Rappelons qu’un diviseur D dans une variété lisse M (ci-dessous tou- |
jours connexe) est une famille (Dg, ng)gep OU les Dy sont des sous-ensembles |
analytiques fermés de codimension un dans M, ou les ng sont des entiers
rationnels, et ol la famille { e B | Dy K # ¢} est finie pour tout

compact K de M. On écrit aussi D = ) ngDg, €t nous noterons l D, ,
peB

le support de D, c’est-a-dire le sous-espace topologique de M qui est réunion §

des ensembles Dy pour lesquels 7, # 0.

Soit f': M — C une fonction méromorphe non nulle. Soient Z + [resp.
P,] 'ensemble des zéros [resp. des pdles] de £ ; on sait que ce sont des sous-
ensembles de codimension 1 dans M (ou I’ensemble vide); voir [8], VIIL.B.4.
Soit (Z; ;);r 'ensemble des composantes connexes des points réguliers
de Z,. Pour chaque i € I, soient D, ’adhérence de Z ¢.idans M et n; ’ordre
du zéro de f'en un point de Z, ; (qui est indépendant du choix de ce point);
on sait que {iel|| D;| nK s ¢} est fini pour tout compact K de M.
On définit de méme (P, ;);.; puis, pour chaque j € J, I’ensemble irréduc- J§
tible D; et ’ordre n; du péle de f en un point de Py ;. On appelle diviseur
de la fonction f et on note D le diviseur Y n,D; — Y'n;D;. ]

Les diviseurs de M forment pour I’addition naturelle un groupe abélien
Div (M), et ceux & supports compacts un sous-groupe Div, (M).

Si M est de dimension deux, on définit une forme d’intersection

{Div(M) x Div, (M) > Z
(D,E)—~<D|E)

dont I’existence repose sur la dualité de Poincaré et dont nous utiliserons
les propriétés suivantes:

() <|D est bilinéaire;
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(jj) la restriction de ¢ | S 4 Div, (M) % Div, (M) est symétrique;
(jij) si D, et D, sont des courbes irréductibles lisses a intersections
transverses, { D | D, ) est le cardinal de | D, || D,

(jv) sif:M - C est une fonction méromorphe, { Dy |E > = 0 pour
tout E € Div, (M);

(v) si D est irréductible & support compact, <D | D > est ’évaluation
de la classe de Chern du diviseur D sur la classe fondamentale [D].

(vj) Soient M’ une variété lisse, U [respectivement U '] un ouvert de
M [resp. de M '], et ¢: U — U’ un isomorphisme. Si D € Div (M)
et E € Div, (M) ont leurs supports dans U, alors { ¢ (D) | ¢ (E)>
= (D|E).

Voir par exemple le § 9 ‘de [11].

Soit p: X —» X une résolution d’un ensemble X de dimension deux avec
une unique singularité en x,; supposons que la fibre exceptionnelle soit
connexe et que ses composantes irréductibles soient des courbes lisses sans
point triple et & intersections transverses. (Les exemples ci-dessous montrent
intérét de cette situation aussi bien que les résultats généraux; voir pour
ceux-ci [13], théoréme 5.12.) On associe & p sa matrice d’intersection (e; ;):
si Eq, ..., E, sont les composantes irréductibles de la fibre exceptionnelle

E=p~1(x,) = X (qui sont en nombre fini car p est propre), alors e; ;
= { E; [ E; . Cette matrice est bien définie a conjuguaison prés par une
matrice de permutation.

Dans I’exemple 1 ci-dessus, cette matrice est réduite au nombre —2;
donnons-en deux raisons.

La fibre exceptionnelle E ~ P! est irréductible; c’est la section nulle

du fibré en droites A: i’ — Q. Or lisomorphisme ¢: P! - Q est défini

. : ~ 2 3 . r s . .
par Papplication ¢: C; = C;,,, et celle-ci s’écrit aussi (avec u = is, v

= —it, ¢ = ixtyetn = ix—y):

2 3
Cuv —> Cénz
(u,v) — (v, u?, uv)

Par suite, I'image inverse par ¢ du fibré A sur Q est le fibré noté 4._,, a
Ja section 1.3; il résulte de la propriété (v) ci-dessus que { E | Ey = —2.

