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Let J be the collection of all closed intervals on T\ (1/2) of the form
[otnk, a„(jH-i)]. Then it is easy to verify that

A °0

ß(A) inf X ß (X) '
7=1

A
where the inf is taken over all sequences {Ij } of intervals in J covering^.

A
Let s > 0. Then there is a sequence {Ij} of intervals in J that cover A

such that
00

X MX) <8 •

7=1

For each index y, there exist integers ni and kj such that

Ij Tnjkj (1/2) ;

hence, in view of (B) in §1, we have

A 00

A (A) c u proj [T k j]
7 1

Furthermore, combining (A) and (B) of §1, we obtain

i"(proj[T„.kj])2/i(Ij) (j 1,2,...).
Therefore,

A 00 00

!x*(A{A))<X /((proj [T kj]) 2 X MX) < 2e <

7=1 JJ 7=1

and property (IV) is proved.

§3. Proof of Theorem 1

For each integer n, let £n 1 + 3«/2 and set

An KSnn{(x,y):ÇJ2<x<Çn/2 + 3l4and 1/2 < 37 < 1}
"J Then set

^ A*n {z-(l+i)/2: zeAn} 1),
j and define the set

j A u {A*n:n 0, ±1, +2,...}
j Let { zn }«= 1 be a sequence of points in whose derived set is

Define the function f0 on A u {zn}=1 by
I
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/ o 0)
0 for zeA
1 for z zn(ji 1,2,...).

Then let/ be a continuous extension of/0 to all of H. We now show that/
is the desired function.

Let Q be a residual subset of R. Then, for each integer n, the set

ß n [3w/4, 3 (fz+l)/4] is a residual subset of the closed interval [3n/4,
3 (n+1)/4]. As a consequence of (III) for Ç there exists a residual set

of directions Qn c { 9: 3n\2 < cot 9 < 3 (« + l)/2 } such that, for each 9 e 0n,
there exists a segment in d emanating from a point of <2n and having the
direction 9. Therefore, the set n 0 (x) is of the first category on the set

xeQ

{ 6: 3n\2 < cot 0 < 3 («+1)/2 } for each integer n, and the theorem is

proved.

§4. An Essential Cluster Set Example

If/ is a measurable function from H to W, then the essential cluster set

Ce (/, x) of f at x is defined as the set of all values w e W for which the

upper density of/"1 (U) at x is positive for every open set U containing w;
the essential cluster set Ce (/, v, 6) of f at x in the direction 9 is the set

of all values we W for which the upper density of/_1 (U) along the ray
at x having direction 9 is positive for every open set U containing w. As a

supplement to a result of Casper Goffman and W. T. Sledd [4, Theorem 2],

the present authors [1] proved the following result concerning the set

0*(x){0: Ce(/,x)c(/, x, 0)} (x e R).

Theorem B.E.H. If f:H-*Wismeasurable, then ß(0* (x)) n

for almost every and nearly every x e R; furthermore, if f is continuous,
then 0* (x) is residual for almost every and nearly every xe R.

Again, a natural question to ask is whether or not, for a given functionf
there exists a "large" set of directions 0* such that 0* c: 0* (x) for a "large"
set of points x e R. As a partial answer, we prove

Theorem 2. There exists a continuous f: H -> W such that the

intersection n 0* (x) is (a) of the first category if Q c R is residual, and (b)
xeQ

of measure zero if Q c: R is offull measure.
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