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OPERATIONS D’ADAMS
EN THEORIE DES REPRESENTATIONS LINEAIRES
DES GROUPES FINIS

par Michel KERVAIRE

Cet article expose la définition et quelques propriétés d’une famille
d’opérations ¥, n entier, agissant sur ’anneau R (F'G) des représentations
virtuelles d’un groupe fini G sur un corps F. La définition de R (FG) est
rappelée au § 1. Ces opérations sont analogues aux opérations introduites
par Adams en topologie (mais dont la connaissance n’est pas nécessaire
ic1).

Pour faciliter la lecture, une partie de la théorie classique des repré-
sentations linéaires des groupes finis est sommairement résumée au § 1.
On ne considére d’ailleurs que les représentations sur un corps commutatif
(mais de caractéristique quelconque). Pour les détails qui manquent, on se
reportera aux livres C. Curtis and I. REINER, Representation theory of
finite groups and associative algebras. Interscience publishers, New York
(1962) et J.-P. SERRE, Représentations linéaires des groupes finis. Hermann
(1967).

Aux §§2-4 on trouvera la définition des opérations ¥, : R (FG)
— R(FG) et la démonstration de leurs propriétés élémentaires utilisées
dans la littérature, en particulier par D. Quillen pour sa démonstration de
la conjecture d’Adams (Topology, 10 (1971), 67-80.)

Dans le dernier paragraphe (§5), j’ai essayé de pousser plus loin
I’étude des opérations ¥,. Il s’avére que les ¥, opérent également sur le
groupe des classes de FG-modules projectifs K (FG). Ce fait, sensiblement
plus difficile 2 démontrer, est sans doute non-trivial car il implique immé-
diatement la finitude du conoyau de I’homomorphisme de Cartan K (FG)
— R (FG) et fournit I’exposant exact de ce conoyau.

Remarques. Un cas particulier des opérations ¥, est déja considéré

par Frobenius et Schur. (Sitzungsber. preuss. Akad. der Wiss. (1906),
186-208.)

L’Enseignement mathém., t. XXII, fasc. 1-2. 1
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Les opérations d’Adams ont été introduites dans le contexte des
schémas par R. Swan. (Proc. Symp. Pure Math. A.M.S., vol. XXI, Univ.
of Wisconsin (1971), 155-159.)

Enfin, les opérations d’Adams proprement dites ont été introduites
en topologie par J.F. Adams. (Ann. of Math. 75 (1962), 603-632.)

§ 1. L’ANNEAU DES REPRESENTATIONS VIRTUELLES.

Soient G un groupe (multiplicatif) et F un corps commutatif. On notera
FG Talgebre de groupe de G sur F, i.e. I’espace vectoriel ayant pour base
les éléments de G muni de la multiplication induite par la multiplication
dans G.

Une représentation de G sur F est une classe d’isomorphie de FG-
modules (a gauche) de dimension finie sur F. Si V est un FG-module (de
dimension finie), on dira par abus de langage que V est une représentation.

Soient V' un FG-module et ey, ..., ¢, une F-base de V. L’action d’un
¢lément s € G sur V exprimée dans cette base, i.e.

n
S.ej = Zi:l Sijei

fournit un homomorphisme p : G - GL, (F) qui associe a s la matrice
mversible p (s) = (S;;). L’homomorphisme p est appelé la forme matri-
cielle de la représentation V associée a la base choisie.

Soient G un groupe (fini) et F un corps commutatif. A ces données
on associe I’anneau R (FG) des F-représentations virtuelles de G dont nous
rappelons briévement la construction.

Soit L la groupe abélien libre ayant pour Z-base I’ensemble des repré-
sentations de G sur F. Soit L, le sous-groupe de L engendré par les €éléments
de la forme V — V' — V" chaque fois qu’il existe une suite exacte 0 — V"’
- V —> V" - 0 de FG-modules.

DfEFINITION. R (FG) = L/L,. Un élément de R (FG) s’appelle une
F-représentation virtuelle de G.