Soient d’autre part S _,) comme en 1.3 et f: S;_,, = C le composé de
T~2): S(~2 — C*> et de la premiére projection x;C3* — C. Soit 4 la
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transformée stricte de 1’axe d’équation x = y = 0 dans C3. Alors
D; = 24+ E, d’ou par (jv) ci-dessus

<DflE> = 2(A|E) +<E|E>
et par (jjj) CE|E) =

Exemple 3. Soit S_;, comme 2 la section 1.3, avec deux cartes — disons
deux copies R, et R; de C? — recollées selon I’isomorphisme que nous
écrirons ici

{(,0)eRy|u #0} > {(u,v)eR, |v # 0}
{ (u,v) = (u*v, 1/u)

Considérons d’une part les fonctions &, 74, {o: Ry = C définies par

60 (u,v) = u*p Mo (u,’l')) = ¥ CO (u,'U) = uv

et d’autre part les fonctions &, #,, {;: R, — C définies par

G0 =u ) = wt f(,0) = whl

On vérifie sans peine que ces données définissent trois fonctions globales |§
& 1, {18y — C satisfaisant I’égalité (¥ = £7*~1, donc aussi une appli-
cation p: Sy — 4 ;. Le lecteur s’assurera a tltre d’exercice que p est
une résolution de 4, {, que la matrice d’intersection se réduit au nombre

—k, et que p se reléve en /; : S(—x = X;,1. L’application ; résout donc la
singularité définie par le groupe cyclique

e(jlk) 0 5
{( 0 e(,-,k)>€A“‘(C)

Si k = 2, on retrouve ’exemple 1. |
Citons enfin sans démonstration le théoréme suivant: pour toute singu- |
larité isolée de dimension deux et pour toute désingularisation (minimale [§
ou non), la matrice d’intersection associée est négative définie. Les exemples
ci-dessus offrent une premiére illustration de ce résultat. Voir [16], § 1.

j=0,...,k—1}.

IV.2. TROIS SUITES NUMERIQUES DEFINIES PAR 7 ET ¢

Le contenu des paragraphes 2 et 3 se trouve dans [9].

Soient n et g des entiers avec 0 < g < n.

Posons A, = netd; = g. Définissons ensuite les entiers 1,, ..., by, b, ...
par P'algorithme euclidien suivant:
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).2 = blﬂ"l - 2,0 avece b1/>/ 2 et 0 < 2,
Ay = byd, — Ay avec by >2 et 0<4;< A,

Soit s le plus grand entier pour lequel A, soit non nul, de sorte que

A‘S = bs—l A’s—l - ls_z avece bs_1 > 0 et O < }«s < As—'l
0 = bs /18 - A’s—l N
On vérifie sans peine que A, est le plus grand commun diviseur de » et g,

ce qui s’écrit A, = (n, g). On définit A, = 0. On peut remarquer que les
équations ci-dessus s’écrivent aussi

A A
E = bl - ) _q_ = bz -2 ’ ’
q q AZ 12
s A, 1
NP Sy .
)’s—l s ls-—l i bs
D’ou
n 1
— b1 — -
q b, —
1
b

ce que certains auteurs notent plus économiquement

© = b =15, = = 1B,

On définit ensuite les suites (u)r=o,...,s+1 € (Vk=o, ..., s+ PAr
Ko =0 Vo = ]
uul = 1 Vl_ = 1
My = Dbypuy — to v, =Dbivi =

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Hs = bs-—l Us—1 — Hs-2 - Vs = bs—lvs—l — Vs—2

Hsy1 = bs.us — Us—1 Vs41 = bsvs - Vs-1
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Lemme. Pour tout k€ {0, 1, ..., s} on a:

@ A+@m—qum =ny
(®) Aethesr — Ms1 i = n

©  Mer1Vi — MpVesr = 1.

De plus
n
0 =pp <py <. <pigyy =
(n,9)
&L
n—gq
L=<y <o <<vgyy = — .
(n,q)

Preuve. Les relations (a), (b) et (c) sont banales si k = O et si k = 1. |
Pour k > 2, elles résultent des calculs élémentaires suivants:

Merr + (M= sy = bl — by + (0 —q) (b — 1)
= bk()”k"'(n—'Q):uk) — (A—1 +(n—q) y-1) = bynv, — nv,_4

== nvk+1 (k=]., ceny S);

y His2 — Agin M1 = Aty (bk+1ﬂk+1 — 1) — (bk+i/1k+1 —A) Hy 41
= b1 — hrrtn (k=1,...,s—1);

Pr+2 Virr — Mee1 Vit = Brs1lier 1 — M) Ves1 — Moews (br+1Vis1 =)

= 1 Ve — vy (k=1,..,5-1).

