
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 22 (1976)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: OPÉRATIONS D'ADAMS EN THÉORIE DES REPRÉSENTATIONS
LINÉAIRES DES GROUPES FINIS

Autor: Kervaire, Michel

DOI: https://doi.org/10.5169/seals-48172

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-48172
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


OPÉRATIONS D'ADAMS
EN THÉORIE DES REPRÉSENTATIONS LINÉAIRES

DES GROUPES FINIS

par Michel Kervaire

Cet article expose la définition et quelques propriétés d'une famille

d'opérations Wni n entier, agissant sur l'anneau R (FG) des représentations
virtuelles d'un groupe fini G sur un corps F. La définition de R (FG) est

rappelée au § 1. Ces opérations sont analogues aux opérations introduites

par Adams en topologie (mais dont la connaissance n'est pas nécessaire

ici).
Pour faciliter la lecture, une partie de la théorie classique des

représentations linéaires des groupes finis est sommairement résumée au § 1.

On ne considère d'ailleurs que les représentations sur un corps commutatif
(mais de caractéristique quelconque). Pour les détails qui manquent, on se

reportera aux livres C. Curtis and I. Reiner, Representation theory of
finite groups and associative algebras. Interscience publishers, New York
(1962) et J.-P. Serre, Représentations linéaires des groupes finis. Hermann
(1967).

Aux §§ 2-4 on trouvera la définition des opérations Wn : R (FG)
-» R (FG) et la démonstration de leurs propriétés élémentaires utilisées
dans la littérature, en particulier par D. Quillen pour sa démonstration de

la conjecture d'Adams (Topology, 10 (1971), 67-80.)
Dans le dernier paragraphe (§ 5), j'ai essayé de pousser plus loin

l'étude des opérations ¥n. Il s'avère que les Wn opèrent également sur le

groupe des classes de FG-modules projectifs K (FG). Ce fait, sensiblement
plus difficile à démontrer, est sans doute non-trivial car il implique
immédiatement la finitude du conoyau de l'homomorphisme de Cartan K(FG)

R (FG) et fournit l'exposant exact de ce conoyau.

Remarques. Un cas particulier des opérations Wn est déjà considéré

par Frobenius et Schur. (Sitzungsber. preuss. Âkad. der Wiss. (1906),
186-208.)
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Les opérations d'Adams ont été introduites dans le contexte des

schémas par R. Swan. {Proc. Symp. Pure Math. A.M.S., vol. XXI, Univ.
of Wisconsin (1971), 155-159.)

Enfin, les opérations d'Adams proprement dites ont été introduites
en topologie par J.F. Adams. (Ann. of Math. 75 (1962), 603-632.)

§ 1. L'anneau des représentations virtuelles.

Soient G un groupe (multiplicatif) et F un corps commutatif. On notera
FG l'algèbre de groupe de G sur F, i.e. l'espace vectoriel ayant pour base

les éléments de G muni de la multiplication induite par la multiplication
dans G.

Une représentation de G sur F est une classe d'isomorphie de FG-
modules (à gauche) de dimension finie sur F. Si V est un EU-module (de
dimension finie), on dira par abus de langage que V est une représentation.

Soient V un FU-module et eu en une i^base de V. L'action d'un
élément s e G sur V exprimée dans cette base, i.e.

5 * ej S Î= 1 ^ij Of

fournit un homomorphisme p : G -> GLn (F) qui associe à s la matrice
inversible p (s) (Sl7). L'homomorphisme p est appelé la forme matricielle

de la représentation V associée à la base choisie.

Soient G un groupe (fini) et F un corps commutatif. A ces données

on associe l'anneau R (FG) des ^-représentations virtuelles de G dont nous

rappelons brièvement la construction.
Soit L la groupe abélien libre ayant pour Z-base l'ensemble des

représentations de G sur F. Soit L0 le sous-groupe de L engendré par les éléments

de la forme V — V' — V" chaque fois qu'il existe une suite exacte 0 -> V
-» V -» V" Ö de FG-modules.

Définition. R(FG) L/L0. Un élément de R(FG) s'appelle une

F-représentation virtuelle de G.

La classe de V dans R (FG) sera notée [V], ou même quelquefois
simplement V.

Remarques. On voit facilement que tout élément de R (FG) peut
s'écrire sous la forme [U] — [V]9 où U et V sont des représentations de

G sur F. Rappelons que si la caractéristique de F ne divise pas l'ordre de
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G, l'existence d'une suite exacte 0 -> V -» V -> F" -> 0 entraîne que

V V ® VCeci n'est plus vrai si caract (F) divise l'ordre de G et il
est important pour la suite de ne pas faire d'hypothèse inutilement
restrictive sur le corps F.

La structure d'anneau sur R (.FG) est fournie par le produit .tensoriel

sur F des représentations. Si V1 et V2 sont deux FG-modules, G opère

sur V± (x) p V2 par s (v1 (x) v2) sv1 ® sv2, s e G, et on vérifie sans
difficulté que cette formule fournit bien une structure de FG-module sur

VI ®FV2. On obtient ainsi un produit sur L et il est immédiat de vérifier

que L0 est un idéal. Le produit tensoriel induit donc un produit sur
R (FG).

Comme V1 ®FV2 ~ V2 ®FVU l'anneau R(FG) est commutatif. Le

corps F, muni de la structure de FG-module « triviale » telle que sa a

pour tout a e F, représente l'élément neutre pour la multiplication dans

R (FG). On écrira [Fx] [V2] ou V1 V2 pour le produit dans R (FG).
La structure additive de R (FG) est facile à expliciter:

Définition. Un FG-module S est dit simple ou irréductible s'il est

non-nul et s'il ne possède pas d'autres sous-modules que 0 et S lui-même.

Théorème. Soient G un groupe fini et F un corps commutatif.
L'ensemble S (FG) des classes d'isomorphie de FG-modules simples est
un ensemble fini. Le groupe R (FG) est abélien libre avec pour base
l'ensemble S (FG).

Preuve. Soient S un FG-module simple et v g S, v ^ 0. L'application
FG -» S donnée par a -» av définit un homomorphisme de FG-modules
(FG étant regardé comme FG-module à gauche par la multiplication dans
l'anneau FG.) Cet homomorphisme est surjectif puisque S est simple.
On voit donc que S apparaît comme facteur de composition d'une suite
de Jordan-Hölder pour le module FG. Ainsi, il y a au plus l classes d'iso-
morphisme de FG-modules simples, où / est la longueur d'une suite de
Jordan-Hölder pour le module FG. (Pour le théorème de Jordan-Hölder,
voir [Curtis-Reiner] cité dans l'introduction, § 13.)

Soit maintenant R le groupe abélien libre sur l'ensemble fini S (FG)
des représentations irréductibles.

En associant à tout élément de S (FG) sa classe dans F (FG), on
obtient un homomorphisme

f : R -> R (F G)



— 4 —

Inversement, on définit g : R (FG) -» R comme suit. Si V est un FG-
module (de dimension finie) et V Vt => V2 => Vk ^ Vk+1 0

une suite de Jordan-Hölder pour F, on pose

Sa (V)£i=\S„
où est la classe d'isomorphie du facteur simple VilVi+1, i 1,..., k.

