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A DIRECTIONAL CLUSTER SET EXAMPLE

by C. L. Belna, M. J. Evans and P. D. Humke

§0. Introduction

Let/ be a mapping from the open upper half plane H into the Riemann

sphere W. For each point x on the real line R, let C (/, x) and C (/, x, 9)

denote respectively the total cluster set of/at x and the cluster set of/at x
in the direction 9(0<9<n); then let G (x) denote the set of directions 9

for which C (/, x, 9) C (/, x). E. F. Collingwood [3, Theorem 2 combined

with Theorem 3] established the following result.

Theorem C. Let f : H W be continuous. Then the set G (x) is

residual at each point x of a residual subset S of R.

A. M. Bruckner and Casper Goffman [2, p. 510] raised the question
as to whether or not there exists a residual set of directions G such that
G a G (x) for each xe S. Here we prove

Theorem 1. There exists a continuous f : H -> W such that n G(x)
— ff

is a first category set of directions for each residual subset Q of R.

To construct this function (§3), we use certain sets of J.-P. Kahane [5]

as building blocksx). Two important properties of these sets are established
in §2, and the necessary technical preliminaries are presented in §1. Finally,
in §4 we present an example concerning essential directional cluster sets.

§1. (1/2)-trapezoids and their four descendants

By a (1/2)-trapezoid we mean any closed trapezoid T having bases L
and L' which lie respectively on the lines y 0 and y — 1 and for which
I L I 2 I L' |. (Here and throughout this paper, we use | t | to denote the
length of the line segment t.) For each (l/2)-trapezoid T, we set

T( 1/2) {zeT: Im (z) 1/2 }

x) The authors wish to thank Professor John R. Kinney for bringing this paper of
J.-P. Kahane to their attention.
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For real numbers p and p\ let %pp, denote the line segment joining the

points (p, 0) and (p\ 1). Then the projection of the segment xpp> is given by

pr°j I jpp'i
and the projection set of the (l/2)-trapezoid T is given by

proj[T] {proj[Tpp.]:(p,0)eL and (p', 1)eL'}.
For the remainder of this section, suppose T is a (l/2)-trapezoid with

bases L and Z/, and let L1 and L2 (resp., L[ and L'f) denote the two line
segments that remain when the open middle half of L (resp., Z/) is removed

withZ^ (resp., L[) lying to the left ofL2 (resp., iff), Then thefour descendants

of T are the (l/2)-trapezoids Tu T2, T3, and T4 having respective bases

L1 and Lf L1 and L2i L2 and L[, and L2 and L2.
Now let a and a' denote the respective x-coordinates of the left end-

points of L and Z/, and set / | L |. Then the following list of facts
concerning T and its descendants can easily be established:

(A) If a («a + a')/!, then

T(l/2) {(x, 1/2): a < x < a + 3Z/4 }

and, for each k 1, 2, 3, and 4, we have

T*(l/2) {(x, 1/2): a + 3 (fc -1) 1/16 < x < a + 3kl/16}

That is, the segments Tk (1/2) (k= 1, 2, 3, 4) partition the segment T (1/2)
into four equal subsegments.

(B) If v a' — a, then
a

proj [T]
A

proj [T3]
A

proj[T4]

{v:v
A

proj [7j] {v:w
and

proj [T2] + Z/8 < v < v + 4Z/8 }

That is, the intervals proj [Tk] (k= 1, 2, 3, 4) partition the interval proj [7']
into four equal subintervals.

— I < v < v + 1/2}

— I < v < v — 5Z/8 }

— 5Z/8 <î - 2Z/8 }

— 2Z/8 + Z/8 },



§2. Kahane's set Kç.

Let £ be a real number, and let T% be the (l/2)-trapezoid with bases

L { (x, 0): 0 < x < 1} and L' - {(x', 1): f < x' < Ç + 1/2}

Let T11,T12,T13, and T14 be the four descendants of labeled in such away
that the points

alk min { x: (x, 1/2) e Tlk}

satisfy alk < a1(fc+1) for k 1,2, and 3. Then let Tlk (k~ 1,2, 42)

be the 42 descendants of the trapezoids ?» (/c 1, 2, 3, 4) labeled in such

a way that the points
«2it min {x: (x, 1/2)eTa}

satisfy a2t < a2(fc+1) for k 1, 2, 42— 1. Continuing inductively we
arrive at the collection of (l/2)-trapezoids

Tnk for n 1,2,... and fc 1,2, ...,4"

where the Tnk(k= 1,2,..., 4") are the descendants of the T(n_1)k (k= 1, 2,
4"_1) and are labeled in such a way that the points

ankmin {x: (x, 1/2) e }

satisfy ank < ocn(k+1) for k 1, 2, 4"-l.
If for each n we set

a«(4«+i) max { x: (x, 1/2) e Tn4„ }

then it follows from (A) in §1 that both

Tnk(l/2) {(x, 1/2): ank < x < ccn(k+1)}

for each k 1,2,..., 4", and for each n

Tç (1/2) u Tnk( 1/2).
k 1

4n

Now, for each ft, let Kn u 7^ and define the set
fc i

00

*« n
n-i

The following properties of the set Ks were established by Kahane [5]:
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(I) is a compact set of 2-dimensional measure zero.

(II) Let any segment % that extends from one base of T% to the other be

called "admissibleThen the following two properties hold :

(i) There are at most two admissible line segments in that pass
through any given point z g 7^ (1/2); in fact, precisely one such

segment passes through each z e T? (1/2) that is not one of the ank.