La classe de V dans R (FG) sera notée [V], ou méme quelquefois
simplement V.

Remarques. On voit facilement que tout élément de R (FG) peut

s’écrire sous la forme [U] — [V], ou U et V sont des représentations de
G sur F. Rappelons que si la caractéristique de F ne divise pas I'ordre de
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. G, lexistence d’une suite exacte 0 - V' —» ¥V —» V" — 0 entraine que
V>V @ V" Ceci nest plus vrai si caract (F) divise 'ordre de G et il
est important pour la suite de ne pas faire d’hypothése inutilement res-
trictive sur le corps F.

La structure d’anneau sur R (FG) est fournie par le produit .tensoriel
sur F des représentations. Si V, et V, sont deux FG-modules, G opere
sur Vy @pV, par s.(vy ® v,) = sv; ® sv,, s€ G, et on vérifie sans diffi-
culté que cette formule fournit bien une structure de FG-module sur
V, ®f V,. On obtient ainsi un produit sur L et il est immédiat de vérifier
que L, est un idéal. Le produit tensoriel induit donc un produit sur
R (FG).

Comme V,; ®pV, =2V, ®V,, lannecau R (FG) est commutatif. Le
corps F, muni de Ia structure de FG-module « triviale » telle que sa = «a
pour tout a e F, représente 1’élément neutre pour la multiplication dans
R (FG). On écrira [V,].[V,] ou V,.V, pour le produit dans R (FG).

La structure additive de R (FG) est facile a expliciter:

DErFINITION. Un FG-module S est dit simple ou irréductible s’il est
non-nul et s’il ne posséde pas d’autres sous-modules que 0 et S lui-méme.

THEOREME. Soient G un groupe fini et F un corps commutatif.
L’ensemble S (FG) des classes d’isomorphie de FG-modules simples est
un ensemble fini. Le groupe R (FG) est abélien libre avec pour base
[’ensemble S (FG).

Preuve. Soient S un FG-module simple et ve S, v # 0. L’application
FG — § donnée par a — av définit un homomorphisme de FG-modules
(FG étant regardé comme FG-module & gauche par la multiplication dans
Panneau FG.) Cet homomorphisme est surjectif puisque S est simple.
On voit donc que S apparait comme facteur de composition d’une suite
de Jordan-Holder pour le module FG. Ainsi, il y a au plus / classes d’iso-
morphisme de FG-modules simples, ot / est la longueur d’une suite de
Jordan-Hoélder pour le module FG. (Pour le théoréme de Jordan-Holder,
voir [Curtis-Reiner] cité dans I'introduction, § 13.)

Soit maintenant R le groupe abélien libre sur I’ensemble fini S (FG)
des représentations irréductibles.

En associant a tout élément de S (FG) sa classe dans R (FG), on
obtient un homomorphisme

f:R—>R(FG).
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Inversement, on définit g : R (FG) —» R comme suit. Si V est un FG-
module (de dimension finie) et V=V, oV, 2.2V, 2V, =0
une suite de Jordan-Hélder pour V, on pose

go(V) = Zifl S;,

ou S; est la classe d’isomorphie du facteur simple V;/V;.,, i = 1,..., k.
D’apres le théoreme de Jordan-Holder, g, (V) est un élément de R
qui ne dépend que de la classe d’isomorphie de V. On a donc un homo-
morphisme g, : L - R. On constate que g, s’annule sur les générateurs
de L,, donc sur L, tout entier, et induit par conséquent un homomor-
phisme g : R (FG) - R.
La vérification de gf = id. est immédiate. Celle de fg = id. facile.

Exemple. Pour tout y € Hom (G, F*), on définit sur F une structure
de FG-module en posant s.v = y(s)v, ve F. Ce module sera noté F,
ou F (). Il est évidemment simple. On a F(y;) @ F(x,) = F(xy1.x2). Le
cas ou G est abélien d’exposant #, disons, et ou F contient les racines du
polyndme X" — 1 est fondamental pour la théorie. Dans ce cas les classes
d’isomorphie des FG-modules simples F (¥), x € Hom (G, F*) forment une
liste compléte sans répétition des F-représentations irréductibles de G.
Donc, R (FG) pour G abélien et avec I’hypothese faite sur F s’identifie a
I’anneau de groupe Z X, ou X = Hom (G, F°).