En particulier, comme A, ; = 0,0na 0 + (n—q) .4, = nveyq et Aggy

n n N n—gq
—_ e vs — e
A (n,q) T ()

pour kK =1,..,5 0n a

_— b P J—
=n, Ao gy ; =

Perr — M = (=D — ey > 1 — ey > ... =y —fo >0
et
Vk+1 _vk>...>vl —V0>O.

ce qui achéve la preuve. N
Nous reviendrons a .plusieurs reprises sur les exemples décrits dans le
tableau suivant:

. Enfin, comme 5, >2 |




I 10 8 '6 4
q 8 6 4 2
s 4 3 2 1
(M)o<k<s+1 (10,8,6,4,2,0) (8,6,4,2,0) (6,4,2,0) 4,2,0)
(UR)o<k=s+1 | ( 0,1,2,3,4,5) 0,1,2,3,4) (0,1,2,3) 0,1,2)
(VK)o <k =s+1 ( 1,1,1,1,1,D) 1,1,1,1,1) 1,1,1,1) 1,1,

IV.3. LES RESOLUTIONS p: M, , = 4,, 00 p: M, , = X, ,

Soient & nouveau n et ¢ comme a la section 2, dont on reprend toutes
les notations.

Pour chaque ke{0,1,..,s}, désignons par R, une copie de C?,
par (i, v,) ses coordonnées canoniques, et par R; [resp. R;] I'ouvert de
ses points de premiére [resp. seconde] coordonnée non nulle. Pour
ke{l,.., s}, soit

{ Ri-y = R;
Dr-1 - , b —1y 3
-t (uk—1a”k—1)‘—>((uk—1) kvk-l s (Ug—1) 1)

c’est un isomorphisme dont linverse applique (u,v,) sur (1/v,, vkb"uk).
Notons R, ; la variété obtenue en recollant R, et R, selon ¢, déjd consi-
dérée a exemple 3 de la section 1. Soient ensuite R, ; , la variété obte ue
en recollant R, ; et R, selon @y, ..., et Ry ;o = M, ,la variété obtenue
en recollant Ry ;. -1 €t R, selon ¢ _,. Nous identifierons chaque R,
a son image dans M, ,. La variété M, , est une surface lisse dans laquelle
chaque R, est un ouvert dense (de fait un ouvert de Zariski).
Pour chaque .k € { 1, ..., 5 }, considérons la courbe

T = { (-1, 0-1) € Ry | Uy = 0} U {(up,0) € Ry |y = 0}

qui est lisse et isomorphe & P'. Notons encore ¢;, et o s; les courbes lisses
non compactes définies respectivement par { (u,,v,) € R, | ug = 0}
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et {(u,v,)eR, [ vs = 0}. Ces courbes n’ont pas d’intersection triple
et n’ont deux & deux que des intersections transverses. On vérifie faci-

lement que |
1 si k=1
<0inl0'k> = { . ‘

\ 1
Coilond _{o siv [j—k|>2

< I ; 1 si k =s
O lO e ;
Jil Tk 0 sinon

Pour chaque k€ {0, 1, ..., s }, considérons enfin les fonctions

R, - C}
fk:{ ¢

(e, V) > (1) ** () 41

R, - C
T { (ug> Vi) = ()™ (v, )M+
'. R, - C ‘
+ { (1t D) = ()™ ()41

Sik>1cetu,_,; #0, alors
NBE Ak 1 Ak"“l
S ((Pk—1(uk-—1a7’k—1)) = ((uk-1) vk-—l) "

k-1
= (uk—1)b“k—lk+1(vk—1)lk = 1 (Up—1,V—y) .

Par suite les £, définissent une fonction globale ¢&: M, ,— C. Les n, et
les {, définissent de méme #, {: M, ,— C. Notons que (" = &y*~4. 1l
suffit en effet de vérifier cette relation sur I'ouvert dense R, < M, ., et
on a pour tout (i, v) € R,: |

(C,2)" = (§ @, 0)) (1@, )™ = o) — Wv) @™ = 0.

Nous noterons p: M, , - A, , le morphisme défini par p (P) = (¢ (P),
1 (P), { (P)). ’ |

PROPOSITION 16. Le morphisme p: M, , - 4, 4 est surjectif, p 1 (0, 0, 0)
=0, VU..Va, p7{(0,0e4d,,|yeC} =p, et p~1{(x,0,0)
€d, | xeC} =0y . |

Si de plus (n, ¢) = 1, la restriction de p fournit une bijection de M, ,

— U ogsurd,,— {0}
k=1
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Preuve. 11 est immédiat que p (o, U ... U ay) = (0,0, 0).

