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3.7 The following construction would help in developing the case where
| X'| is even along the lines of 3.2-3.5, which I won’t do. Let X be of odd
order | X| = 2g + 1, and define X’ = XII{X}, thus | X' | =29 +2.
We have a natural linear map

2X — 2X/

and this is compatible with p, e, Q, ¢,. Composing this with the passage
to the quotient, I have a linear isomorphism

2X — PZ (X ,) s
and by compatibility with p, p’, isomorphisms

27 > P3(X")

2¥ 5 PL(X).

The first is compatible with e, ¢/, and with the canonical quadratic forms
if g is odd. The second is compatible with Q, Q' if g is even.

§ 4 BASIS AND FUNDAMENTAL SETS

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) 1s a basis (x;),r for J with the property that e (x;, x;) = 1 for i # j,
the set of ordered normal basis (i.e. for I = {1, ..., 2g} if 2¢g = dim J)
will be denoted ONB (J, e). The symplectic group Sp (J, e) clearly acts on
ONB (J, e) and it does it simply transitively, because if two ordered normal
bases for (J, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (J, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (J, e) of symplectic basis is a torsor
over Sp (J, e), thus if ONB (J, e) is non-empty, both torsors should be
isomorphic and indeed there would be as many isomorphisms as elements
in the group Sp (J, ¢). What 1 proceed to exhibit now is a definite iso-
morphism

a:SB(J,e) > ONB(J, e)
with inverse f. If

xeSB(J,e),x = (x4, ...,xg,xi, ...,x;)

let’s put y = « (x), then by definition




— 215 —

y2k—1 - xl + XL + xk + x; + o + x,;_l
y2k =x1+...+xk_1 +x;+..+x; k - 1,...,9.

As for the inverse, if y € ONB (J, e), and x = B (), then one gets from the
definition of «

Xp = Y1 + oo + Vor—2 + Yar—1
Xp = V1 + o V2 v k=1,..9.

It is clear from this definition that « is compatible with the actions
of Sp (J, e) on both sets.

4.2 Azygetic sets. Let (S, Q) be a symplectic torsor over a symplectic
pair (J, e). A subset 4 = S is azygetic if for any three different elements
Si, 85,53 € A one has Q(s;) + Q(sy) + Q(s3) + Q(sy+s,+s3) =1, or
equivalently if e (s;,+5,, 5; +53) = 1. A is homogeneous if Q is constant on
it, i.e. if either A = S* or 4 = S~. And the subset A4 is linearly independent
if for some (or equivalently, for any) s € 4, the subset s + (A—{s}) = J is
linearly independent, or equivalently if 4 + A spans a subspace of J of
dimension | 4 | — 1.

Let A be an azygetic subset, se 4, and let B = s + (A—{s}), T will

show that the only possible linear relation on B is X x = 0. Indeed,
XeB

if ¥ A.x = 0 is such a relation, for any y € B, one has

0=ce(y,YAx) = Ae(y,x) = ) A

xeB
X Fy

S A, =0

x#y
Adding these equations for any y, )y’ € B, one concludes that 4, = 4,
which was to be shown. As a consequence of this, it follows that any azy-
getic subset of odd order is linearly independent, and that an azygetic
subset has at most 2g + 2 elements. It is easy to verify that if 4 is an
azygetic subset of odd order and if s = X 7, AU {s} is still azygetic.

ted
4.3 Basis for symplectic torsors. A basis for a symplectic torsor (S, Q)

over (J, e) is a maximal homogeneous, linearly independent, azygetic subset
of S. A basis has exactly 2g + 1 elements, where g is the genus of (S, Q).
This comes from the fact that any symplectic torsor is isomorphic to one
of the form (S, Q) constructed in § 3 because of the uniqueness result in
1.4, that for Sy, X < Sy is clearly a basis with 2g + 1 elements, and that
a linearly independent subset can have at most 2g + 1 elements.
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The set of ordered basis for (S, Q) will be denoted by OB (S, Q), the
group Sp (S, Q) acts on it.

The following construction is fundamental. Let X < S be a basis, we
have then a map

Fy: 2% 5 E(S)
(cf. 1.5.a) for the definition of E (S)), defined by

sed
It is clear that Fy is a group homomorphism, that sends subsets of X
of even (resp. odd) order into J (resp. S), thereby inducing a linear homo-
morphism
ox: 2% = J

and a map compatible with the respective group actions
fx:2¥ 58S,

To proceed further, let’s choose a total order on X, X = {s,, ..., 55,}.
Then, the X; = {s,, s;} (resp. x; = s, + 5;) for i = 1, ..., 2g constitute an
ordered normal basis for 2 f (resp. J), and as o4 (X;) = x; we have that oy
18 a symplectic isomorphism. It follows that f, is a bijection, and indeed f,
defines an isomorphism of symplectic torsors between (Sy, Q) and (S, Q).

