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A DIRECTIONAL CLUSTER SET EXAMPLE

by C. L. BELNA, M. J. EvANS and P. D. HUMKE

§0. INTRODUCTION

Let f be a mapping from the open upper half plane H into the Riemann
sphere W. For each point x on the real line R, let C(f, x) and C (f, x, 0)
denote respectively the total cluster set of fat x and the cluster set of fat x
in the direction 0 (0<0<n); then let © (x) denote the set of directions 0
for which C (f, x, 0) = C (f, x). E. F. Collingwood [3, Theorem 2 combined
with Theorem 3] established the following result.

THeoREM C. Let f:H — W be continuous. Then the set O (x) is
residual at each point x of a residual subset S of R.

A. M. Bruckner and Casper Goffman [2, p. 510] raised the question
as to whether or not there exists a residual set of directions @ such that
® < O (x) for each x € S. Here we prove

THEOREM 1. There exists a continuous f: H — W such that n O(x)
is a first category set of directions for each residual subset Q of R

To construct this function (§3), we use certain sets of J.-P. Kahane [5]
as building blocks ). Two important properties of these sets are established
in §2, and the necessary technical preliminaries are presented in §1. Finally,
in §4 we present an example concerning essential directional cluster sets.

§1. (1/2)-TRAPEZOIDS AND THEIR FOUR DESCENDANTS

By a (1/2)-trapezoid we mean any closed trapezoid T having bases L
and L’ which lie respectively on the lines y = 0 and y = 1 and for which
|L| =2|L"|. (Here and throughout this paper, we use | 7 | to denote the
length of the line segment t.) For each (1/2)-trapezoid T, we set

T(1/2) = {zeT:Im(z) = 1/2}.

1) The authors wish to thank Professor John R. Kinney for bringing this paper of
J.-P. Kahane to their attention.
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For real numbers p and p’, let 7,, denote the line segment joining the
points (p, 0) and (p’, 1). Then the projection of the segment 7 ,, is given by

proj[t,,] = p" — p,
and the projection set of the (1/2)-trapezoid T is given by
proj [T] = {proj[r,,]:(p,0)eL and (p',1)eL’}.

For the remainder of this section, suppose 7" is a (1/2)-trapezoid with
bases L and L', and let L, and L, (resp., L{ and L,) denote the two line
segments that remain when the open middle half of L (resp., L’) is removed
with L, (resp., L;) lying to the left of L, (resp., L;). Then the four descendants
of T are the (1/2)-trapezoids T,, T,, T, and T, having respective bases
L,and L{, L, and L,, L, and L;, and L, and L,.

Now let @ and 4’ denote the respective x-coordinates of the left end-
points of L and L', and set / = | L |. Then the following list of facts con-
cerning 7" and its descendants can easily be established:

(A) If a = (a+4a')/2, then
T(1/2) = {(x,1/2):a <x < a + 31/4}
and, for each k = 1, 2, 3, and 4, we have
T,(1/2) = {(x,1/2):a + 3(k—=1)1/16 <x < a + 3kI/16} .

That is, the segments 7, (1/2) (k=1, 2, 3, 4) partition the segment 7 (1/2)
into four equal subsegments.

(B) If ;)\ = a — a, then
proj[T] = {v:
proj[T5] = {v:
proj [T,] = {v:

proj[Ty] = {v:

v —l<v <o+ 12},
v —l<v<v—>5I8]),
b — 58 <v<ov—2l8Y},
>

=208 <v<v +1/8},
and

proj[T,] = {viv + 18 <v <v + 41/8}.

That is, the intervals proj [T}] (k=1, 2, 3, 4) partition the interval proj [T]
into four equal subintervals.
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§2. KAHANE’S SET K.

Let ¢ be a real number, and let T, be the (1/2)-trapezoid with bases
L={(x,0:0<x<<1} and L = {(x,1):{<x" <&+ 1/2}.

LetTyy, Ty,, Ty3, and T, be the four descendants of 7 labeled in such a way

that the points
(xlk == min { X. (x, 1/2) € le}

satisfy oy, < ayq+qy for & = 1,2, and 3. Then let T, (k=1,2,...,4%)
be the 4> descendants of the trapezoids Ty, (k=1, 2, 3, 4) labeled in such
a way that the points

oy, = min {x:(x, 1/2) € Ty }

satisfy o, < @444y for k = 1,2,...,4*—1. Continuing inductively we
arrive at the collection of (1/2)-trapezoids

Ty for n=1,2,.. and k =1,2,...,4"

where the T, (k=1, 2, ..., 4") are the descendants of the T,y (k=1,2, ...
4"~1) and are labeled in such a way that the points

oy = min{x:(x,1/2)e T, }

satisfy o, < o441y for k = 1,2, ...,4"—1.
If for each n we set

Upan+yy = max{x:(x,1/)eT .},
then it follows from (A) in §1 that both
T (1/2) = {(x,1/2): o < x < Ut 1) J

for each k = 1, 2, ..., 4", and for each n

4”-
T(12) = U Tu(1]2).
4”
Now, for each n, let K, = u T,, and define the set
k=1
Ké = N Kn.
n=1

The following properties of the set K. were established by Kahane [5]
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(I) K: is a compact set of 2-dimensional measure zero.