Soit P = (x,y,z)€A,, avec y # 0. Posons u, = z[y et vy = y;

alors p (g, Vo) = (Upvd, vy, ugve) = P. Soit (u, v) €p~ ' (P) N Ry; alors
1 (U V) = @)™ (@)1 =y #£0. Si k> 1, les entiers y, et w4 sont
strictement positifs, donc u, # 0 et v, # 0, de sorte que (i, U) € R, N Ry,
Si k = 0, les équations ugvd = x, v, = ¥, Uy, = z n’ont qu’une solution
Nous avons ainsi montré que p~ ! (P) ne contient qu’un point, qui n’est
pas dans la réunion des oy, et qui est dans o, si et seulement si P = (0, y, 0).
Soit Q = (x,0,0) e 4,, avec x # 0 (rappelons que c’est un point
singulier de 4, , si ¢ # n — 1). Pour k€{0,1,..,s — 1}, les équations
W)™ @)™ =x £ 0, ()" @)™ ! = ()" ()"t =0 n’ont aucune
solution. Par contre, les équations |

@)™ =% (@)™ @) = @) (@) = 0

ont précisément 1, = (n, q) solutions. Donc y~ ! (Q) contient (#, ¢) points,
donc aucun n’est dans la réunion des oy, et qui sont tous dans o,;. M

PROPOSITION 17. On a {6} |0, > = — b pour ke {1,2,..,5}.

Preuve. Les diviseurs définis par les fonctions &, n et { sont respecti-
vement

D, = noy, +qoy + ... + Lo + .... +(n,q) o0,
’ n

D = 61+ oo + Mo+ oo + U0y + —— 0 gy
n 1 Uy, O u & ) f

n—q
D, O + 0'1+....—|-Vk0'k+----+VSO'S+@0'fi

Si on écrit provisoirement ¢, pour g, et o, 4 pour o, la premiére de ces
formules et les calculs précédant la proposition 16 montrent qu’on a

0 = <D§!Uk> = -1 Oy |0'k> + )'k<o-k|0'k> + 11 Opt1t lo'k>
d’ou
<°'k|0k> = (—1/4) (s1+ A1) = = b

pour tout k € { 1, ..., s }. On pourrait aussi utiliser

0 = <Dn|ak>$<o'kl0-k> = (= 1/m) (s +—1) = — by
ou

0 = <Dc|0k>=><0klo'k> = (—1/vp) (Vi1 +Vmq) = —b. ®m
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On peut remarquer qu’il n’existe aucun prolongement de la forme d’in- |
tersection a Div (M) x Div (M) qui jouisse encore des propriétés () a
(v) du § 1. En effet, on aurait alors par exemple

0 = <D§|0in> = n<o'in|6in> +q=><0'in|0'in> = —g/n
0 =(D,|o,) =11
0 = <D§|Gin> = <O.inlo-in> +<O-1lo-in>:<o-inlam> =—1

ce qui est plusieurs fois absurde.

CoROLLAIRE.. La matrice d’intersection {o; | Ok D1 éjv,k s est définie §
négative. Si ¢ = n — 1, c’est la matrice de Cartan 4,_ ;.

Remarque. Le déterminant de A4,_, est en valeur absolue I’ordre du
groupe d’homologie H, (X, ,—; — {0}, Z); voir [16], page 11.

Preuve. La matrice d’intersection est

- —b, 1 0 0 0 0 |
1 —b, 1 0 0 O
0 1 —b; 1 0 O
0 0 0 0 1 —bs |
Si D, est son k-iéme mineur principal, on a D, = — b,D,_; — D,_,.

Il résulte de critéres standards (voir par exemple [6], § 36, exercice 33)
que la matrice d’intersection est négative définie. Si ¢ =n — 1, on a
s = n — 1 et par induction D; = dét(4,-;) = (—1)'z». m

Nous résumons les informations obtenues jusqu’ici dans le résultat
suivant.

THEOREME A. Le morphisme p se reléve en une désingularisation

; r My = Xy
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Le schéma de Dynkin, qui a un sommet muni de Pentier b, = — { oy | o >
pour chaque composante irréductible oy, de la fibre exceptionnelle, et une
aréte liant les sommets définis par o; et o, si (0| o) # O, est

b, b, by b,
o—o —o—..—© (@ =P")

Si ¢ = n — 1, la matrice { 6;| 0} >y ;s est la matrice de Cartan 4, _;.