D'après le théorème de Jordan-Hölder, g0 (F) est un élément de R

qui ne dépend que de la classe d'isomorphie de V. On a donc un homo-
morphisme g0 : L -> R. On constate que g0 s'annule sur les générateurs
de L0, donc sur L0 tout entier, et induit par conséquent un homomor-
phisme g : R (FG) -» R.

La vérification de gf id. est immédiate. Celle de fg id. facile.

Exemple. Pour tout x e Horn (G, F•), on définit sur F une structure
de FG-module en posant s v x (s) L veL Ce module sera noté Fx
ou F (x). Il est évidemment simple. On a F (xù ® F (Xi) F (xi-Xi)- Le

cas où G est abélien d'exposant n, disons, et où F contient les racines du

polynôme Xn — 1 est fondamental pour la théorie. Dans ce cas les classes

d'isomorphie des FG-modules simples F (x), x E Horn (G, F forment une
liste complète sans répétition des ^-représentations irréductibles de G.

Donc, R (FG) pour G abélien et avec l'hypothèse faite sur F s'identifie à

l'anneau de groupe Z X, où X Horn (G, F').
Revenons au cas général. Si / : G -> Gf est un homomorphisme de

groupes, / s'étend (de manière unique) à un homomorphisme d'algèbre

/ : FG FG' et tout FG'-module V devient un FG-module par A v

f(A) v, A e FG, v e V. Cette construction fournit un homomorphisme
d'anneau /* : R (FG') - R (FG) dit de restriction. (On a également un
homomorphisme induit f* : R (FG) -> R (FGr) pour la structure additive
de ces anneaux, et donné par V FG' 0FGV. On ne s'en servira pas.)

Si F -> F est une extension de corps, tout FG-module V fournit un
FG-module E ®FV que l'on notera aussi EV. On obtient ainsi un
homomorphisme d'anneaux i : R(FG) R(EG) dit d'extension des scalaires.

L'anneau R (FG) est encore muni d'une involution dont nous aurons
besoin pour définir les opérations d'Adams d'indices négatifs.

Soit V un FG-module. On considère le dual F* HomF (F, F) qui
est muni d'une structure de FG-module définie par la formule

(a.f)(v)£seGas/(s~y),
a Eseo^-s e FG, veV.
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La classe d'isomorphisme de F* ne dépend que de celle de F. La

représentation F* s'appelle la duale de F. On a F** F, canoniquement.

On laisse au lecteur le soin de vérifier que l'opération * induit un auto-

morphisme involutif
* : R(F G) R(F G)

qui commute aux homomorphismes/* : R (FG') -> R (FG) et/* : R (FG)

-> R {FG') pour/ : G -» G' et i : R (FG) -* R (EG).
Deux théorèmes classiques jouent un rôle essentiel dans la suite.

Théorème I. Soit F -> E une extension quelconque de corps commu-

tatifs. L'homomorphisme i : R (FG) -> R(EG) d'extension des scalaires

est injectif.

Soit p un nombre premier. Un sous-groupe cyclique de G sera dit
p-régulier si son ordre est premier à p. Tout sous-groupe cyclique est

O-régulier.

Théorème II. Soient G un groupe fini et F un corps. Soit la famille
des sous-groupes cycliques p-réguliers de G, où p — caract (F). L'homo-

morphisme

vcs:R(FG)->Ylce>tR(FC),

produit des restrictions R (FG) -> R (FC), est injectif.

Ces théorèmes constituent un analogue du «splitting principle» en

topologie et seront utilisés de façon similaire pour démontrer certaines

propriétés des opérations d'Adams.
Pour démontrer les théorèmes I et II, les faits fondamentaux sont les

suivants.

Lemme 1. Soient G un groupe fini et F c= E une extension de corps
quelconque. On a E®pmdFG rad EG, où rad dénote le radical.

Soit F un FG-module. On appelle caractère de F la fonction F-linéaire
X : FG -> F définie par

x (s) Trace p (s)

où p (s) est la transformation F-linéaire F -> F associée à s, i.e. p (s) (v)

s. v.

Lemme 2. Soient G un groupe fini et X (FG) le sous-espace de HomF
(FG, F) engendré par les caractères des F-représentations de G. Les carac-
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tères Xi? • ••> Xr des représentations irréductibles forment une F-base de

X (FG).
Esquisses de démonstrations.
Soit k un corps premier, i.e. Q ou Fp pour p premier. D'après le

théorème de Wedderburn, [Curtis-Reiner], § 26, l'algèbre semi-simple
fcG/rad kG se décompose en produit

kG)rad kG Di(nl) x x Ds(ns)

d'algèbre de matrices Dt (nt) sur des corps gauches Db
Les corps gauches Dt sont munis d'une forme trace non-dégénérée,

i.e. (x, y) -» Trace ö./fc (x.y) est bilinéaire de noyau nul.
En effet, pour k Q c'est évident et dans le cas où k Fp, les Z>f

sont des corps finis, donc en fait commutatifs et galoisiens, donc séparables

sur Fp.

On vérifie alors facilement que pour tout corps F k, les F-algèbres

F ®k Dt ont également une trace sur F non-dégénérée et sont donc semi-

simples.
Il en résulte que F ®k (kG/md kG) FG/ (F ®kmdkG) est semi-

simple. Donc, rad FG a F ®k rad kG. Comme l'inclusion inverse est

évidente, on a F ®k rad kG rad FG. Le lemme 1 s'ensuit immédiatement.

De plus, le fait que la forme trace sur F soit non-dégénérée dans

F ®k Dt entraîne aussi que dans la décomposition de Wedderburn

F G/rad F G ^ K^nJ x x Kr(nr) 9

chaque corps (gauche) Kbi 1, r, possède une forme trace sur F
non-dégénérée. En particulier, il existe des éléments oq e Kt tels que
traceF (oq) ^ 0, i 1, r.

Pour démontrer le lemme 2, on observe d'abord que les caractères

Xu-»?Xr des FG-modules simples engendrent X(FG). Il reste alors à

démontrer que ces caractères sont linéairement indépendants sur F. Soit

St le Kt (Tq)-module formé des matrices nt x nt dont toutes les colonnes

sont nulles sauf la première. On sait que Sl9 ..„ Sr regardés comme FG-
modules forment une liste complète de FG-modules simples non-isomorphes.

Soient maintenant at e FG des éléments se projettant sur

oq e xi e Kt (nt) et sur 0 dans les autres facteurs Kj (nj) pour j =£ i. (^n
dénote la matrice nt x 77. de K{ (nt) dont tous les coefficients sont nuls sauf

celui d'indice (1, 1) qui est égal à 1.)



Un calcul de traces montre aisément que

Xi (cij) ôtj. trace£ (af).

L'indépendance linéaire de Xu ••*> Xr en résulte.

Démonstration du théorème I: R(FG) R (EG) est injectif.

Il suffit de voir que si S et T sont deux EG-modules simples

non-isomorphes, alors ES et ET sont semi-simples et sans facteur commun, i.e.

ES somme directe de £G-modules simples Si9 ET somme directe de EG-

modules simples Tp et St s|ë Tj pour tout couple (i,j).
ES et ET sont semi-simples car ils sont annulés par E ® rad FG. Donc,

par rad EG, en vertu du lemme 1.

Pour vérifier qu'ils n'ont pas de facteur simple commun, il suffit de

calculer Hom£G (ES, ET) 0. Cela résulte de UomEG (ES, ET)
E®FUomFG (S, T) 0.