(II) Let any segment t that extends from one base of T to the other be
called “admissible”. Then the following two properties hold :

(1) There are at most two admissible line segments in K, that pass
through any given point zeT:(1/2); in fact, precisely one such
segment passes through each z e T, (1/2) that is not one of the .

(i) For each Ae[l—1,¢+1)2] = proj[Ts], there exists at least one
point ze€ T, (1/2) through which there passes an admissible line

segment T in K, with proj[t] = A; in fact, for all but countably
many such A, there exists only one such z.

We now introduce a set-valued function A defined on the subsets 4 of
T (1/2) as follows:

A (A) = {proj [r]: © = K, is an admissible segment with 4 Nt # ¢ } .

Then K, has the two additional properties:
(ITIT) A (A) is nowhere dense whenever A is.
(IV) A (A) is of linear (Lebesgue) measure zero whenever A Is.

Proof of (III). Let 4 be a nowhere dense subset of T, (1/2), and suppose
A (A4) is dense on some subinterval / of the interval proj [T;]. Then, according
to (B) in §1, there exist integers # and k such that A (A4) is dense on proj [7,,.].
Since A is nowhere dense, there exist integers n” and £’ such that T, (1/2)
T, (1/2)and A nT,, = ¢. By (B) of §l, it follows that

A(4) nint (proj [T, ]) = ¢

(int = interior). This contradicts the fact that A (A4) is dense on proj [T,:],
and property (III) is proved.

For the remainder of this paper, we use u(4) and u™ (4) to denote
respectively the Lebesgue measure and the Lebesgue outer measure of the
linear set A.

Proof of (IV). Let A < T, (1/2) and suppose u (4) = 0. If we set
A=A4—-{oun=12,.;k=12,..,4+1},

A
then in view of II (i) it suffices to show that the corresponding set A (A4)
has linear measure zero.
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Let # be the collection of all closed intervals on T, (1/2) of the form
[%uks nr+1y]- Then it is easy to verify that

p(4) = inf Zl py,
=

where the inf is taken over all sequences { /; } of intervals in # covering 4.

A
Let ¢ > 0. Then there is a sequence { /; } of intervals in .# that cover 4
such that

Yould) <e.
ji=t
For each index j, there exist integers n; and k; such that
Ij = :rl"l]'kj (1/2) ;

hence, in view of (B) in §1, we have
A(H) cjizlproj [T,
Furthermore, combining (A) and (B) of §1, we obtain
p(proj [T, D) = 2u) (j=1,2,..).
Therefore,

B (A) < Y wroi[ Tl = 2 3 w1 < 2.

J=1

and property (IV) is proved.

§3. PROOF OF THEOREM 1

For each integer », let ¢, = 1 + 3n/2 and set

4, = Ko, 0{(x,9): 82 <x<EJ2+3/4 and 12 <y < 1},
" Then set
Ay ={z —(1+i)f2:z€4,} (i=-1),

and define the set
A4 =v{di:n=0,+1, +2,...}.

o Let {z,};2, be a sequence of points in H — A whose derived set is R.
¢ Define the function f; on 4 U {z,}, by
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0 for zed

fO(Z):{l for z =2,(n=1,2,..).

Then let f be a continuous extension of f; to all of H. We now show that f
is the desired function.

Let Q be a residual subset of R. Then, for each integer n, the set Q,
= 0 n [3n/4,3 (n+1)/4] is a residual subset of the closed interval [3n/4,
3 (n+1)/4]. As a consequence of (III) for £ = &,, there exists a residual set
of directions @, < { 0:3n/2 < cot® < 3 (n+1)/2} such that, for each f€ O,
there exists a segment in 4 emanating from a point of Q, and having the

direction 0. Therefore, the set ~ @ (x) is of the first category on the set
xeQ

{0:3n/2 <<cot§ <3(m+1)/2} for each integer n, and the theorem is
proved.

§4. AN ESSENTIAL CLUSTER SET EXAMPLE

If fis a measurable function from H to W, then the essential cluster set
C,(f,x) of f at x is defined as the set of all values w e W for which the
upper density of ! (U) at x is positive for every open set U containing w;
the essential cluster set C,(f, x,0) of f at x in the direction 0 1is the set
of all values we W for which the upper density of #~* (U) along the ray
at x having direction 0 is positive for every open set U containing w. As a
supplement to a result of Casper Goffman and W. T. Sledd [4, Theorem 2],
the present authors [1] proved the following result concerning the set

0% (x) = {0:C,(f,x) = C,(f,x,0)} (xeR).

Tueorem B.EH. If f: H — W is measurable, then n (0% (x)) =n
for almost every and nearly every x e R; furthermore, if f is continuous,
then OF (x) is residual for almost every and nearly every x € R.

Again, a natural question to ask is whether or not, for a given function f,
there exists a “large” set of directions ©* such that @* < ©* (x) for a “large”
set of points x € R. As a partial answer, we prove

THEOREM 2. There exists a continuous f: H — W such that the inter-
section N O% (x) is (a) of the first category if Q < R is residual, and (b)
xeQ
of measure zero if Q < R is of full measure.
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Proof. Let 4 be as in the proof of Theorem 1, and let S be a closed subset
of H — A that has metric density 1 at each x € R. Let f be a continuous
function on H with f(4) = {0} and £(S) = {1}. Then the proof of (a)
is completely analogous to the proof of Theorem 1, and the proof of (b)
follows the same line with property (IV) used in place of property (1II).
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