Preuve. L’existence de p résulte de la proposition 8; les autres affirma-
tions de ce qui préccde. M

IV.4. RELATION AVEC LES ECLATEMENTS

Soit 7: S —» C? Péclatement de C? 4 I'origine, comme en I.3. Consi-
dérons ici T = C X S et 7: T — C3 l'application id X = qui est 1’écla-
tement de C3 le long de la droite d’équations y = z = 0. On munit T
comme en 1.3 d’un atlas & deux cartes y;: T'; — C3 (j=0,1), avec les
changements de cartes donnés par

C X C* X C = l//o('I‘omTl) '—)lpl (TomTl) - C X C* X C
x,y,2) > (x,1/y, yz)
et par I'isomorphisme inverse. L’application 7 s’écrit dans les cartes
{03 =Y (T)) » C°
To "

(x,9,2) > (x,2,y2)
et

T_{C3=¢1(T1)—’ c’
o (x,,2) > (x,2,2)

La transformée stricte de 4, , = {(x,y,2) € C? |z" = xy""1} apparait
dans une carte comme la surface lisse ‘

{(x,y,Z)Elllo(TO)lyan =X}
et dans ’autre comme '
{(x: ya Z) 611[/1 (Tl) l Zq = xyn-q} ~ Aq,Zq—n &

Au niveau des normalisés, I’éclatement permet donc de « remplacer »
Xuyqopar X, ; avec 0 <A <get A= (2+r)qg— n pour un entier positif
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convenable 7 (nous avons utilisé ici les remarques qui précédent la propo-
sition 13). Avec les notations de la section 2, on a précisément A = Ay
et 2 +r=b,.

En cherchant & itérer I’argument jusqu’a trouver une surface lisse,
on aurait précisément i considérer les suites numériques de la section 2.

V. LICOSAEDRE ET LES SOUS-GROUPES FINIS
NON CYCLIQUES DE SU (2)

V.1. LE CAS DE L’ICOSAEDRE

Soient 4: C* — {0} » P! = S? la projection canonique et : SU (2)
— 80O (3) le revétement universel (3 deux feuillets) du groupe des auto-
morphismes analytiques isométriques de P! (= du groupe des rotations
de la sphére). Soient G le sous-groupe de SO (3) des rotations qui laissent |
invariant un icosaddre régulier inscrit dans S2, et G = 61 (G); nous
noterons encore ¢ la projection canonique de G sur G. Le groupe G a
60 éléments; ses orbites sur S* ont aussi 60 points 3 trois exceptions prés
qui sont

Porbite & = {ay,..,a;,} des sommets de I’icosaédre
Porbite & = { by, ..., b, } des barycentres de ses faces

Porbite € = {c¢;, ..., c30 } des milieux de ses arétes.

Le groupe G agit linéairement dans C?; ses orbites ont toutes 120 points,
a la seule exception de I’origine.

Le quotient X;,, = C%/G est un ensemble analytique, normal par
le théoréme de Cartan; il a un unique point non lisse, que nous noterons-
X, et qui est 'image canonique de ’origine de C2. Nous renvoyons a [12], |
chapitre II, § 13 et/ou a [15], théoréme 4.5 pour le résultat classique suivant
(dont nous ne faisons pas usage ci-dessous): il existe une application poly-

némiale ¢: C* —» C* qui fournit par passage au quotient un isomorphisme
¢ de X, sur la surface de C* a singularité unique

Ay = {(6,7,2)€C* | 2° = x? + y*}.
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Le but de cette section est d’exhiber une désingularisation de X;,.
La premiére étape consiste a remplacer 'unique singularité x, par trois
singularités d’un type connu, et ceci grice a un premier éclatement.

Le groupe SU (2) agit sur I’éclaté de C2 a Porigine: si o € SU (2) et
(2, w)e S « P! x C?, alors o ([z], w) = (6 (0) [z], ow). L’éclatement
n: S — C? est alors équivariant pour SU (2). Avec les coordonnées locales
f9

de la section 1.3, I’action d’un élément ¢ = (
J

)dans SU (2) sur S est
décrite par |

]{(u,v)ewo(So) |f+9u # 0} "{(ua”)E‘//O(So)lj —gu#0}

o
1 (u,?) = (f :;Z , Ju+ guv)
et par
J{(u,v)eth (SO |j+hu #0} = {(@,v) ey, (S)|f —hu #0)
1 | (u,v) > <}{: _:-jg , huv + jv)

Nous noterons p: S — S/G le morphisme quotient. L’éclatement passe
au quotient modulo G et définit un morphisme 74, propre et surjectif,
rendant le diagramme

S - S/G

T UTe

! I
C? X

ico

commutatif. Si E est la fibre exceptionnelle de 7, alors celle de 7 est gt (x,)

= E/G et la restriction S/G—E/G —» X;,, — {x,} de ns est un isomor-

phisme. Par suite, toute résolution de S/G fournit par composition avec

ng une reésolution de X,
Comme tout quotient de P! par un groupe fini, ’ensemble analytique