Revenons au cas général. Si f: G — G’ est un homomorphisme de
groupes, f s’étend (de maniére unique) & un homomorphisme d’algebre
f:FG— FG' et tout FG'-module V devient un FG-module par Av
= f(A) v, Le FG, ve V. Cette construction fournit un homomorphisme
d’anneau f* : R(FG') > R (FG) dit de restriction. (On a également un
homomorphisme induit f* : R(FG) - R (FG’) pour la structure additive
de ces anneaux, et donné par V' — FG" ®@y; V. On ne s’en servira pas.)

Si F — E est une extension de corps, tout FG-module V fournit un
EG-module E ®» ¥V que I’on notera aussi EV. On obtient ainsi un homo-
morphisme d’anneaux i: R (FG) - R(EG) dit d’extension des scalaires.

L’anneau R (FG) est encore muni d’une involution dont nous aurons
besoin pour définir les opérations d’Adams d’indices négatifs.

Soit ¥ un FG-module. On considére le dual V* = Homy (V, F) qui
est muni d’une structure de FG-module définie par la formule

(le)('l)) = ZSGG asf(s_lv) ’
a =)glds.S € FG,veV.
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La classe d’isomorphisme de ¥* ne dépend que de celle de V. La repré-
sentation V* s’appelle la duale de V. On a V** = V, canoniquement.
On laisse au lecteur le soin de vérifier que I"opération * induit un auto-

morphisme involutif
*:R(FG) - R(FG)

qui commute aux homomorphismes f* : R (FG') - R (FG) et [« R(FG)
— R(FG) pour f:G— G'eti: R(FG)— R(EG).
Deux théorémes classiques jouent un role essentiel dans la suite.

TaEOREME 1. Soit F — E une extension quelconque de corps commiu-
tatifs. L’homomorphisme i: R(FG)— R(EG) d’extension des scalaires
est injectif.

Soit p un nombre premier. Un sous-groupe cyclique de G sera dit
p-régulier si son ordre est premier a p. Tout sous-groupe cyclique est
0-régulier.

THEOREME 11. Soient G un groupe fini et F un corps. Soit € la famille
des sous-groupes cycliques p-réguliers de G, ou p = caract (F). L homo-
morphisme

res: R(FG) - [Jece RFC),
produit des restrictions R (FG) — R(FC), est injectif.

Ces théorémes constituent un analogue du «splitting principle» en
topologie et seront utilisés de fagon similaire pour démontrer certaines
propriétés des opérations d’Adams.

Pour démontrer les théorémes I et II, les faits fondamentaux sont les
suivants.

LEMME 1. Soient G un groupe fini et F < E une extension de corps
quelconque. On a E @prad FG = rad EG, ou rad dénote le radical.
Soit ¥ un FG-module. On appelle caractére de V' la fonction F-linéaire
x : FG — F définie par
% (s) = Tracep(s),
ou p (s) est la transformation F-linéaire ¥ — V associée a s, i.e. p (s) (v)

= 5.V

LEMME 2. Soient G un groupe fini et X (FG) le sous-espace de Homp
(FG, F) engendré par les caractéres des F-représentations de G. Les carac-
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teres  Xq, ..., X, des représentations irréductibles forment une F-base de
X (FG).

Esquisses de démonstrations.

Soit k£ un corps premier, i.e. Q ou F, pour p premier. D’aprés le
théoreme de Wedderburn, [Curtis-Reiner], §26, I’algébre semi-simple
kG[rad kG se décompose en produit

kG/rad kG = D, (n;) % ... x D,(n,)

d’algébre de matrices D, (n;) sur des corps gauches D,.