To see this, we have to prove that if 4, A" = Xaresuchthat| 4 | = | 4’| (4),
then
(2 s)=2() s).
seA sed’

We know that Q is constant on X, and the condition on X of being azygetic
means that for any three different s, 5,, 53 € X, Q (s; +5, +s55) is different
from the value of Q on X. From this remark, the fact to be proved follows
easily by induction and using the defining property (1.1.1) of symplectic
torsors. For example, if | A | = 5, and we order 4 = {sy, ..., 55}, we have

Q(Zs) +Q(s1) = Q(sy+5;+53) + Q(s1+54+55)
because e (s, +53, 54 +55) = 0, thus

Q(s1) = Q(Zs).

Summing up: starting from a basis X < S, one gets an isomorphism
of symplectic pairs
Ox- (JX: eX) -—A—J)(J9 e)
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underlying an isomorphism of symplectic torsors

fx:(Sx, 0x) =(S,0).
As a consequence of this, we have that a basis 18 necessarily contained
in St forg=20,1(4), in S~ for g = 2,3 (4) (cf. 3.2.1).

4.4 PROPOSITION. The set OB (S, Q) of ordered basis for a symplectic
torsor (S, Q) is a torsor over the group Sp (S, Q). Moreover, the map

OB(S,Q) - ONB(J,e)
defined by

(8)0—iz2g > (S0 + )1 ziz2g
is an isomorphism of torsors over Sp (S, Q) ~ Sp (J, e).

4.4.1 Proof. The map defined above is clearly compatible with the
actions of Sp (S, Q), Sp (J, ¢) and the isomorphism between these groups
described in 1.4. To prove the proposition, it is enough to show that this
map is bijective. As OB (S, Q) is non-empty and ONB (J, e) is a torsor,
this map is onto. It is injective too, because starting from the x; = 5, + s;
I can recover the s; in the followingway. If s = X s;, by the identification

0=i=2g
S ~ Q(J,e) in 1.5, s corresponds to the unique quadratic form ¢, on J
whose value on each of the x; is 1 as it can be easily seen, thus s can be
defined in terms of the x;; but then

s; =5+ Y x;(0<<i<<2g,1<j<2g).
i7i

4.5 Fundamental sets. A fundamental set for a symplectic torsor (S, Q) is
a maximal azygetic subset F < S. Any basis X for S defines a fundamental

set, it suffices to put Fy = X U {sy}, where sy = X s. Also, if F is a
se X

fundamental set and if x e J, x + Fis a fundamental set too, as it is easily
seen. In fact, for any fundamental set F, there exists a basis X and an
x €J such that F = x + Fy. Let F = {t,, ..., t,,+1} be an ordering of F,
it is clear that if

x; =ty +(1<i<<2g+1),

the x; for 1 << i < 2¢g constitute a normal basis for J, thus there exists a
unique ordered basis X = {s,, ..., 5,,} for S such that x; = s, + 5, (4.4).
Then, if x = s, +1¢, we have #; = x + sy, because Xf;, = 0 and
Sy = X 8.

Observe that a fundamental set arising from a basis is homogeneous
iff g is even. Indeed, it is homogeneous iff 2g + 1 = 1 (4), i.e. iff g is even.




— 218 —

It follows from the last part of prop. 3.2.1 that, in this case, the number of
odd characteristics in the fundamental sets is congruent to g mod 4. We
will see that this is a general fact.

4.5.1 PROPOSITION. Let O (F) be the number of odd characteristics in
a fundamental set F. Then O (F)= g (4). Conversely, for any [== g (4),
and | < 2g + 2, there are fundamental sets F with O (F) = L

4.5.2 Proof. We may safely restrict ourselves to the case where the
symplectic torsor is Sy with its standard basis X, and F = {4} + (X u {X})
where 4 = X is of even order | A4 | = 2k (cf. 4.3). Then, in F there are
2k characteristics corresponding to subsets of X with 2k — 1 elements,
2(g—k) + 1 characteristics with 2k + 1 elements, and 1 characteristic
with 2(g—k) + 1 elements, namely the ones obtained adding A4 to
respectively the characteristics of the form {s} (sed), {s} (s¢A4), X. When g
is even the second and third types have the same parity; when g is odd the
first and third types have the same parity. From these remarks, it is easy to
see that the number of elements of the same parity in F and X U {X} are
congruent mod 4, and that with this only restriction, this number can be
arbitrary for F by conveniently choosing 4. The proposition follows from
this and from what was said just before its statement.

4.5.3 In Coble [1], additional material on fundamental sets may be
found.
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