Démonstration du théorème II: res : R (FG) Ylcev E (FC) est

injectif.
Soit x ' E (EG) -» X (FG) l'application qui associe à une représentation

V son caractère Xv- On a un diagramme commutatif

jR (FG) -> X(FG)

i res | res

Ylce<gR(EC) -> Yl Ce<$ X(FC),
oi\ < est l'ensemble des sous-groupes cycliques /^-réguliers de G,p caract F.

Si res 0, cela veut dire que Xa s'annule sur tous les éléments p-
réguliers de G. Il en résulte que x* est identiquement nulle. En effet, tout
élément x de G s'écrit x y z, où y et z commutent, y est /^-régulier et

z d'ordre une puissance de p. (Si mq est l'ordre de x, avec m premier à p
et q une puissance de p, prendre y xq et z xm.) Si V est une représentation

de G, les valeurs propres de z sont toutes égales à 1. (C'est la seule

racine p-ième de 1 dans F.) Donc les valeurs propres de x yz sont les

mêmes que celles de y. Il en résulte que Xv (x) Xv 00? et Xa (x) Xa 00
pour tout a e R (FG).

Donc, res xa 0 entraîne Xa 0. Comme d'autre part R (FG) est
abélien libre avec pour Z-base les représentations irréductibles Sl9 Sr et

que Xi X (Si), Xr X (Sr) est une E-base de l'espace des caractères
X (FG) en vertu du lemme 2, on conclut que si res Xa ~ 0, alors a est
contenu dans pR (FG).
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Le noyau de res : R (.FG) -> J~[ Cs<# R (FC) est donc contenu dans

pR(FG). Comme maintenant Y[ cev R (FC) est sans torsion, on a

Ker (res) nnpn R (F G) 0.

Au § 5 nous aurons besoin de K (FG) dont la définition sera alors

rappelée, et du fait que si F est de caractéristique non-nulle, alors la flèche

d'extension des scalaires K(FG)->K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, où K(FG) est noté

PF (G). Nous ne la reproduisons pas.

§ 2. Puissances extérieures

Les puissances extérieures des FG-modules fournissent un élément de

structure additionnel dans l'anneau R (FG), appelé 2-structure qui nous

permettra au paragraphe suivant de définir pour tout entier n un endo-

morphisme d'anneau

Wn:R(FG) -> R(FG)

jouissant de propriétés analogues à celles des opérations d'Adams en

topologie.
Soit V un FG-module, toujours de dimension finie. On notera Am V la

m-ième puissance extérieure de V. C'est le quotient de la puissance tensorielle
Vm V (x) V ® ® V (m facteurs) par le sous-espace vectoriel engendré

par les éléments de la forme v± ® (g) vm avec vf Vj pour au moins nu
couple d'indices distincts (z, /).

L'action de G sur Xm V est induite de l'action de G sur Vm. On convient

que A0 V F avec action triviale, et A1V V.

Il s'avère que les puissances extérieures Am, m ^ 0, induisent des

opérations

ïm:R(FG)->R(FG)
sur l'anneau des représentations virtuelles, et on a la formule habituelle

4,0+/?)
Le point essentiel est le

Lemme. Soit 0-^Vo^V1-^V->0 une suite exacte de FG-modules.

Alors,

[4 4] Z,=o 0,4]. [4^-4
dans R(FG) pour m 0,1,
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Ici [U] désigne la classe de U dans R (FG).
On va démontrer que Xm V1 possède une filtration

Am Vl W0=> => Wm A„, V0 => 0

par des sous-modules Wt tels que

WtIWi+1 X{ V0 0 Xm-i V

pour i 0, ||..., m.

Par définition du produit dans R (FG), on a

[A( F0] [Am_( F] [A, F0 ® A„,_.; F]

D'autre part, dans R (EG), on a

[Am Fj I.roWWm].
et le lemme en résulte.

Soit f '.V Am V1 l'application canonique. On considère le sous-

module Do ® LT' de V. Son image par f est un sous-module Wt de

Xm V1. Il est clair que les Wi9 i « 0, 1, m 4- 1 sont des sous-modules

emboités de Xm V1.

Reste à démontrer l'isomorphisme WJWi+1 lt V0 0 Am_i V de

EG-modules pour i 0, 1, m.

On considère le diagramme

v'o ®vT1 -f-+ w,

ipliV'o ®WJWi+ 1

\ /^ / S"

Xi V0 0 Xm-i V

où p est induit par la projection V1 V.

Tout d'abord /induit bien une application /'. En effet, on vérifie
immédiatement que /(Kerp) c Wi+1 et il en résulte que /' est bien définie. Il
est clair que/' est EG-linéaire. Il est également évident que/7 se factorise

par une application EG-linéaire f" : li V0 ® Xm^f V -> WJWi+1. La
surjectivité de/ (sur Wt) implique la surjectivité de f".

Par ailleurs, on constate que

dimF Am Vl Yjî=o dimF (^F0 ® Xm^tV)
car

dim A, U(' et O Zi=oOLN-i)
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comme il résulte de la comparaison des coefficients de t dans les deux
membres de l'identité (1 + t)n+N (1 + t)n (1 + t)N.

Puisque dimF (.AtV0 ® Am_y) ^ dim^ WJWi+1 en vertu de l'existence
de /", surjectif, on a donc

dimF Am Vt Yi=o dimF (Ay0 ® Am__y)

è £i=o dim WJWi+i dimFAm Vx

ce qui implique que toutes les « inégalités »

dimF (A,F0 ® Am_,) g dimF WJWi+x

sont en fait des égalités.

Il en résulte que f" est un isomorphisms pour tout i et le lemme est

démontré.
Pour vérifier maintenant que Am induit une application

Am: R (F G) R (F G)
telle que

A»(«+/D «

il est commode d'introduire l'anneau des séries formelles R(FG) [[*]].
Pout toute F-représentation V de G, posons

HV) Emïo[Am(K)].tm6Â(FG)[M].
Une série formelle de terme constant 1 est inversible. (A0 V 1

Comme les représentations forment une base de L, la formule ci-dessus

définit un homomorphisme

2:L-> 17 (R (F G )[[*]])
du groupe (additif) L dans le groupe multiplicatif des éléments inversibles
de R(FG)[[/]].

Si 0 -» V0 -» V1 -» V -> 0 est une suite exacte de FG-modules, le lemme

exprime que A (Vx) A (V0). À (V). Donc, A passe au quotient et fournit
un homomorphisme

A:R(FG)^U(R(FG)l[t]])
du groupe additif de R (FG) dans le groupe multiplicatif U (R (FG) [[t]])
et dont les coefficients sont les applications

Am: R (F G) -> R(F G)

cherchées, i.e. Am (a) est le coefficient de tm dans la série formelle A (a).
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Il est évident que la formule

Am(a+£) ZiZoM-Vm-iß)
ne fait que traduire l'identité

2(a+£) (Xa).(Xß).

Remarque. lm commute à l'involution * : R (FG) —> R (FG) définie au

§ 1. Enfin, Xm commute aux homomorphismes de restriction/* : R(FG')
-> R (FG) pour f :G -* G\ ainsi qu'aux homomorphismes d'extensions

de scalaires.

§ 3. Définition des opérations d'adams.