Les corps gauches D; sont munis d’'une forme trace non-dégénérée,
i.e. (x,y) = Trace p (x.y) est bilinéaire de noyau nul.

En effet, pour k = Q c’est évident et dans le cas ou k = F,, les D;
sont des corps finis, donc en fait commutatifs et galoisiens, donc séparables
sur F,,.

On vérifie alors facilement que pour tout corps F o k, les F-algebres
F ®, D, ont également une trace sur F non-dégénérée et sont donc semi-
simples.

Il en résulte que F ®, (kG/rad kG) =~ FG/ (F @, rad kG) est semi-
simple. Donc, rad FG < F ®,rad kG. Comme [linclusion inverse est
évidente, on a F ®,rad kG = rad FG. Le lemme 1 s’ensuit immédia-
tement.

De plus, le fait que la forme trace sur F soit non-dégénérée dans
F ®, D; entraine aussi que dans la décomposition de Wedderburn

FGjfrad FG = K;(ny) x ... x K,(n,),

chaque corps (gauche) K;,i = 1, ...,r, possede une forme trace sur F
non-dégénérée. En particulier, il existe des éléments o; € K; tels que
tracep (¢;) #0,i =1, ...,r.

Pour démontrer le lemme 2, on observe d’abord que les caractéres
X1» ---» X, des FG-modules simples engendrent X (FG). Il reste alors a
démontrer que ces caractéres sont linéairement indépendants sur F. Soit
S; le K; (n;)-module formé des matrices »n; X n; dont toutes les colonnes
sont nulles sauf la premicre. On sait que Sy, ..., S, regardés comme FG-
modules forment une liste compléte de FG-modules simples non-isomor-
phes.

Soient maintenant ;€ FG des ¢léments se projettant sur
;e 11 € K;(n;) et sur O dans les autres facteurs K; (n;) pour j # i. (eyy
dénote la matrice n; X n; de K; (n;) dont tous les ccefficients sont nuls sauf
celui d’indice (1, 1) qui est égal a 1.)
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Un calcul de traces montre aisément que

Xi (Clj) = 51,] . traCGF (O(i) .

’indépendance linéaire de yy, ..., y, en résulte.

Démonstration du théoréme I: R (FG) — R (EG) est injectif.

1l suffit de voir que si S et T sont deux FG-modules simples non-iso-
morphes, alors ES et ET sont semi-simples et sans facteur commun, i.e.
ES somme directe de EG-modules simples S;, ET somme directe de £G-
modules simples T, et S; 2z T; pour tout couple (7, j).

ES et ET sont semi-simples car ils sont annulés par £ ® rad FG. Donc,
par rad EG, en vertu du lemme 1.

Pour vérifier qu’ils n’ont pas de facteur simple commun, il suffit de
calculer Homygg (ES, ET) = 0. Cela résulte de Homgg (ES, ET)
= E®rHomg; (S,7T) = 0.

Démonstration du théoréme II: res: R (FG) = [[cee R(FC) est
injectif.

Soit ¥ : R (FG) — X (FG) l’application qui associe a une représentation
V son caractére y,. On a un diagramme commutatif

R(FG) — X(FG)
] res } res

HCG@R(FC) —* HCE%X(FC)a

ol % est I’ensemble des sous-groupes cycliques p-réguliers de G, p = caract F.

Si res y, = 0, cela veut dire que y, s’annule sur tous les éléments p-
réguliers de G. Il en résulte que y, est identiquement nulle. En effet, tout
¢lément x de G s’écrit x = y .z, ou y et z commutent, y est p-régulier et
z d’ordre une puissance de p. (Si mgq est U'ordre de x, avec m premier a p
et ¢ une puissance de p, prendre y = x%et z = x™.) Si I est une représenta-
tion de G, les valeurs propres de z sont toutes égales a 1. (C’est la seule
racine p-iéme de 1 dans F.) Donc les valeurs propres de x = yz sont les
mémes que celles de y. Il en résulte que xy, (x) = xp (), et ¥, (X) = ¥, ()
pour tout « € R (FG).