E|G est homéomorphe & P! lui-méme. On sait d’ailleurs expliciter: consi-

C-----C
dérons par exemple la fonction méromorpheI H® ou H(2)
Z|= = -—
I 172813

= = (2*°+1) + 228 (z'°—2%) — 494210 ¢t f(2) = z(z'°+112°-1); son
prolongé a la droite projective E passe au quotient et définit ’homéo-




- invariante la droite a; il est cyclique d’ordre 10. Choisissons des coordonnées
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morphisme E/G — P (voir [12], § 13 et § 14). Mais nous voulons plut6t
etudier le plongement de E/G dans S/G, c’est-a-dire le morphisme p aul
voisinage de E. Les points de S ou le sous-groupe d’isotropie de G n’est
pas trivial sont précisément ceux de & U B U %, considéré comme sous-
ensemble de E = 7~ ! (0). Par suite S/G est un ensemble analytique lisse, |
sauf aux trois points o = AIG B = B|G et y = %/G. La prochaine
etape consiste 4 analyser la singularité de S/G en a.

Choisissons un point a de o/ et soit a la droite correspondante dans C2.
Le sous-groupe d’isotropie de G en a est cyclique & 5 éléments. Son image
inverse G, par J est le sous-groupe des éléments de G laissant (globalement)

sur C? telles que a soit la droite d’équation y = 0 et que les éléments §

0

_1> ol w est une racine §
w

dixiéme de I'unité. L’action d’un tel élément sur S s’écrit alors dans les
cartes

de G, soient représentés par des matrices (

{ C? = Yo (So) = ¥y (So) { C* = Y (S) = Yy (Sy)

(u,v) = (0™ %u, wv) - (u,v) - (0*u, 0™ 1)

Le choix des coordonnées permet donc de considérer que G, agit linéai-
rement. En comparant avec le chapitre III, on voit de plus que la singularité
en o est du type C?/G, = C*lGio g = X10,3- On montre de méme que les
singularités en f§ et y sont respectivement du type X 4 €t X, 5.

Il n’y a donc plus qu’a recoller les résultats du chapitre IV. Il existe
ainsi un voisinage U, de « dans S/G (ne contenant ni B ni ), un voisinage |

V. du point singulier dans X , g, une variété lisse W,isomorphe a p~1 (V),
des isomorphismes k, et K, rendant commutatif le diagramme

W, —— p=1(V,)

M10,8
pi,a p
K, |
S/G > Uoz - Va “ X10,8

et des données analogues correspondant 3 B et y. Les variétés W, W, et
W, se recollent en une variété lisse M ,,,; les morphismes Pia Pip € Piy

se recollent en une désingularisation p,: M., — S/G. De plus, on a les
propriétés suivantes:



— 249 —

(x) Notons d/G I'image par p de la transformée stricte de a. Alors k,
applique (@3/G) n U, sur [{(0,1)}/Gios]lnV, et (E/G)N T,

sur [{ (s, 0) }/Gyo.5] N V,. L’isomorphisme K, applique p; ! (4/G)

N W, et p; ' (E/G) n W, dans les courbes notées oim €t 0;; ala
section IV.3.

(B) De méme, p; est au-dessus de f du méme type que Mg 4— X 4.
L’isomorphisme k, fait correspondre E/G & {(s,0) }/Gg 4 et K,

fait correspbndre pi ' (E/G) au o, de Mg 4.

(y) De méme, p; est au-dessus de 7 du méme type que My, X, 5.
L’isomorphisme «, fait correspondre E/G & {(s,0)}/G, , et K,

fait correspondre ;),-— Y (E/G) au o de My ,.

Par suite, ngp;: M;., - X, est une résolution de la singularité xo de
X, = C?/G. Sa fibre exceptionnelle contient 8 courbes irréductibles sans
point triple, & intersections transverses, toutes isomorphes 3 P!, et que nous
noterons comme suit:

oo = pi ' (E[G)

0;. correspondant aux o;de My, (j = 1,2,3,4)
o;p correspondant aux o;de My, (j = 1,2)

o,  correspondant a ¢, dans M, ,.

Les calculs de la section IV.3 montrent que 'intersection de deux de ces

courbes est 0 ou 1, et vaut 1 si et seulement si elles se coupent dans le dia-
gramme suivant:
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Les auto-intersections des Oja Tj,ps 0y sont toutes —2 vu la propo-
sition 17 et la propriété de la forme d’intersection rappelée a la section IV.1 §
sous (v/ ). Pour connaitre la matrice d’intersection de la résolution TgpP;:
M;co = X, il reste donc A calculer Iauto-intersection de Co-

PRroPoOSITION 18. Ona{a,|0,> = —2.

