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§2. KAHANE’S SET K.

Let ¢ be a real number, and let T, be the (1/2)-trapezoid with bases
L={(x,0:0<x<<1} and L = {(x,1):{<x" <&+ 1/2}.

LetTyy, Ty,, Ty3, and T, be the four descendants of 7 labeled in such a way

that the points
(xlk == min { X. (x, 1/2) € le}

satisfy oy, < ayq+qy for & = 1,2, and 3. Then let T, (k=1,2,...,4%)
be the 4> descendants of the trapezoids Ty, (k=1, 2, 3, 4) labeled in such
a way that the points

oy, = min {x:(x, 1/2) € Ty }

satisfy o, < @444y for k = 1,2,...,4*—1. Continuing inductively we
arrive at the collection of (1/2)-trapezoids

Ty for n=1,2,.. and k =1,2,...,4"

where the T, (k=1, 2, ..., 4") are the descendants of the T,y (k=1,2, ...
4"~1) and are labeled in such a way that the points

oy = min{x:(x,1/2)e T, }

satisfy o, < o441y for k = 1,2, ...,4"—1.
If for each n we set

Upan+yy = max{x:(x,1/)eT .},
then it follows from (A) in §1 that both
T (1/2) = {(x,1/2): o < x < Ut 1) J

for each k = 1, 2, ..., 4", and for each n

4”-
T(12) = U Tu(1]2).
4”
Now, for each n, let K, = u T,, and define the set
k=1
Ké = N Kn.
n=1

The following properties of the set K. were established by Kahane [5]
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(I) K: is a compact set of 2-dimensional measure zero.

(II) Let any segment t that extends from one base of T to the other be
called “admissible”. Then the following two properties hold :

(1) There are at most two admissible line segments in K, that pass
through any given point zeT:(1/2); in fact, precisely one such
segment passes through each z e T, (1/2) that is not one of the .

(i) For each Ae[l—1,¢+1)2] = proj[Ts], there exists at least one
point ze€ T, (1/2) through which there passes an admissible line

segment T in K, with proj[t] = A; in fact, for all but countably
many such A, there exists only one such z.

We now introduce a set-valued function A defined on the subsets 4 of
T (1/2) as follows:

A (A) = {proj [r]: © = K, is an admissible segment with 4 Nt # ¢ } .

Then K, has the two additional properties:
(ITIT) A (A) is nowhere dense whenever A is.
(IV) A (A) is of linear (Lebesgue) measure zero whenever A Is.

Proof of (III). Let 4 be a nowhere dense subset of T, (1/2), and suppose
A (A4) is dense on some subinterval / of the interval proj [T;]. Then, according
to (B) in §1, there exist integers # and k such that A (A4) is dense on proj [7,,.].
Since A is nowhere dense, there exist integers n” and £’ such that T, (1/2)
T, (1/2)and A nT,, = ¢. By (B) of §l, it follows that

A(4) nint (proj [T, ]) = ¢

(int = interior). This contradicts the fact that A (A4) is dense on proj [T,:],
and property (III) is proved.

For the remainder of this paper, we use u(4) and u™ (4) to denote
respectively the Lebesgue measure and the Lebesgue outer measure of the
linear set A.

Proof of (IV). Let A < T, (1/2) and suppose u (4) = 0. If we set
A=A4—-{oun=12,.;k=12,..,4+1},

A
then in view of II (i) it suffices to show that the corresponding set A (A4)
has linear measure zero.
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Let # be the collection of all closed intervals on T, (1/2) of the form
[%uks nr+1y]- Then it is easy to verify that

p(4) = inf Zl py,
=

where the inf is taken over all sequences { /; } of intervals in # covering 4.

A
Let ¢ > 0. Then there is a sequence { /; } of intervals in .# that cover 4
such that

Yould) <e.
ji=t
For each index j, there exist integers n; and k; such that
Ij = :rl"l]'kj (1/2) ;

hence, in view of (B) in §1, we have
A(H) cjizlproj [T,
Furthermore, combining (A) and (B) of §1, we obtain
p(proj [T, D) = 2u) (j=1,2,..).
Therefore,

B (A) < Y wroi[ Tl = 2 3 w1 < 2.

J=1

and property (IV) is proved.

§3. PROOF OF THEOREM 1

For each integer », let ¢, = 1 + 3n/2 and set

4, = Ko, 0{(x,9): 82 <x<EJ2+3/4 and 12 <y < 1},
" Then set
Ay ={z —(1+i)f2:z€4,} (i=-1),

and define the set
A4 =v{di:n=0,+1, +2,...}.

o Let {z,};2, be a sequence of points in H — A whose derived set is R.
¢ Define the function f; on 4 U {z,}, by
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