Donc, res y, = 0 entraine y, = 0. Comme d’autre part R (FG) est
abélien libre avec pour Z-base les représentations irréductibles S, ..., S, et
que x; = ¥ (S0, ..., x, = x (S,) est une F-base de I’espace des caractéres
X (FG) en vertu du lemme 2, on conclut que si res y, = 0, alors o est
contenu dans pR (FG).
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Le noyau de res : R (FG) — [] ce¢ R (FC) est donc contenu dans
PR(FG). Comme maintenant [] c.4 R (FC) est sans torsion, on a

Ker (res) = n,p"R(FG) = 0.

Au §5 nous aurons besoin de K (FG) dont la définition sera alors
rappelée, et du fait que si F est de caractéristique non-nulle, alors la fléche
d’extension des scalaires K (FG) - K(EG) est une injection directe. La
démonstration est donnée dans [Serre], page 136, ou K (FG) est noté
P, (G). Nous ne la reproduisons pas.

§ 2. PUISSANCES EXTERIEURES

Les puissances extérieures des FG-modules fournissent un élément de
structure additionnel dans I’anneau R (FG), appelé A-structure qui nous
permettra au paragraphe suivant de définir pour tout entier » un endo-
morphisme d’anneau

Y :R(FG)—> R(FG)

jouissant de propriétés analogues a celles des opérations d’Adams en
topologie.

Soit ¥ un FG-module, toujours de dimension finie. On notera 4,, V' la
m-iéme puissance extérieure de V. C’est le quotient de la puissance tensorielle
V=V V®..Q V (mfacteurs) par le sous-espace vectoriel engendre
par les éléments de la forme v; ® ... ® v, avec v; = v; pour au moins nu
couple d’indices distincts (7, /).

L’action de G sur 4, V est induite de 'action de G sur V™. On convient
que A, V' = F avec action triviale, et A, V = V.

Il s’avére que les puissances extérieures 4,, m = 0, induisent des opé-

rations
Jy:R(FG) > R(FG)

sur I’anneau des représentations virtuelles, et on a la formule habituelle
A (@+B) = 250 (40) . (A= B) -
Le point essentiel est le

LEMME. Soit 0 - Vo, =V, > V — 0 une suite exacte de FG-modules.
Alors,

[im Vl] = Zi=mO [j‘l VO] . [’Ln—i V]
dans R (FG) pour m = 0,1, ....




9

Ici [U] désigne la classe de U dans R (FG).
On va démontrer que A, V; posséde une filtration

)’m Vl = WO = Wl = e 2 VVm = }“m VO - I/Vm+l =0
par des sous-modules W tels que

WilWisr = 2V @ A= V
pouri = 0,1, ..., m.
Par définition du produit dans R (F'G), on a

[j’i VO] ¥ I:)“m—i V:I = [)“i VO ® }“m-‘i V:I .
D’autre part, dans R (FG), on a
[)"m Vl] = Zi;no [WL/WLHJ 5

et le lemme en résulte.

Soit f: VT — 4, V; Papplication canonique. On considere le sous-
module Vi ® V7% de V. Son image par f est un sous-module W, de
2. V. 1l est clair que les W, i = 0,1, ...,m + 1 sont des sous-modules
emboités de 2,, V.

Reste & démontrer lisomorphisme W,/W,, , = 4,V ® 4,; V de
FG-modules pouri = 0,1, ..., m.

On considére le diagramme

Ve@ VT L W,

lp 1y
Ve ® Vm™h L WiWy

N #

N s

;Li I/O ® )“m—i vV

ol p est induit par la projection V; — V.

Tout d’abord f induit bien une application f'. En effet, on vérifie immé-
diatement que f (Ker p) < W,;,, et il en résulte que f est bien définie. Il
est clair que /' est FG-linéaire. Il est également évident que f se factorise
par une application FG-linéaire f" : 4, Vo ® A,,_; V> W,/W,,,. La
surjectivité de f (sur W) implique la surjectivité de /.