Soient tu tN des indéterminées. Pour tout entier n tel que 1 ^ n ^ N,

on considère le polynôme symétrique t" + t2n + + tNn et son expression

unique QNn (sl9..., sn) comme polynôme en les fonctions symétriques
élémentaires .l5 sn de degré ^ n des indéterminées tl9 tN. Les fonctions

sl9 sk9 sont définies par l'identité

xn +... +(-i)'s(x*-' +... +(-i nAd-g
avec les conventions sk 0 pour k > N et s0 1. On observe, en faisant

tN,+ 1 tN> + 2 tN 0 (où N' ^ JV), que

$i (ßl 5 ." 5 ^iV'5 * ' * ' (^1 * * *

pour i ^ iV'.

Exemples.

Qi(si) Q2(SI,S2) Si2 -2S2,
03 Ol, ^2? 53) Si3 - 3Si S2 + 3S3 p

g4 (Si, s2, s3, s4) Si4 - 4si2 s2 + 2s22 + 4si s3 - 4s4

où l'on a écrit Qt au lieu de QNt pour simplifier l'écriture.
En fait, le polynôme QNn (sl5 sn) en tant que polynôme en sl9 sn

est indépendant de N pourvu que N ^ n. Cela résulte d'une identité dont
nous aurons encore besoin plus bas, exprimée par le lemme qui suit.

Soient /,..., tN et t[9 0" deux suites d'intéderminées et tl9 tN
leur juxtaposition, i.e. N N' + N" et t{ t• pour 1 ^ i ^ TV', tN>+j

t] pour l S j S N". Soient s[9 s'N> et s'u s'N„ les fonctions
symétriques élémentaires des t'l9 tN> et t'l9 t"N» respectivement. Enfin, soient

.l5 sN les fonctions symétriques élémentaires des tl9..., tN.
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Lemme 1. Avec les notations ci-dessus, on a

$n X! i= 0 - i '

De plus,

ôn (^1, sn) QNn (sl5 Sn) + Qn (sy sn).

La première formule résulte immédiatement des identités de définition
des Si et s] en calculant leur produit et en le comparant à l'identité de

définition des sn.

La deuxième identité est une trivialité après avoir remplacé les

polynômes Qn par leur expression en fonction des t.

Il résulte tout d'abord du lemme que QNn (su sn) est indépendant
de N pour N > n. En effet, si l'on envoie t'u t"N» sur 0, on obtient s[ st

pour i *= 0, 1, n si n ^ N\ comme on l'a observé ci-dessus, et s'j — 0

pour j > 0. Donc, QNn (su sn) QNn' (^1? sn) pourvu que N ^ N'
^ n.

On écrira Qn pour Q^n avec n ^ N.
On a aussi

Qn — Sl Qn-1 + ••• + —1y Si Qn-i +
+ ~ l)""1 sn-i ôi +("1)Hnsn 0

en remplaçant successivement X par tu tn dans l'identité de définition
des Si et en sommant membre à membre. Ceci montre par récurrence sur n

que Qn(su sn) est un polynôme à coefficients entiers.
On voit aussi que Qn(s1, 0, 0) s±n.

On peut alors définir l'opération d'Adams ¥n,ne Z sur un FG-module
V comme suit.

Définition. W0V (dim V). 1,

où 1 est l'élément unité de R (FG) ;

Fn V Qn(kiV, k2V, XnV) pour n > 0

le membre de droite étant regardé comme un élément de R (FG) ;

v_n V Wn F*, où n > 0

Pour démontrer que ces formules déterminent une opération Wn : R (FG)
R (FG) nous aurons besoin du lemme suivant.

Lemme 2. Soient R un anneau commutatif avec élément unité, et {X},
{À]} et {2f}, i 0,1,... trois suites d'éléments de R telles que X'Q X0

k0 1, et
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K Ei'o^Ci
pour tout m ^ 0. Alors pour tout n ^ 1, ö«ö

Ônal?...,AJ Qn(X'l9...,X'tt) + Qnttl.
Ceci résulte immédiatement de l'indépendance algébrique des fonctions

symétriques élémentaires. Il existe un homomorphisme

h : Z[si,sN,s'I,s;»]-
tel que h (si) Xi et h (s]) Xj. Cet homomorphisme envoie sm sur Xm

en vertu du lemme 1 et de l'hypothèse

Il s'ensuit que h envoie Qn (sl5 sn) sur Qn (21? 2J et l'assertion résulte
de l'identité Qn Qn + Qn du lemme 1.

Lemme 3. Pour tout n entier, l'opération Wn sur les FG-modules induit
un endomorphisme de groupe additif

Wn: R (F G) R (F G).

En outre, pour n > 0, on a

ynt«)ô„(V,-a«)
pour tout ae R (FG).

Si 0 -> V' -> V -» V" -> 0 est une suite exacte de FG-modules, le lemme
du paragraphe précédent dit que

KV= .(K
D'après le lemme 2 ci-dessus appliqué avec

4, 4, K Xt xt v\ X] X] v",
on a donc

Wn V Wn V' + Wn F" s

pour n > 0.

Il en résulte immédiatement que Wtt : R )R )est bien définie
et additive pour tout entier n.

La formule

y» («)

pour a e R(FG) quelconque est conséquence de l'additivité de Wn et de
celle en a de Qn (X^,Xna).



§4. Propriétés élémentaires des opérations d'adams.

Il est clair tout d'abord que les Wn sont fonctorielles, i.e. si f : G G'
est un homomorphisme de groupes finis, et f*:R {FG') -» R {FG)
l'homomorphisme de restriction, on a

y»/*
pour tout entier n. De même pour une extension de corps F -» E, on a

iWn Wni9 avec i : R(FG) R(EG) l'homomorphisme d'extension de

scalaires.

Ceci résulte du fait que /* et i sont des homomorphismes de A-anneaux,
i.e. commutent avec les opérations Am.

Par contre lFn ne commute pas en général aux homomorphismes
induits. Exemple: Prendre /:{!}- C2, où C2 est cyclique d'ordre 2 et
calculer F2f* ~~ f* F2 sur l'élément unité de R (FC2), où F est de

caractéristique 7^ 2. On trouve 2 - [FC2] # 0.

Nous commençons une liste des propriétés des Wn : R (FG) -» R (FG),
où comme ci-dessus, G est un groupe fini et F un corps commutatif.

(1) Les opérations ¥n sont des homomorphismes de A-anneaux, i.e.

<?„(«./?) •?„(«). y,G8), eî

(2) Pour m, n entiers quelconques, on a

U/ __ 17/ 17/ __ 17/ IU1 m'n 1 m * 1 n 1 n • 1 m •

(3) Si a est la classe d'un EG-module de dimension 1 sur i7, on a

^„(a) a", où a~w (a*)m pour m > 0.

(4) Pour toutp premier et tout aei?(EC), on a

(a) mod p R (F G).

Ces propriétés sont les analogues des propriétés des opérations d'Adams

en topologie. On a en outre quelques propriétés plus typiquement
algébriques qui proviennent de relations entre les opérations Wn et l'action des

automorphismes du corps de base sur l'anneau des représentations
virtuelles.

Soient E un corps commutatif et g e Aut (E) un automorphisme de E.

A tout EG-module V on associe un nouveau EG-module gV obtenu comme
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suit. En tant que groupes abéliens aV et V sont égaux. L'élément v e V

considéré comme élément de oV sera noté crv. L'action de EG sur oV est

définie par
a .a (y) cr(cr_1 (a) v)

où
a'1 {a) ^ssG<r_1(«s)s,

si

^ ^jSeG ^ *

Dans cette formule, a~1(a)v est défini par l'action de EG sur V, et

cr (g~1 (a) v) est l'élément de oV correspondant à(j_1(ô)ve V.

