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2.7 Corollary. Let (S, g), (S", g') symplectic torsors of genus g

over (J,e),(J',e'), and let I S±,I' Sr±. Then, there are canonical

bijections
Isom ((J, e), (J e')) ^ Isom((S, g), (S g'))

^ Isom ((X, X(4)), (I', X'(4)))

In particular, t/zere are group isomorphisms

Sp (J, e) ~ Sp (5, 0 Aut (T, r(4)).

§ 3 Symplectic torsors defined by finite sets

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

a) The set 2X of subsets of X, with the operation of symmetric difference :

A+B=AuB-AnB A, Be 2X

b) A map p: 2X -* Z/2Z defined by

p(A)\A\(2)e2*

c) A map e: 2X x 2X -> Z/2Z defined by

e(A,£) I A nB | (2) A,Be2x

d) A map Q: 2X_ Z/2Z defined by

g(B) =L^L±2(2)

wheie 2* (1) is the set of subsets of odd order of X.

e) A map q0 2X -> Z/2Z defined by

4o04) ~~2~^ Ae2x

where 2* /?_1 (0).

Then, it is easily verified that

a) 2X is a vector space over Z/2Z, of dimension | X |.

ß) p is linear

y e is bilinear
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ö) Q has the following property (compare 1.1.1)

Q(B) + Q(A+B) + Q(A'+B) + Q(A+A'+B) e(A,A')
whenever B e 2*s ^4, ^4' e 2*

s q0 is a quadratic form inducing the restriction of e to 2X.

In the proof of these, one uses the following identity

\A+B\ \A\ + \B\-2\AnB\ A,Be2x
3.2 Let's assume in the following three sections that X is of odd order,

|*| <*20+1.

3.2.1 Proposition. The bilinear form e on 2X is alternate and non-
degenerate. If 2X acts on 2X by translations, (2*, Q) is a symplectic
torsor over (2*, e) which is even for g 2, 3 (4) and oddfor g ~ 0, 1 (4).

3.2.2 Proof It is clear that e is alternate on 2X. It is also non degenerate,
because if A e 2X, A # <£, let x e A; then A! — (X—A) u {x} is of even

order, and e (A, A') 1. It is also clear that (2X, Q) is a symplectic torsor
over (2*, e) (because of 3.1 ô) and the definition of symplectic torsor.

To find out when this torsor is even or odd, we first observe that it is

clearly odd for g — 0, 1 (look at it), then apply descending induction using
the following fact (to be proved below). Let's call sg the type of the torsor
corresponding to an X with | X | 2# + 1 (and g > 2), thus sg — ± 1 ;

then eg sg_1 if g is odd, and sg —sg^1 if g is even.

Proof of this fact: take a fixed A0 c X of order two. The set of B e 2X

such that Q (B) Q(A0 + B) 0 (recall that Q (B) 0 means that
11? I 1 (4)) has cardinality 29~1 (29~1+sg) by definition of sg and
proposition 2.1.1. But clearly this number is also twice the cardinality of the

set of subsets C of X - A0 such that | C | 2g - 1 (4) (in fact any such B
defines a C by C * - (A0 kjB) and this map is two-fold) and the number

of these is 2^"2 (20~1 + eg-1) or 2g~2 (29~1 -Sg-f} according to 2g - 1

1 (4) or 2g — 1 3 (4), i.e. g odd or even. This proves the fact and

completes the proof of the proposition.

3.3 If Q is odd, let us agree to modify Q in the way described in 1.1 to
obtain an even torsor Q. With this convention, the following notation will
be adopted:

Jx — 2* ex e

Sx 2* QX Q

or Q according to the value of g mod 4.



— 213 —

The identification Sx ^ Q(Jx>ex) in 1-4 maY be made explicit: if
Be Sx, B becomes the following quadratic form

I A I

B(A) \AnB I +^(2).
Let's now make explicit the condition for a triple (Bt, B2, i?3) of elements

of either S J or to be a triplet (2.3). This means that

QxiZBd Z Qx(Bi)
and this is equivalent to

£ I Bt nBj I â 1(2),
i<j

or still to
I U jB I |n^|(2).

3.4 The quadratic form q0 on Jx singled out in 3.1 e) corresponds through
the identification Q (Jx, ex) Sx to X itself. As Q (X) g + 1 (2), it
results from the last part of 3.2.1 that the Arf invariant of q0 is 0 for
q eee 0, 3 (4), 1 for g 1, 2 (4). In other words, q0 e Sx for g ~ 0, 3 (4),

q0 e Sx for g s 1,2(4).

3.5 Let's assume in this and the next sections that X is of even order,
I X\ 2g + 2. Then, the linear map p passes to the quotient 2X / {0, X}.
This quotient identifies naturally with the set of partitions of X into two
subsets, and will be denoted P2 (X). If p: P2 (X) -> Z/2Z still denotes the
induced map, we will write

P+2(X) p-'{0)

p-(X) p-*( 1).

With respect to the bilinear form e, Xis orthogonal to 2X, then inducing
an alternate bilinear form, still denoted by e, on P2 (X). This form is non-
degenerate. To prove this, observe that if A e 2X, A different from 0 and X,
and x e A, x' £ A; then, if A' {x, x'}9 e (A, A') 1.

3.6 Two cases may appear in this situation.

a) q is even. Then, the map g:2!f->Z/2Z passes to the quotient
P2 (A), so this becomes a symplectic torsor over (P2 (X), e). But in this
case the canonical quadratic form q0 does not pass to the quotient P2 (X).

b) g is odd. Then, the map Q does not pass to the quotient, but q0 does,
so there is a natural characteristic.
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3.7 The following construction would help in developing the case where
I X I is even along the lines of 3.2-3.5, which I won't do. Let X be of odd
order ] X \ 2g + 1, and define X' III {X}, thus | X7 | 2g + 2.

We have a natural linear map
2* - 2X'

and this is compatible with p, e, Q, q0. Composing this with the passage
to the quotient, I have a linear isomorphism

2x ^P2 (X '),
and by compatibility with p, p', isomorphisms

2x^Pt (X ')

2X P2 (X ').

The first is compatible with e, e\ and with the canonical quadratic forms
if g is odd. The second is compatible with <2, Q' if g is even.

§ 4 Basis and fundamental sets

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) is a basis (xt)ieI for J with the property that e (xb Xj) 1 for i =£ j,
the set of ordered normal basis (i.e. for I {1, 2g] if 2g dim J)
will be denoted ONB (/, e). The symplectic group Sp (/, e) clearly acts on
ONB (/, e) and it does it simply transitively, because if two ordered normal
bases for (/, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (/, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (/, e) of symplectic basis is a torsor
over Sp (/, e), thus if ONB (/, e) is non-empty, both torsors should be

isomorphic and indeed there would be as many isomorphisms as elements

in the group Sp (/, e). What I proceed to exhibit now is a definite
isomorphism

a: SB (J, e) -> ONB (J, e)

with inverse ß. If

xe SB (J, e), x (xl9 ...9xgix'X9 ...9x'g)

let's put y a (a), then by definition
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