Par ailleurs, on constate que

dimF },m V1 = Ziz—lo dimF (ilVO ® im—lV)
car

dim 4, U = (1Y), et ("1") = Yl (D) (v ?)
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comme 1l résulte de la comparaison des coefficients de ¢ dans les deux
membres de U'identité (1+¢)"*Y = (1+¢)" (1 +1)".
Puisque dimg (1;V, ® 4,,_;V) = dimy W,/W,, en vertu de I'existence
de f”, surjectif, on a donc
dimF lm V1 = Zi_—zn() dimF (}’iVO ® Am-—iV)
z ) iZo dim W/W,, = dim; 4, V;,
ce qui implique que toutes les « inégalités »

dimp (4;Vo ® A,-;) = dimp W/W, 4

sont en fait des égalités.

Il en résulte que f” est un isomorphisme pour tout i et le lemme est
démontré. |

Pour vérifier maintenant que 4,, induit une application

Jm:R(FG)—> R(FG)
telle que
’Im (O( +ﬁ) = Z i‘—r‘nO (iia) ’ (}'m—iﬁ) ’

il est commode d’introduire ’anneau des séries formelles R (FG) [[¢ 1]-
Pout toute F-représentation V de G, posons

AV) =3 w26 [An(N] . t"e R(F G) [[1]] .

Une série formelle de terme constant 1 est inversible. (1, V' = 1))
Comme les représentations forment une base de L, la formule ci-dessus
définit un homomorphisme

L:L- U(R(F G)[[]])

du groupe (additif) L dans le groupe multiplicatif des éléments inversibles
de R (FG) [[t]].

Si0 -V, = V{ = V — 0 est une suite exacte de FG-modules, le lemme
exprime que A (V) = A (V,) . A (V). Donc, A passe au quotient et fournit
un homomorphisme

A:R(F G) - U(RF G)[[]

du groupe additif de R (FG) dans le groupe multiplicatif U (R (FG) [[1])
et dont les coefficients sont les applications

4. :R(FG)— R(FG)

cherchées, i.e. 4, (o) est le coefficient de t™ dans la série formelle A (x).
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I1 est évident que la formule
Am(a+p) = Z iz0 (420) . (Ap=i B)
ne fait que traduire I'identité

Al+B) = (Aa) . (4P) .

Remarque. 1,, commute 3 Uinvolution * : R(FG) - R(F () définie au
§ 1. Enfin, A, commute aux homomorphismes de restriction f* : R (FG')
— R(FG) pour f:G — G’, ainsi qu’aux homomorphismes d’extensions
de scalaires.

§ 3. DEFINITION DES OPERATIONS D’ADAMS.

Soient ¢4, ..., ty des indéterminées. Pour tout entier n telquel = n < N,
on considére le polyndme symétrique ¢," + #," + ... + 4" et son expression
unique O (sy, ..., 5,) comme polyndme en les fonctions symétriques ¢lé-
mentaires s, ..., 5, de degré < n des indéterminées ¢4, ..., y. Les fonctions
S1y ey Sps ... sONt définies par I'identité

XV s, XY (=D X Y L+ (= DVsy = [[LE (X 1)

avec les conventions s, = 0 pour k > N et s, = 1. On observe, en faisant

Ine1 = tyrgg = . =ty = 0 (o N' £ N), que
Si(tl, seny tN" O, ) 0) = Si(tlﬁ ceey tN’)
pouri < N'.
Exemples.

Ql (Sl) = Sl: QZ (51532) = 512 - 252 ]
Q5 (515 52, 83) = 81> — 3545, + 353,

4 2 2
Q4(31,82,S3,S4) = 5" — 45" 5, + 25, + 4s; 55 — 4sy,

ot 'on a écrit Q; au lieu de QY pour simplifier I’écriture.

En fait, le polynéme OF (sy, ..., 5,) en tant que polynéme en sy, ..., S,
est indépendant de N pourvu que N = n. Cela résulte d’une identité dont
nous aurons encore besoin plus bas, exprimée par le lemme qui suit.