Premiéere étape de la preuve : définition de la fonction holomorphe F
sur M;,,. ,
Ecrivons o = h™' (&) v {0} = {a, .., a1, } ol chaque g; est

une droite de C? passant par I’origine. La transformée stricte o/ de o
consiste en 12 « droites » disjointes de S; comme nous I’avons déja fait B

ci-dessus (pour définir « € E/G), on peut identifier o N E & ER

Soit @ un polynéme homogéne de degré 120 sur C2 invariant par G
et s’annulant sur 7. (Un tel polynéme s’obtient en multipliant un poly-
néme de degré 1 nul sur a, par ses transformés par G.) Soit f = ¢ . =,

qui s’annule sur E et sur les transformés strictes a; des a;; plus précisément §

12 .
D, =nE+ ) 104,
=1

J=

ou n est un entier que I’on calcule ci-dessous. La fonction S est invariante
par G, donc définit une fonction holomorphe F sur S/G. La «droite »

a/G est 'image par p de chacune des « droites » a;. La fonction F s’annule

donc sur E/G et sur a/G avec
n

Dp = - (E[G) +12(a/G) .

Enfin, la fonction annoncée F est la composition Fp,.

Deuxieme étape : calcul du diviseur de F. ' /

Considérons a nouveau sur C2 les coordonnées (x, y) telles que a,
soit ’axe d’équation y = 0 et tel que les éléments du groupe d’isotropie

- 0
G,, soient représentés par (co B 1> avec w'® = 1. Alors ¢ (x,y)
w

11

=y ] (=242)'° avec les 1, des nombres complexes distincts
k=1
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(exercice facile: 'un d’entre eux est nul). Puis, avec 7, et m; comme ala
section 1.3, fo = @no:¥o(Se) > C et fy =on:y;(Sy) —> C sont

donnés par
11

fou,v) = ¢ (v,uv) = u'®0?® [T (1=4w)'°
k

=1

11
f1(u,v) = o(uv,v) = 9120 H (u—)uk)lo )
k=1

Comme E; = ¢, (S;nE) = {(u,v) eC*|v =0} (j = 0, 1), les diviseurs
de f et de F sont -
12 A ~
D, =120E+ ) 10g; Dr = E/G + 12(a/G).
j=1 :
Troisiéme étape : calcul du diviseur de Fau voisinage de p; ! ().
Soit H,: X;,g — C lapplication définie par le polyndme s'°¢'2°
sur C2. Rappelons des sections précédentes que 1’on a

C* > (s,5)

}J ’ ¢ > A L ;
M > Ko s A g

0,8 9,¢
N 3 — (s,2,5) f
et que
¢ [{(x,0,00}] = {(5,0)}/Gros ¢ '[{(0,¥,00}] = {(0,0}/Gyo
;_1 [{ (s, 0) }/Gm,s] = Oy ;—1 [{ 0,9 }/G10,8] = Oip

p? [{ (0,0)}/G1o5] =0, V0,U05U0,.
Par suite

/ DHa = [{ (Sa O) }/Gm,s] + 12 [{ (0: t) }/GIO,S]

et le diviseur de H,p = &n'? est D, + 12 D,
Si F, est la restriction de F & U,, il résulte de I’expression de Dy que
F,x,~1 et la restriction de H, & V, ont méme diviseur, donc que D7 au

voisinage de p; ' («) correspond 2 D, + 12 D,. En recopiant dans la preuve
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de la proposition 17 et avec les notations introduites peu avant la propo-
sition 18, on voit que D% est donné dans le voisinage de p; ! (&) par

10 Cing + 8 01 + 60'2’“ + 405, + 204,

+12(01,+205,+303,+40,,+50,)
ou encore par ;
6004 + 500, , +

ou les points représentent un diviseur dont le support est disjoint de | T, |

Qifatriéme étape : calcul de D% au voisinage de p; ' () et de it (y).

On peut choisir U de telle sorte qu’il ne reﬁcontre pas ;/ G. Le diviseur
de la restriction F; de F a Uy coincide alors avec (E/G) n Uy,

Soit Hy: X5 4 — C Papplication définie par le polyndme £12° sur CZ2.
Rappelons que

d:-La {”/L—)

\;\:{A;’”ﬁfaf) |
» X = [, — grd:j

6 /]
\\ s . A (f}Z)r) }

X
“

Par sulte le diviseur de Hy est 20 [{ (0, 7) }/Gg 4] et le diviseur de Hﬁp
= 17 % est 20 D,. On voit donc que D% est donné dans le voisinage de

" (B) par

20(61,54+20,45+30y) = 600, + 400, + 200, ;.

