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MISCONCEPTIONS ABOUT Ky

by Steven L. KLEIMAN

There are three common misconceptions about the sheaf Ky of mero-
morphic functions on a ringed space X: (1) that Ky can be defined as the
sheaf associated to the presheaf of total fraction rings,

(*) U = I-' (U’ OX)tot s

see [EGAIV,, 20.1.3, p. 227] and [1, (3.2), p. 137]; (2) that the stalks
Ky, are equal to the total fraction rings (Ox swn Se€ [EGA1Vy, 20.1.1
and 20.1.3, pp. 226-7]; and (3) that if X'is a scheme and U = Spec (4) is
an affine open subscheme, then I' (U, Ky) 1s equal to 4,,,, or in other words,
the presheaf (*) is a sheaf if U ranges exclusively over affines, see [3, Def.,
p. 140]. These misconceptions will be corrected below with some obser-
vations and examples.

The presheaf (*) may fail to exist! Some restriction maps may simply
not be defined. For instance, there may be a nonzerodivisor # in I (X, Oyx)
whose restriction is a zerodivisor in I' (U, Oy) for some open subset U.
Then the fraction 1/¢ in I' (X, Ox),,: has no restriction in I' (U, Ox)sor

For example, let 4 be a domain with nonzero maximal ideal M. Let P
denote the projective line over 4, and Y the (closed) fiber over M. Set

where Oy (—1) is viewed as an ideal of square zero. We have
I'(X,05) = I'(P,0p) ®T(Y,04(-1) = 4.

Hence any nonzero element ¢ of M is a nonzerodivisor in I’ (X, Oy). How-
ever, for any affine open subset U of X containing a point of Y, the restriction
of ¢t in I' (U, Oy) is zerodivisor. Indeed, Oy (—1)| U is isomorphic to
Oy|U. So I (U, Oy (—1)) contains a nonzero element s, and obviously
ts = 0 holds. Note that if 4 is taken to be a finitely generated algebra over
- field, then X is an algebraic scheme for which the presheaf (*) is unde-

~

fined.
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The right way to define Ky is as the sheaf associated to the following
presheaf of rings of fractions:

(*%) Urs T (U,0)[S(U)],

where S'(U) denotes the set of elements of I" (U, Oy) whose restrictions |
are nonzerodivisors in the stalks Oy, for ail x e X. Note that S (U) is
contained in the set of nonzerodivisors in I' (U, Ox). Hence the presheaf
(**) is separated; that is, the natural map from it to Ky is injective.

The natural map from Oy to Ky is injective because the one to the
presheaf (**) is and the latter is separated (alternatively, and sheaving is
exact). Now, let : X — Y be a flat map, for example, an open embedding.
Then f gives rise naturally to a map, f*: Ky — f* Ky. So Ky will work out §
well in a theory of (Cartier) divisors. .

If X is a scheme and U = Spec (4) is an affine open subscheme, then
S(U) contains (and so consists of) all nonzerodivisors e A. Indeed,
suppose £(a/b) = 0 holds in Oy, for some xe U with a,be 4 and
b (x) # 0. Then fca = 0 holds in A for some ¢ € A4 with ¢ (x) # 0. Since ¢}
is a nonzerodivisor, ca = 0 holds in 4. Hence a/b = 0 holds in Ox ., q.€.d.
Therefore, when X is a scheme, the presheaf (*) will be well-defined (and
equal to the presheaf (**)) if U ranges exclusively over affines, and the
associated sheaf is K.

Fix x € X and set S, = lim {S (U) | Ue x}. We have

KX,x = S;l OX,x = (OX,x)tot .

The inclusion may be proper, even if X is an affine scheme. For example,
let B be a domain with a nonzero and nonmaximal ideal p such that p is
the intersection of all the maximal ideals M containing it. Set '

X = Spec (B® (®y-,(B/M))).

Let x € X represent p. Then Ky . is equal to B, while (Ox ,),, is equal to |
the fraction field of B. |

The presheaf (**) need not be a sheaf. In fact, there is an affine scheme §
X = Spec (4) such that 4,,, is a proper subring of I' (X, Ky). To construct X,
fix an algebraically closed ground field &k, and a smooth closed cubic E in
P;. Let L be a line section of E, and P € E a k-point such that the divisor
(3P—L) has infinite order; for example, take a P whose coordinates are i
transcendental over the field of definition of E. Let C be a cone in A; pro-§
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jecting E, and denote by G the generator over P. Take planes H, and H,
through the vertex with no generator in common and neither one con-
taining G. Take a plane Hj not containing the vertex, parallel to G, but not
parallel to any generator on H,. Denote by U the set of closed points
C off (GUH,) — Hj. Set

X = Spec (Oc S (@stk (Q))) .

Finally, let f be a function on E with a single pole of order 2 at P, and
view f as a global section of the sheaf Ko @ (@k (Q)), which contains Ky.

Then f is in I (X, Kx) because X is covered by the three affine open
subsets ¥; = X — H, and f is easily seen to be in each I' (V;, Ox);o,. How-
ever, f is not in I' (X, Oy),: Indeed, suppose f is equal to r/s with
r,seT (X, Oy). Write s = ¢t + twith te ' (X, O¢) and t € I' (X, ®k (Q)).
Then ¢ is the restriction to C of a polynomial function on Aj. So the zero
locus Z (¢) is a hypersurface section of C. Hence, by the choice of P € E,
there must be a component Z of Z (¢) different from G. By construction,
U must contain a point Q of Z. Therefore ¢ is a zerodivisor in I' (X, Oy),
so s is also, q.e.d. '

Lastly, consider two common cases: (a) X is a locally noetherian scheme,
and (b) X is a reduced scheme whose set of irreducible components is
Jocally finite. In both cases, Assertions (2) and (3) at the beginning are
valid, and Ky is given by the formula,

Ky = j (OX | Ass (X)) ’

where Ass (X) denotes the set of points x € X where the maximal ideal
of Oy, is associated to 0, and j denotes the inclusion map of Ass (X)
into X. These statements are easily verified using the ideas in the proof of
[EGA IV,, 20.2.11, pp. 234-5]. (For a different slant on Case (a), see [4,
Lecture 9, 1°, pp. 61-2].) ’

In Case (b), Ky is quasi-coherent. However, in Case (a) it need not be.
For example, let A = k [s, t] be the polynomial ring over a field &, and set

X = Spec (A®@A/(s,1)).

Though injective, the natural map from A4,, [1/s] into 4 [1/s],,; is not
surjective ; the image omits 1/¢. So Ky is not quasi-coherent.




— 206 —

REFERENCES

[11 ArtmAN, A. and S. KLEIMAN. Introductlon to Grothendieck duality theory Sprmger
lecture notes in math. 146, (1970).

[EGA IV,] GROTHENDIECK, A. Eléments de géométrie algébrique IV (Quatriéme partie),
rédigés avec la collaboration de J. Dieudonné, Publ. Math. I.H.E.S. N° 32, Presses |}
Univ. de France, Vendéme (1967).

[3] HARTSHORNE, R. Algebraic Geometry .Graduate Texts in Math. 52, Springer (1977).

[4] Mumrorp, D. Lectures on Curves on an Algebraic Surface. Annals of Math.
Studies 59, Princeton U. Press (1966).

( Regu le 30 october 1978 )

Steven L. Kleiman

Department of Mathematics
M.ILT., 2-278
Cambridge, Mass. 02139




	MISCONCEPTIONS ABOUT $K_x$
	...