Soient ty, ..., ty €t ti, ..., ty» deux suites d’intéderminées et 7, ..., y
leur juxtaposition, ie. N = N 4+ N" et t; = t; pour 1 £i < N/, In 4
= t; pour 1 £ j £ N". Soient sy, ..., Sy- €t 51, ..., Sy» les fonctions symé-
triques élémentaires des ¢y, ..., fy- €t 11, ..., Iy~ Tespectivement. Enfin, soient
Sy, ..., Sy les fonctions symétriques élémentaires des 74, ..., Zy.
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LEMME 1. Avec les notations ci-dessus, on a

n ’ ”
Sp = Zi=0 Si e Sp—i-
De plus,

N ’ ’ ’ " ” ”
Qn (519 tees Sn) = QIIY (Sla veey Sn) + Q]Z (Sla seey Sn) .

La premiere formule résulte immédiatement des identités de définition
des s; et s; en calculant leur produit et en le comparant & I'identité de
définition des s,,.

La deuxiéme identité est une trivialité aprés avoir remplacé les poly-
némes Q, par leur expression en fonction des t.

Il résulte tout d’abord du lemme que QO (sq,...,s,) est indépendant
de N pour N = n. En effet, si I’on envoie 71, ..., ty~ sur 0, on obtient s; = s,
pour i = 0,1,..,nsin £ N, comme on I’a observé ci-dessus, et SJ =
pour j > 0. Donc, Q) (s, ...,s,) = O (s4, ..., s,) pourvu que N = N’
= A,

On écrira Q, pour O avecn £ N.

On a aussi

Q=51 Quet + oo + (=150 + ...
+ (=" 510y +(=D'ns, =0

en remplagant successivement X par ¢4, ..., f, dans I'identité de définition
des s; et en sommant membre & membre. Ceci montre par récurrence sur z
que Q, (s4, ..., 5,) est un polyndme a coefficients entiers.

On voit aussi que Q, (54, 0, ..., 0) = s,".

On peut alors définir I’opération d’Adams ¥, n € Z sur un FG-module
V comme suit.

DEFINITION. P V' = (dim V) . 1,
ou 1 est I’élément unité de R (FG);

vV =0, V,AV,..,4V)pourn >0,
le membre de droite étant regardé comme un élément de R (FG);
Y_, V=¥, V* oun>0.

Pour démontrer que ces formules déterminent une opération ¥, : R (FG)
— R (FG) nous aurons besoin du lemme suivant.

LEMME 2. Soient R un anneau commutatif avec élément unité, et {i;},
(A3 et {1},1 = 0,1, ... trois suites d’éléments de R telles que Ay = Ag
= )LO = l, et
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Ay = Zi=m0 Ai+ Am—i
pour tout m = 0. Alors pour tout n = 1, ona

Qn ()"15 o /’{n) = Qn (/1;5 wewy /11;) + Qn ()“Ia ceey A;;) '

Ceci résulte immédiatement de I'indépendance algébrique des fonctions
symétriques élémentaires. Il existe un homomorphisme

h: Z[Sl, vees SNy S ey SN”] — R 5

tel que & (s) = /; et h(s;)) = 1;. Cet homomorphisme envoie s, sur 2,
en vertu du lemme 1 et de ’hypothése

' "l [ ”
j*m = Zi=0 ;{i . ;“m—i .

Il s’ensuit que % envoie Q, (s4, ..., s,) sur Q, (44, ..., A,) et 'assertion résulte
de lidentité 0, = O, + O, du lemme 1.

LeMME 3. Pour tout n entier, ['opération ¥, sur les FG-modules induit
un endomorphisme de groupe additif

Y,:R(FG) > R(FQG).
En outre, pour n > 0, on a

Yo() = Q, (L, ..., 1,0
pour tout « € R (FG).
Si0— V' =V — V"> 0est une suite exacte de FG-modules, le lemme
du paragraphe précédent dit que

}'m V = Zi:O (A’lV,) . ()“m—iVN) .

