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§2. Kahane's set Kç.

Let £ be a real number, and let T% be the (l/2)-trapezoid with bases

L { (x, 0): 0 < x < 1} and L' - {(x', 1): f < x' < Ç + 1/2}

Let T11,T12,T13, and T14 be the four descendants of labeled in such away
that the points

alk min { x: (x, 1/2) e Tlk}

satisfy alk < a1(fc+1) for k 1,2, and 3. Then let Tlk (k~ 1,2, 42)

be the 42 descendants of the trapezoids ?» (/c 1, 2, 3, 4) labeled in such

a way that the points
«2it min {x: (x, 1/2)eTa}

satisfy a2t < a2(fc+1) for k 1, 2, 42— 1. Continuing inductively we
arrive at the collection of (l/2)-trapezoids

Tnk for n 1,2,... and fc 1,2, ...,4"

where the Tnk(k= 1,2,..., 4") are the descendants of the T(n_1)k (k= 1, 2,
4"_1) and are labeled in such a way that the points

ankmin {x: (x, 1/2) e }

satisfy ank < ocn(k+1) for k 1, 2, 4"-l.
If for each n we set

a«(4«+i) max { x: (x, 1/2) e Tn4„ }

then it follows from (A) in §1 that both

Tnk(l/2) {(x, 1/2): ank < x < ccn(k+1)}

for each k 1,2,..., 4", and for each n

Tç (1/2) u Tnk( 1/2).
k 1

4n

Now, for each ft, let Kn u 7^ and define the set
fc i

00

*« n
n-i

The following properties of the set Ks were established by Kahane [5]:
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(I) is a compact set of 2-dimensional measure zero.

(II) Let any segment % that extends from one base of T% to the other be

called "admissibleThen the following two properties hold :

(i) There are at most two admissible line segments in that pass
through any given point z g 7^ (1/2); in fact, precisely one such

segment passes through each z e T? (1/2) that is not one of the ank.

(ii) For each X e [Ç — 1, £ +1/2] proj [TJ, /Aere at least one

point z g 7^ (1/2) through which there passes an admissible line

segment % in with proj [t] X ; in fact, for all but countably

many such X, there exists only one such z.

We now introduce a set-valued function yl defined on the subsets A of
7^ (1/2) as follows:

A (A) { proj [t] : t c Kg is an admissible segment with A n t ^ (j) }

Then has the two additional properties :

(III) A (A) is nowhere dense whenever A is.

(IV) A (A) is of linear (Lebesgue) measure zero whenever A is.

Proof of (III). Let A be a nowhere dense subset of 7^ (1/2), and suppose
A (A) is dense on some subinterval /of the interval proj [TJ. Then, according
to (B) in §1, there exist integers n and k such that A (A) is dense on proj [Tnk].

Since A is nowhere dense, there exist integers n' and k' such that Tn,w (1/2)
c= Tnk (1/2) and A n Tn.w <j>. By (B) of §1, it follows that

A (A) n int (proj [T„v]) cj>

(int interior). This contradicts the fact that A (Â) is dense on proj [Tnk],

and property (III) is proved.
For the remainder of this paper, we use p (A) and p* (A) to denote

respectively the Lebesgue measure and the Lebesgue outer measure of the

linear set A.

Proof of (IV). Let A c T% (1/2) and suppose p (A) 0. If we set

A A — { ocnk: n 1,2, ...; k — 1,2,..., 4" + 1}
A

then in view of II (i) it suffices to show that the corresponding set A (A)
has linear measure zero.
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Let J be the collection of all closed intervals on T\ (1/2) of the form
[otnk, a„(jH-i)]. Then it is easy to verify that

A °0

ß(A) inf X ß (X) '
7=1

A
where the inf is taken over all sequences {Ij } of intervals in J covering^.

A
Let s > 0. Then there is a sequence {Ij} of intervals in J that cover A

such that
00

X MX) <8 •

7=1

For each index y, there exist integers ni and kj such that

Ij Tnjkj (1/2) ;

hence, in view of (B) in §1, we have

A 00

A (A) c u proj [T k j]
7 1

Furthermore, combining (A) and (B) of §1, we obtain

i"(proj[T„.kj])2/i(Ij) (j 1,2,...).
Therefore,

A 00 00

!x*(A{A))<X /((proj [T kj]) 2 X MX) < 2e <

7=1 JJ 7=1

and property (IV) is proved.

§3. Proof of Theorem 1

For each integer n, let £n 1 + 3«/2 and set

An KSnn{(x,y):ÇJ2<x<Çn/2 + 3l4and 1/2 < 37 < 1}
"J Then set

^ A*n {z-(l+i)/2: zeAn} 1),
j and define the set

j A u {A*n:n 0, ±1, +2,...}
j Let { zn }«= 1 be a sequence of points in whose derived set is

Define the function f0 on A u {zn}=1 by
I
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