Il est facile de voir que si 0 -» V V -> V" -» 0 est une suite exacte

de EG-modules, la suite 0 -» oV' -> oV -> oV" -> 0 est également une
suite exacte de isG-modules. Il en résulte que <x induit un automorphisme
cr : R (EG) -» R (EG). C'est un automorphisme d'anneau.

On vérifie sans difficulté que a commute aux homomorphismes de

restriction, induits, d'extension de scalaires, à l'involution, aux puissances
extérieures et opérations d'Adams.

Exercice. Si p (s) (S^) est la forme matricielle de V associée à la
base eu en de V, alors la forme matricielle de aVpar rapport à oel5 oen

est donnée par (<rp) (s) (oS^).

Définitions. Soient G un groupe fini et p un nombre premier. On dira

que s e G est p-régulier si l'ordre de s est premier à p. Par convention tout
élément de G est O-régulier.

Le p.p.c.m. des ordres des éléments p-réguliers de G sera appelé Yexposant
p-régulier de G. L'exposant O-régulier est donc simplement l'exposant de G.

Nous pouvons continuer la liste des propriétés des Wn.

(5) Les opérations xFn sont périodiques, i.e. si m est l'exposant p-
régulier de G, où p — caract (F), on a

Vn+m Yn: R(F G) R(F G)

pour tout entier n.

(6) Si F contient les racines du polynôme Xm — 1, où m est l'exposant
p-régulier de G,p caract (F), et si a e Aut (F) et s e Z sont liés par
a (£) £s pour toute racine Ç de Xm - 1, alors Ws(ol) a (oc) pour
tout oce R (FG).

Remarque. Il existe un théorème de périodicité des opérations d'Adams
en topologie. (Cf. J.F. Adams, On the groups J (X)—III, Topology, Vol. 3
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(1965), 193-222, en particulier le § 5.) Mais il ne semble pas y avoir de rapport
entre ce théorème et la propriété (5) ci-dessus.

Enfin, en considérant l'injection de Fg (le corps fini à q éléments) dans

une clôture algébrique et en prenant o automorphisme de Frobenius,
on obtient comme corollaire la propriété suivante :

(7) L'opération Wq : R QFqG) -> R (FqG) est l'identité.
Toutes ces propriétés sont faciles à démontrer en tenant compte des

théorèmes I et II du § 1.

Les propriétés (3) et (4) se vérifient comme en topologie.
Démonstration de (3). Si F est un FG-module de dimension 1 sur F,

il s'agit de voir que Wn (F) F". Or, l'hypothèse entraîne que

On en déduit immédiatement la propriété (3).

Remarque. On a donc en fait ¥n (a) a" dès que a 0 pour / > 1.

Cependant cette formulation n'est pas plus générale que la précédente.
En effet, si a e R (FG) satisfait à a 0 pour i > 1, alors a est la classe

d'un FG-module de dimension 1. Pour le voir, il suffit de remarquer que
les classes de FG-modules de dimension 1 sont inversibles dans l'anneau
R (FG), i.e. si dim V 1, le produit V ® V* est isomorphe au FG-module
trivial F. (Ceci justifie la convention [F]-1 [F*] pour dim F 1 faite

précédemment.) L'isomorphisme est donné par v ® v* -> v* (v). Si alors

a £/ — F et 2£ a 0 pour i > 1, on compare les termes de plus haut

degré en t dans l'identité 2 (a). 2 (F) 2 (U). On trouve a dét (F)
dét (U), où dét (F) 2dim v (F) est de dimension 1. Donc, a est la

classe dans R (FG) de dét (U). {dét (F)}"1 dét (U). dét (F*).
D'une manière générale, pour que a e R (FG) soit la classe d'une

représentation il est évidemment nécessaire que 2 (a) soit un polynôme.
Mais cette condition n'est pas suffisante.

Exemple. Soient G S4, le groupe des permutations de {1,2,3,4}
et F C. Il existe un CS4-module simple F de dimension 3 avec la forme

matricielle

22 F 23 F 0.
Donc pour n positif, on a

¥nV= QAKV, 0,...,0) (2, F)" F".

0-1 0

p (12) -1 0 0 >, p (12) (34)

0 0 -1

0 1 -1
10-1
0 0-1
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0 0 1 0 0 1

P (123) • 1 0 0 P(1234) • -1 0 1

0 1 0 0 -1 1

(C'est le produit de la représentation signe par la composante, simple de

degré 3 dans la représentation de permutation naturelle.)
En calculant les valeurs propres, on vérifie sans difficulté que X V
1 + Vt + Vt2 + t\ Donc, X(V~l) 1 + (V-l)t + t2, un

polynôme. Cependant V — 1 est strictement virtuelle.
La propriété (4), i.e. Wp (a) ap mod pR (FG) résulte immédiatement

de l'identité Qp (s1? sp) mod pX [s1? ^p], elle-même conséquence

directe de

y + + y (t1 + + tpy mod y.
Pour démontrer les propriétés (1) et (2), on utilise les théorèmes I et II.

Puisque Wn commute aux homomorphismes i : R (FG) ^ R (EG)
d'extension de scalaires et commute également aux homomorphismes de

restrictions R (FG) -> R (FC), il suffit de démontrer (1) et (2) dans le cas

d'un groupe cyclique et avec un corps de base algébriquement clos E.

Comme d'autre part R(EC) est engendré par les classes des EC-
modules simples, il est suffisant de vérifier (1) et (2) lorsque les variables
sont les classes de E'C-modules simples. (On observera toutefois que cette
réduction pour la formule Wn Xm Xm Fn exige de savoir déjà que Wn

est u; homomorphisme d'anneau. La démonstration de Wn (a./?)

Fn (a) Wn (ß) doit donc précéder celle de Wn Xm Xm ¥„.)
Or, on a vu au § 1 que tous les L'C-modules simples sont de dimension

1 sur E. Pour un isC-module de dimension 1, la vérification de (1) et (2)

par calcul direct est immédiate.
Pour démontrer (5) et (6) il est également suffisant, en vertu du théorème

II, de se borner au cas d'un groupe cyclique C dont l'ordre divise
l'exposant p-régulier m du groupe donné G. (p caract (F).) On peut
aussi supposer pour démontrer (5) que le corps de base E contient les
racines du polynôme Xm — 1.

Tout L'C-module simple est alors de dimension 1 sur E et de la forme
Ev où % g Horn (C, E'), l'action de C sur Ex étant donnée par

s .z %(s)z, seC, zeEx.
On a donc

Wn(Ex) E(f), et Wn+mEx VnEx

L'Enseignement mathém., t. XXII, fasc. 1-2. n
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résulte de xn+m iC• (Card C divise m.) Comme les classes des EC-
modules simples engendrent R(EC), il en résulte

Pn+m Vn:R(EC)->R(EC),
puis (5) en général par la réduction faite ci-dessus.