(ii) For each X e [Ç — 1, £ +1/2] proj [TJ, /Aere at least one

point z g 7^ (1/2) through which there passes an admissible line

segment % in with proj [t] X ; in fact, for all but countably

many such X, there exists only one such z.

We now introduce a set-valued function yl defined on the subsets A of
7^ (1/2) as follows:

A (A) { proj [t] : t c Kg is an admissible segment with A n t ^ (j) }

Then has the two additional properties :

(III) A (A) is nowhere dense whenever A is.

(IV) A (A) is of linear (Lebesgue) measure zero whenever A is.

Proof of (III). Let A be a nowhere dense subset of 7^ (1/2), and suppose
A (A) is dense on some subinterval /of the interval proj [TJ. Then, according
to (B) in §1, there exist integers n and k such that A (A) is dense on proj [Tnk].

Since A is nowhere dense, there exist integers n' and k' such that Tn,w (1/2)
c= Tnk (1/2) and A n Tn.w <j>. By (B) of §1, it follows that

A (A) n int (proj [T„v]) cj>

(int interior). This contradicts the fact that A (Â) is dense on proj [Tnk],

and property (III) is proved.
For the remainder of this paper, we use p (A) and p* (A) to denote

respectively the Lebesgue measure and the Lebesgue outer measure of the

linear set A.

Proof of (IV). Let A c T% (1/2) and suppose p (A) 0. If we set

A A — { ocnk: n 1,2, ...; k — 1,2,..., 4" + 1}
A

then in view of II (i) it suffices to show that the corresponding set A (A)
has linear measure zero.
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Let J be the collection of all closed intervals on T\ (1/2) of the form
[otnk, a„(jH-i)]. Then it is easy to verify that

A °0

ß(A) inf X ß (X) '
7=1

A
where the inf is taken over all sequences {Ij } of intervals in J covering^.

A
Let s > 0. Then there is a sequence {Ij} of intervals in J that cover A

such that
00

X MX) <8 •

7=1

For each index y, there exist integers ni and kj such that

Ij Tnjkj (1/2) ;

hence, in view of (B) in §1, we have

A 00

A (A) c u proj [T k j]
7 1

Furthermore, combining (A) and (B) of §1, we obtain

i"(proj[T„.kj])2/i(Ij) (j 1,2,...).
Therefore,

A 00 00

!x*(A{A))<X /((proj [T kj]) 2 X MX) < 2e <

7=1 JJ 7=1

and property (IV) is proved.

§3. Proof of Theorem 1

For each integer n, let £n 1 + 3«/2 and set

An KSnn{(x,y):ÇJ2<x<Çn/2 + 3l4and 1/2 < 37 < 1}
"J Then set

^ A*n {z-(l+i)/2: zeAn} 1),
j and define the set

j A u {A*n:n 0, ±1, +2,...}
j Let { zn }«= 1 be a sequence of points in whose derived set is

Define the function f0 on A u {zn}=1 by
I
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/ o 0)
0 for zeA
1 for z zn(ji 1,2,...).

Then let/ be a continuous extension of/0 to all of H. We now show that/
is the desired function.

Let Q be a residual subset of R. Then, for each integer n, the set

ß n [3w/4, 3 (fz+l)/4] is a residual subset of the closed interval [3n/4,
3 (n+1)/4]. As a consequence of (III) for Ç there exists a residual set

of directions Qn c { 9: 3n\2 < cot 9 < 3 (« + l)/2 } such that, for each 9 e 0n,
there exists a segment in d emanating from a point of <2n and having the
direction 9. Therefore, the set n 0 (x) is of the first category on the set

xeQ

{ 6: 3n\2 < cot 0 < 3 («+1)/2 } for each integer n, and the theorem is

proved.

§4. An Essential Cluster Set Example

If/ is a measurable function from H to W, then the essential cluster set

Ce (/, x) of f at x is defined as the set of all values w e W for which the

upper density of/"1 (U) at x is positive for every open set U containing w;
the essential cluster set Ce (/, v, 6) of f at x in the direction 9 is the set

of all values we W for which the upper density of/_1 (U) along the ray
at x having direction 9 is positive for every open set U containing w. As a

supplement to a result of Casper Goffman and W. T. Sledd [4, Theorem 2],

the present authors [1] proved the following result concerning the set

0*(x){0: Ce(/,x)c(/, x, 0)} (x e R).

Theorem B.E.H. If f:H-*Wismeasurable, then ß(0* (x)) n

for almost every and nearly every x e R; furthermore, if f is continuous,
then 0* (x) is residual for almost every and nearly every xe R.

Again, a natural question to ask is whether or not, for a given functionf
there exists a "large" set of directions 0* such that 0* c: 0* (x) for a "large"
set of points x e R. As a partial answer, we prove

Theorem 2. There exists a continuous f: H -> W such that the

intersection n 0* (x) is (a) of the first category if Q c R is residual, and (b)
xeQ

of measure zero if Q c: R is offull measure.
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Proof. Let A be as in the proof of Theorem I, and let S be a closed subset

of H — A that has metric density 1 at each xe R. Let / be a continuous
function on H with/(d) {0} and f(S) { 1 }. Then the proof of (a)
is completely analogous to the proof of Theorem 1, and the proof of (b)
follows the same line with property (IV) used in place of property (III).
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