De méme, il est donné au voisinage de p; ! (y) par

30(oy,+200) = 600, + 300, .

Derniére étape : calcul de Iauto-intersection de o .

En résumé:

Df == 600'0 + 5004,1 + 4002,ﬁ + 300'), + ooe
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ol les points représentent un diviseur dont le support est disjoint de | 0o l
De I’équation { Di | oo ) =0, on déduit alors

60< ao|00» + 50 +40 +30 =0

et la proposition. H

Remarques. On aurait pu partir d’'un polynéme ¢’ invariant par G
et nul sur 4. On aurait alors obtenu les diviseurs associés & 712 sur My, g,
En?° sur My 4 et n°° sur M, ,, d’olt un diviseur associé a une fonction F’
de la forme ‘
Dg = 600y + 4804, + 420,45 + 300, + ...

et une équation ‘
60< 00|00 +48 +42 +30 =0

On aurait enfin pu partir d’'un polynéme ¢” nul sur €, d’ou des divi-
seurs associés & 7% sur M, o g, n2° sur My 4 et én>° sur M, , et une équa-
tion

60<{a|0p> + 48 +40 +32 = 0.

CorOLLAIRE. Le schéma de Dynkin associé a la résolution ngp;: M;,,
- X, st
-2
L

oe—o—0—0—0 00— (exP)
-2 =2 =2 =2 =2 =2 =2

et la matrice d’intersection associée est la matrice de Cartan Ej .

V. 2. LE CAS DES AUTRES POLYEDRES REGULIERS ¢

Nous noterons dans cette section G, [respectivement G, G,;, D,]
le sous-groupe de SO (3) des rotations qui laissent invariant un icosaédre
régulier [resp. octaédre régulier, tétraédre régulier, polygone plan régulier
a n > 3 sommets] inscrit dans S? et G,,, [resp. Goers Giges D,] son image




— 254 —

inverse par 6~ ! dans SU (2). La section précédente est ’étude de I’espace
Xico = C?/G,,, qui a un unique point singulier et qu’on a dit étre isomorphe
a la surface

iy = {(x,7,2)e C* | 2° = x> + )},

Soit X, le quotient de C? par G, 11 est isomorphe a la surface
Aoct = {(xays Z)EC3 , Zz = x(xZ _'y3)} .

On peut en construire, comme pour le cas précédent, une désingularisation
M, — X,.. Les calculs du chapitre IV relatifs 2 Xs,6 Xo,4 €t Xy, et
un calcul analogue & celui de la proposition 18 montrent que le diagramme
de Dynkin associé est

-2
L

X

*—0—0—0—0—+o (@ ~ P

-2 =2 =2 =2 =2 =2

et que la matrice d’intersection est la matrice de Cartan E 7.

' Contrairement a G,,,, le groupe G, n’est pas parfait. Son groupe
dérivé est G, et son abélianisé Z,. Le quotient X, de C? par G
= (G,er» G,.;) est isomorphe 2 la surface

tét

Ay = {(x,,2)eC’ l zt = x% + y3} .
(Pour I'isomorphisme, voir [12], chap. II, § 12 et [15], § 4.) On trouve aussi
Ay = {(x",y",2)eC|y? = x"(x'—z')},

ce qui correspond au changement de coordonnées x = x’ — z%2,y = -y’ | |
z = z'[2. On obtient cette fois M, » X,,,, o M, se fabrique en recollant
deux copies de Mg , et une copie de M, ,. Le diagramnie de Dynkin
associé est ‘

-2

o

o—0—0——0—o (@ ~ PY
-2 =2 =2 =2 =2

et la matrice d’intersection est la matrice de Cartan E.
L’analogue du théoréme A de la section IV.3 s’énonce donc comme
suit.
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TuforEME E. Les désingularisations des ensembles analytiques a
singularité unique C2?/G, ou G est I'un des trois groupes polyédraux binaires
Gico> Goers Gy, définissent les schémas de Dynkin Eg, E; et Eg.

Le dernier théoréme résume la situation qu’on obtiendrait en étudiant
le cas des groupes diédraux binaires (voir [1]).

TuEorREME D. Soient n > 3 et X, ’ensemble analytique quotient de
C? par le groupe diédral binaire D, (2 4n éléments). On obtient une désin-
gularisation M, — X,, o M, se fabrique en recollant deux copies de
M, , et une copie de X,, ,. Le schéma de Dynkin associ€ est

et la matrice d’intersection est la matrice de Cartan D,
On trouvera des renseignements complémentaires dans bien d’autres
articles parmi lesquels nous citerons [10] et [20].
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