Pour (6), on se sert des mêmes remarques. On a

WS(EX) E(f)
comme on vient de le voir. Il reste à vérifier que a(Ex) E (xs), c.-à-d.

que C opère sur a (Ex) par

x.az /s(x)<7z, zeEx, xeC.
Or,

x.az a (a~1 (x) z) a (x.z) — a (x M z) ° (x (x)) • ü z >

et

(z 00) zs w >

puisque x (x) est racine m-ième de l'unité.
La propriété (7) est un corollaire facile de (6). Soit E une clôture

algébrique de Fq, le corps à q éléments et soit a e Aut (E/¥q) l'automorphisme
de Frobenius, i.e. a (a) aq pour tout aeE. Comme i : R (FÇG) R (EG)
est injectif et commute à Wq, il est suffisant de voir que Wq i i. Or, d'après
(6), Wq ß aß pour tout ß e R{EG). Si ß ia on vérifie facilement que
aß ß. (C'est trivial sur la forme matricielle d'une représentation.) Donc,
Wq ia ia, et Wq a a en résulte.

Remarque. Si a appartient au sous-groupe des commutateurs de

Aut (i7), son action sur R (FG) est triviale.

§ 5. Action de Wn dans le groupe des classes de projectifs

Il existe un analogue K {FG) de R (FG) construit à l'aide des FG-
modules projectifs. Soit L' le groupe abélien libre sur l'ensemble des

classes d'isomorphie de FG-modules projectifs de dimension finie. On
considère le sous-groupe L0 de L' engendré par les éléments P — P' — P"
s'il existe une suite exacte ->0. (On a alors nécessairement

P ^ P' © P".)
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Définition. K(FG) L'/L0.
K (.F G) est également un foncteur covariant en F. Si / : G -> G' est

un homomorphisme de groupes, on a toujours un homomorphisme induit

/* : K(FG) -» K(FG') déterminé par P -» PG' ®FGP, mais la restriction
n'existe que si FG' est projectif de type fini sur FG ce qui a lieu (G et G'

étant finis) si G est sous-groupe de G'. (FG' est même alors PG-libre).
Dans ce cas, / : G c G' (finis), on a donc un homomorphisme de restriction/*

\K(FG')-+K(FG).
Il est évident que l'on a un homomorphisme de groupes abéliens

c : K (F G) R (F G)

appelé homomorphisme de Cartan.
On va voir que K (FG) est également muni d'opérations d'Adams qui

sont compatibles, via c, avec les opérations sur R (FG).

Remarque. K(FG) n'a en général pas de A-structure compatible via c

avec celle de R {FG). Exemple: Soient Pie corps à 2 éléments et G le groupe
cyclique d'ordre 2. On constate que K(FG) Z engendré par [FG], et
R (FG) Z engendré par la classe de P. L'application c : K {FG) -> R {FG)
envoie [PG] sur 2 fois le générateur [P] de R (FG). Or, X2 (FG)
F$cK (PG).

La définition des Wn du § 3 est donc inapplicable pour K (PG).
On va donner une nouvelle définition des Wn inspirée par une construction

analogue en topologie due à M. Atiyah. (Quart. Journal of Math. 17

(1966), 165-193. Cf. formule (2.7).)
Le point essentiel est la définition de Wx pour / premier, / A caract (P).

La définition ci-dessous fonctionne aussi bien pour K (PG) que pour
R (PG).

Soient V un PG-module et V1 la /-ième puissance tensorielle de V. Le
groupe Si de permutations des indices {1,...,/} opère sur V1 par

cc.(v1 0 ®vt) Vh 0
où

h oc^1 (k),ae St> k 1, ...,/.
Soit y la permutation circulaire des indices 1, ...,/, i.e. y (z)

i + 1 mod /. On notera Cx le sous-groupe (cyclique) de St engendré par y.
Soit enfin P le corps des racines sur P du polynôme X1 - 1. Comme on a
supposé / ^ caract (P), le PCz-module EVl se décompose en une somme
directe

EVl©ÇeMi(£F%,
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où Jjl1 est le groupe des racines de X1 — 1 dans F et (EVl)ç est le sous-espace

propre de EVl pour la valeur propre £ de y, i.e. (.EV= Ker(y-£).
Il est évident que (EV1)^ est sous FG-module de EV1.
On a (EVl)ç E ®F V(£)> où V(fi) est un FG-module univoquement

déterminé.

Ceci va résulter du lemme classique suivant.

LemmEc Soient W un EG-module et n un groupe fini d'automorphismes
de E avec corpsfixe F. Supposons que n opère sur W par automorphismes
semi-linéaires, i.e.

<r (a w) <7 (a) a (w),

pour tout a e E, w e W, g e n et que les actions de n et G commutent.
Soit S : W -> W définie par S (W) £aen ° (H0- Alors, S (W) est

un sous-FG-module de W et W E ®F S (W).

Remarque. Si, par ailleurs, on dispose déjà d'un FG-module U tel que
W E 0F U, et si 1 ® U est stable pour l'action de n, alors U ^ S W),
comme FG-modules.

En effet, soit {<7 a}aeit une base normale de F/F. On définit h : U -> S (W)
par h (iu) G (a ® u)• H esl clair <Iue ^ commute à l'action de G.

D'autre part h est injectif car

®u) ^aeJla(0 m) 0

entraîne u 0 puisque {g (a)} est une F-base de E et g (1 ® u) e 1 ® U

par hypothèse. Comme dimF U dim£ W dim£ S (W), il en résulte

que h est un isomorphisme.
Pour démontrer le lemme, on construit un FG-homomorphisme

/ : F ®F S (W) -> W par f(Yjiai®wd °n vclue f est

surjectif en prenant une forme <j> e Hom£ (W, E) dont on suppose qu'elle
s'annule sur f(E ®FS(W)) et en utilisant le théorème de l'indépendance
des automorphismes pour démontrer que </> 0. On constate l'injectivité
de / en écrivant les éléments de E ®F S (W) sous la forme YJ(TeKGa ® wç9

où {Ga}aeK est une base normale de F/F et en observant que les éléments

do S (W) sont invariants par l'action de n.

On va appliquer ce lemme avec W (EVl)ç et n Gai (F/F).
On fait opérer n - Gai (F/F) sur V1 comme suit:
On a l'injection n Gai (F/F) -> U (Z//Z) donnée par

g -» 5 mod Z si <t(£) 0
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pour tout £ e /q. D'autre part, à s e U (Z//Z) on associe la permutation <xs

donnée par
as (i + 1) is + 1 mod I.

La composition n -> U(Z/IZ) ô), notée cr -» aff5 suivie.de l'action
de sur F1 fournit une action de n sur V1.

On pose alors
<7 (a ® v) a (a) 0 aff (v)

pour a e E,v e V1.

Il est clair que cette formule définit une action semi-linéaire de n sur

EVl qui commute à l'action de G et laisse stable I ® V1.

On vérifie que as. y ys. as pour tout s e U (Z//Z). On a donc

cr y (V) / cr (ft), z; G £ V1

et cr £ pour tout £ g /q et par suite l'action de 7r préserve (EV1)^. En

effet,

yG(v) a (ys'v) ct(£sV)

où 55-' 1 mod L

En vertu du lemme, on a donc

(E V% ^E®F V(ç),
avec

7(0 S(EV%,
où

S(w) ^raff(w),we(£F\,

Définition. Wt (F) [F(1)] - [F (Q], où ; est un générateur
(quelconque) du groupe jà1 <=z E' des racines de X1 - 1 et [ ] désigne la classe

du module entre crochets dans le groupe de Grothendieck K(FG),
resp. R (FG).

