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Let # be the collection of all closed intervals on T, (1/2) of the form
[%uks nr+1y]- Then it is easy to verify that

p(4) = inf Zl py,
=

where the inf is taken over all sequences { /; } of intervals in # covering 4.

A
Let ¢ > 0. Then there is a sequence { /; } of intervals in .# that cover 4
such that

Yould) <e.
ji=t
For each index j, there exist integers n; and k; such that
Ij = :rl"l]'kj (1/2) ;

hence, in view of (B) in §1, we have
A(H) cjizlproj [T,
Furthermore, combining (A) and (B) of §1, we obtain
p(proj [T, D) = 2u) (j=1,2,..).
Therefore,

B (A) < Y wroi[ Tl = 2 3 w1 < 2.

J=1

and property (IV) is proved.

§3. PROOF OF THEOREM 1

For each integer », let ¢, = 1 + 3n/2 and set

4, = Ko, 0{(x,9): 82 <x<EJ2+3/4 and 12 <y < 1},
" Then set
Ay ={z —(1+i)f2:z€4,} (i=-1),

and define the set
A4 =v{di:n=0,+1, +2,...}.

o Let {z,};2, be a sequence of points in H — A whose derived set is R.
¢ Define the function f; on 4 U {z,}, by
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0 for zed

fO(Z):{l for z =2,(n=1,2,..).

Then let f be a continuous extension of f; to all of H. We now show that f
is the desired function.

Let Q be a residual subset of R. Then, for each integer n, the set Q,
= 0 n [3n/4,3 (n+1)/4] is a residual subset of the closed interval [3n/4,
3 (n+1)/4]. As a consequence of (III) for £ = &,, there exists a residual set
of directions @, < { 0:3n/2 < cot® < 3 (n+1)/2} such that, for each f€ O,
there exists a segment in 4 emanating from a point of Q, and having the

direction 0. Therefore, the set ~ @ (x) is of the first category on the set
xeQ

{0:3n/2 <<cot§ <3(m+1)/2} for each integer n, and the theorem is
proved.

§4. AN ESSENTIAL CLUSTER SET EXAMPLE

If fis a measurable function from H to W, then the essential cluster set
C,(f,x) of f at x is defined as the set of all values w e W for which the
upper density of ! (U) at x is positive for every open set U containing w;
the essential cluster set C,(f, x,0) of f at x in the direction 0 1is the set
of all values we W for which the upper density of #~* (U) along the ray
at x having direction 0 is positive for every open set U containing w. As a
supplement to a result of Casper Goffman and W. T. Sledd [4, Theorem 2],
the present authors [1] proved the following result concerning the set

0% (x) = {0:C,(f,x) = C,(f,x,0)} (xeR).

Tueorem B.EH. If f: H — W is measurable, then n (0% (x)) =n
for almost every and nearly every x e R; furthermore, if f is continuous,
then OF (x) is residual for almost every and nearly every x € R.

Again, a natural question to ask is whether or not, for a given function f,
there exists a “large” set of directions ©* such that @* < ©* (x) for a “large”
set of points x € R. As a partial answer, we prove

THEOREM 2. There exists a continuous f: H — W such that the inter-
section N O% (x) is (a) of the first category if Q < R is residual, and (b)
xeQ
of measure zero if Q < R is of full measure.
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