Cette définition exige de vérifier

(1) que F (1) et F (Q sont EG-projectifs si c'est le cas pour F,

(2) que [F (Q] est indépendant du générateur choisi £ g /q.

Pour contrôler (1), on observe que

S{EVl) ®,eßlS(EV% 7(0-
Comme V1 est stable par n, la remarque qui suit le lemme ci-dessus entraîne

V1 s S(EVl)0^7(0
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ce qui montre bien que V (£) est projectif si c'est le cas pour V, et donc

pour V1.

Pour démontrer (2) on va en fait exhiber un isomorphisme de FG-
modules V (Q V (rj) pour deux générateurs quelconques £, rj e /q.
Puisque rj sont des générateurs de /q, il existe un entier n premier à / et
tel que t] Ç1. Soit, comme ci-dessus, ocn e St la permutation donnée par
la formule

ocn (i + 1) — in + 1 mod l.
On a vu que an y yn. ocrr II en résulte que l'on a un £G-homomorphisme
an : (EVl\ -» (EVl)ç. C'est évidemment un isomorphisme, par symétrie
de la construction. D'autre part ccn commute à l'action de n et fournit donc

un FG-isomorphisme an : S (EVl\ -> S (EVl)ç.
La définition a donc un sens. Pour démontrer que XF\ induit une

opération (additive) sur K {FG), resp. R (FG), il suffit de vérifier que si 0 -*F0
-> V1 -> V -> 0 est une suite exacte de FG-modules, projectifs si l'on
s'intéresse à K (FG), on a

% V1 V0 + V.

Soit Q le FG-module défini par la suite exacte

0 Q V[ V1 -> 0.

Comme ci-dessus, on a des opérations semi-linéaires de n Gal (E/F)
sur £F{, 2s F* et donc sur EQ, ainsi que des actions de St sur ces modules.

Il est clair que EVl0 c: EQ çt ZsFq est stable par G, 7i, S). On va démontrer

que
[SiEQ/EVl),] [,S(EQ/EVl0\]

pour tout Ç e ixi, où l'indice ^ signifie que l'on prend l'espace propre pour
la valeur propre £ de y, la permutation circulaire (y (z) z + 1 mod /),
et S est définie comme ci-dessus S J>e7r cr.

La suite exacte

0 -+EQIEVl0->E V\\E vl0-+EVl-+ 0

se décompose en somme directe de suites

0 - (E Q/E Vl0\->(£ V\\EVl0\- (E 0

exactes pour chaque £ e jxt. D'où

0 - S (EQ/EV'ok -> S (EV'JE-+S(E V% -> 0.
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On a évidemment aussi les suites exactes

0 - S(EVlo)(S(E V[)s-* SV'JE 0

A condition d'avoir démontré que les modules considérés sont pro-
jectifs si V0, V1 et V le sont, on a alors

[S(E [S(E - [S(E Vl0)J - \_S(EQ/E Vl0)J

En soustrayant membre à membre ces égalités pour f 1 et £

un générateur de /q, on obtient

y 'iV W[ V1 - W[ V0

Reste donc à démontrer que \S (EQ/EVo)J a un sens dans K(FG),
resp. R (FG) et ne dépend pas de £ e /q.

Pour toute suite e (el5 8/) avec sk 0 ou 1, posons Vs

Vn ® F£2 ® (x) Kgr C'est un sous .FG-module de V[. On note | e |

81 + + Sj. Les égalités | e | 0 et | e | / caractérisent les suites

(0, 0) et (1, 1) respectivement. D'autre part, les VE avec | s | /,
constant, sont permutés entre eux par Sh De même, les EVe sont permutés
entre eux par n. On voit que

G ii8i«n-
Les .FG-modules Vs fournissent une filtration de Q. Pour tout X tel que

0 ^ À g / - 1, on pose
ÔA Zle^

Les QÀ sont des sous EG-modules de Q et

ô Qi-i=> => ôx =» Qo

De même EQ EQi-i3 3 E Q, 3 EQ0 EVl0, et les groupes n
et Si préservent la filtration.

On va expliciter la structure de E Q1) pour
Notation. Soit We le produit tensoriel obtenu en remplaçant par V

chaque facteur V1dansVs.E.g.si / 5, s(1, 1, 0, 0, 1), on a

KEi ® ® V0®V00Vt
et

WeV ® V (x) F0 (x) V0 ® F.

On a une application évidente surjective F8 ->• 1Ee qui commute à l'action
de G. Remarquons aussi que tous les We sont projectifs si V et V0 le sont.
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Il est commode de faire opérer Sx sur les suites s (e1? 8X) par
permutation des indices. Le fait essentiel est que Cx opère sans point fixe sur
l'ensemble des suites s telles que | e | # 0, /. Il en résulte que les Crorbites
de ces suites ont toutes la même cardinalité / (qui est premier). Rappelons
d'autre part que à a e n tel que on a associé la permutation
GcaeSl donnée par &a (/ +1) is + 1 mod/. Comme les aff normalisent
Cz, il en résulte que n opère sur les orbites de Cz. Comme de plus n est

abelien, il est facile de voir qu'il existe un système Rx de représentants des

Crorbites dans l'ensemble des suites s telles que \ e\ X ^ 0, qui est

stable par l 'action de n.
Ces remarques permettent d'expliciter la structure de E (QJQX~ x).

Je dis que
E (QaIQa-i) E Cx ®E(® eeràE We)

par un isomorphisme qui commute avec les actions de G sur le deuxième
facteur et de Cz sur le premier (dans le membre de droite). On s'occupera
plus tard de l'action de n.

On définit fx : ECt ®E (®eeRxEW£) -+ E (QJQx-i) comme suit. Soit
z y1 ® w avec w wt ® ® wt e WE et y le générateur choisi de Cz.

Pour ek 1, on a wk e V et pour 8k 0, wk e V0. Pour chaque indice k
tel que 8k 1, on choisit un élément vk e V1 se projettant sur wk par la
flèche donnée V± -> V. Si 8k 0, on définit vk par vk wkeV0. On pose

f)Xt®w) y'.(vt ® ®vl)eEQJQÀ.1.

Il est facile de voir que fx est bien définie sur les éléments de la forme
y1 ® w. On l'étend à ECt ®)E {®eeRxEW^ tout entier par linéarité.

Il est clair que fx commute à l'action de G naturelle sur ®eeRx EWS et

triviale sur ECt. Il est également évident que fx est surjective. Pourvoir que

fx est un isomorphisme, on compare les dimension sur E des deux membres.

dim££ C, ®e(@s,rxEWe)/ .1(1) .(dimF F)A(dimA F0)!"A

On utilise ici le fait que Cx opère sans point fixe sur {e, | e | ^0, /} pour

dénombrer Card Rx -. ([). Chacune de ces dimensions est supérieure

ou égale à dimF QJQX-X Or,

Ei=î (a) • (^im VY (dim V0)l~x (dim V + dim V0)1 - dim V1 — dimFo
dim V[ — dim V1 — dim Vl0

dim ZlZi dim QJQ^.
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Donc, chaque/A, k 1, 1 est un isomorphisme.
Comme fx commute à l'action de Q, on a

E(.QxlQx-i\ s (£ C; ®£(®£eR;i£
(E (©eefl^ E ^e)

puisque l'action de Ct dans le deuxième membre se réduit à l'action sur le

premier facteur
En outre, on remarque que le membre de droite est EU-isomorphe à

®EeRxE We puisque (.E Ct)ç est de dimension 1 et que G y opère trivialement.
Le EU-module E (QJQx~i)ç est donc finalement isomorphe à

®eeRxEWE qui est indépendant de £ g /q.
Reste à voir comment ces isomorphismes se comportent pour l'action

de n Gal (.E/F). On fait agir a en sur ECt par

f d««;/) I; («i)

où £ mod / est déterminé par cr (£) pour tout £ g /q. On prend
l'action diagonale de % sur EC{ ®E (®EeRÀ E We), en observant que n

opère bien sur le deuxième facteur car Rx est stable par n. On vérifie alors
sans difficulté que fk a ofk.

Un choix de vecteur base pour (EC^ est

« 7 L r' y'

et cet élément est invariant par n. Donc,

fx : (E C,){ ®e(®ssRàE WJ ^E(Qà/Qà_^
commute à l'action de n, et il en est de même de l'isomorphisme

gx:(E C,)( ®E(®eeRxE W£

puisque n opère trivialement sur u.

Ainsi,

9x'f~xl-E( QJQz-i\^®sSrxEWs
est un isomorphisme de £G-modules qui commute à l'action de n et il
en résulte :

SE(QJQ^t)( s S(®KRiEWJ ^ ®seRxWs.

(Le deuxième isomorphisme en vertu de la remarque qui suit le lemme.)
On conclut que

S£(ÔA/ÔA-1 \ ®seRxW
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est indépendant de £ à jFG-isomorphisme près et est un FG-module pro-
jectif si V09 V et donc W£ le sont.

On considère les suites exactes

o -+E(QJV1O) -E^ÔA-I) -, 0

qui fournissent les suites exactes

0 -> SEiQ^itVbf -> SE(QJVlo\-*SE(QJQt.t)( - 0

On voit alors par récurrence sur A 1,...,/- 1 que SE (QJVl0)^ est

EG-projectif si V0, Vie sont, et que sa classe [Sis (QJVl0)J est indépendante
de £. Explicitement, on obtient

[sE(Qivi0)d
On a donc démontré

V'iiVi) F[(V0) + F\ (V).
Il reste à vérifier que le diagramme

K(FG) 1?(FG)

^ 1 ^
X(FG) __!> Ä(FG)

commute. Ceci est facile. Il est suffisant de vérifier res i (cFx— Ftc) 0,

avec res i : R (FG) -, R(LG) ^ °ù ^ est une clôture
algébrique de F et ^ est la famille des sous-groupes cycliques p-réguliers de G.

On sait que xFl commute à res z. Pour F' le même résultat est de

vérification facile. On est donc ramené à démontrer c FtV — Ftc V 0

dans le cas où F est algébriquement clos et G est cyclique (d'ordre premier
à caract (F)). On peut même supposer que V est un EG-module simple,
donc de dimension 1, puisque F\ et F x sont toutes deux additives.

Le groupe cyclique Cx opère alors trivialement sur V1 comme on le

voit en identifiant V à F (comme E-espace vectoriel) puis V1 à F par

x± 0 ® xx -, xt... xx e F
Dans ce cas, on a donc

Ker (y —1) V\ et Ker (y—Ç) 0.

Comme n {1} puisque Lest algébriquement clos, on obtient

%(V) [F!]
Donc,

c%{V) c[VllYtc(V).
On notera également Wt l'endomorphisme lI', : -*
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Résumé. Soient F un corps de caractéristique et G un groupe fini.

Pour tout nombre premier lA p,ilexiste une opération d'Adams

Wl : K(FG) -> K(FG) telle que le diagramme

K(FG) 4.

I ^ I ^K(FG)4 F G)

commute.

Remarques. On peut maintenant définir xFm : K (FG) —> K {FG) pour
tout m premier à pcaract (F) par

4, Iii 0M m Eli H1 •

(Avant de savoir que c est injectif, prendre les facteurs Wti dans un ordre

fixé, par exemple celui prescrit par lt < l2 <....)
On a ¥m c c ¥m pour tout m premier à p.
Soit en particulier m l'exposant /»-régulier de G. Par définition m est

premier à p. Pour tout PG-module projectif P, on a par périodicité

(dimFP). 1 W0 c (P) Wm c (P) c ¥m(P) e c K(F G).

Il en résulte facilement que R(FG)/c K{FG) a pour exposant exact le

p.g.c.d. des dimensions des PG-modules projectifs.
Cet exposant est évidemment un diviseur de Card G dimF FG.
Comme R(FG) est de génération finie, R(FG)/cK(FG) est un groupe fini.
On voit assez facilement que K (FG) et R (FG) sont abéliens libres de

même rang. On retrouve donc le fait que c est injective. (Cf. [Serre], p. 136,

Cor. 2.)

Il est facile de montrer que l'exposant de Coker c est la plus grande
puissance de p divisant Card G.

En effet, soient l ^ p un nombre premier et H Hl un /-sous-groupe
de Sylow de G. Puisque / est premier à p, le PiPmodule trivial F est FH-

a
projectif. (La surjection FH -» F admet la section a -> Y,seHs) Donc

[H:\]
Pz FG ®FH F est PG-projectif. On a dimF Pl [G\H]. Il est clair que

p.g.c.d. {[G : H{], pour ^
la plus grande puissance de p divisant Card G. Donc l'exposant de Coker c
divise pn.

Soit maintenant H un ^-sous-groupe de Sylow de G. On a Card H
pn. Si P est PG-projectif, il est aussi PPT-projectif par restriction, et on
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voit facilement que cela implique F/Flibre. Donc dim^ P est un multiple
de [H: 1] pn. (Cf. [Serre], p. 145, Exercice 3.)

L'exposant de Coker c est donc exactement pn.

Il reste encore à définir

VP:K(F G) K (F G),
où p caract (F)

Dans le cas où F est parfait, e.g. algébriquement clos, la définition
est dictée par le fait que F admet l'automorphisme de Frobenius g : F -» F
tel que g (a) ap. D'après la propriété (6) au § 4, Wp (a) g (a) pour
tout oc e R (FG).

On n'a donc pas le choix :

Wp(P) G (P)

où g (P) est évidemment FG-projectif si P l'est.
Pour attraper Wp : K (FG) K (FG) pour F quelconque, on peut

utiliser le fait bien connu que iK : K{FG) -+ K(LG) est une injection
directe, (caract (F) # 0, L une clôture algébrique de F. Cf. [Serre], p. 136.)

Donc, Coker iK est sans torsion.
Le diagramme

K{FG) %

I K I
K(LG) CJ^ (L

nous apprend alors que
cL : Coker iK -» Coker iR

est injectif. (Compte tenu du fait démontré ci-dessus que Coker cF est fini.)
Or, pour tout oceK (FG), on a

cL}¥piK(X — ^/pCL^Ka — ypi<KCF a — lR ^p CF a •

Donc, cL Fp iK oc représente 0 e Coker iR. Il en résulte que Wp iKe iKK(FG)
et il existe un élément ßeK(FG), unique puisque iK est injectif, tel que
Wp iK oc iK ß. On pose Wpoc ß.

La définition de Wn pour n entier quelconque est immédiate et dictée

par les propriétés Wkn Wk. Wn et la périodicité ou la propriété (a)

(Fna)*.
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