D’aprés le lemme 2 ci-dessus appliqué avec

J

I = A Ve di =2V, A= A V",
on a donc
v, V="V +¥V,
pour n > O.
Il en résulte immédiatement que ¥, : R (FG) — R (FG) est bien définie
et additive pour tout entier .

La formule
¥, (O() = @, (/{1063 =% Lg )"na)

pour o € R (FG) quelconque est conséquence de 1’additivité de ¥, et de
celle en o de Q, (1,4, ..., 1,0).
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§ 4. PROPRIETES ELEMENTAIRES DES OPERATIONS D’ADAMS.

Il est clair tout d’abord que les ¥, sont fonctorielles, i.e. si f: G — G’
est un homomorphisme de groupes finis, et f*: R(FG') — R(FG)
homomorphisme de restriction, on a

I =f*¥,,

pour tout entier n. De méme pour une extension de corps F — E, on a
i¥, = ¥, avec i: R(FG) - R(EG) I'homomorphisme d’extension de
scalaires.

Ceci résulte du fait que f* et 7/ sont des homomorphismes de A-anneaux,
1.e. commutent avec les opérations A,

Par contre ¥, ne commute pas en général aux homomorphismes
induits. Exemple: Prendre f: {1} - C,, ou C, est cyclique d’ordre 2 et
calculer ¥, f,. — f.. ¥, sur I’élément unité de R (FC,), ou F est de carac-
téristique # 2. On trouve 2 — [FC,] # 0.

Nous commengons une liste des propriétés des ¥, : R(FG) - R(FG),
ou comme ci-dessus, G est un groupe fini et F un corps commutatif.

(1) Les opérations ¥, sont des homomorphismes de A-anneaux, i.e.
Yy(.p) = ¥, (). ¥, (p), et ¥, A, =21, ¥,.
(2) Pour m, n entiers quelconques, on a
Yyr,=v,. v, =Y,.%,.
(3) Si o est la classe d’un FG-module de dimension 1 sur F, on a
V,(x) = o", o =™ = (a*)" pour m > 0.
(4) Pour tout p premier et tout x € R(FG), on a
¥Y,(x) = o mod pR(FG).

Ces propriétés sont les analogues des propriétés des opérations d’Adams
en topologie. On a en outre quelques propriétés plus typiquement algé-
briques qui proviennent de relations entre les opérations ¥, et ’action des
automorphismes du corps de base sur ’anneau des représentations vir-
tuelles.

Soient E un corps commutatif et ¢ € Aut (F) un automorphisme de E.
A tout EG-module V on associe un nouveau £G-module ¢V obtenu comme
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suit. En tant que groupes abéliens oV et V sont égaux. L’élément veV
considéré comme élément de o) sera noté ogv. L’action de EG sur o} est
définie par

a.o(v) =a(c""(a)v),
ol

ot (a) = ZseG ot (ay)s,
si

a =) cdsS.

Dans cette formule, ¢~ (a) v est défini par ’action de EG sur V, et
o (67! (a) v) est 'élément de oV correspondant 2 6~ (@) ve V.

Il est facile de voir que si 0 > V' — V' — V" — 0 est une suite exacte
de EG-modules, la suite 0 —» oV’ — oV — oV" — 0 est également une
suite exacte de EG-modules. Il en résulte que ¢ induit un automorphisme
o : R (EG) > R(EG). Cest un automorphisme d’anneau.

On vérifie sans difficulté que o commute aux homomorphismes de
restriction, induits, d’extension de scalaires, a I'involution, aux puissances
extérieures et opérations d’Adams.

Exercice. Si p (s) = (S;;) est la forme matricielle de V" associée a la
base ey, ..., e, de V, alors la forme matricielle de oV par rapport a geq, ..., ge,
est donnée par (op) (s) = (65;)).

DEFINITIONS. Soient G un groupe fini et p un nombre premier. On dira
que s € G est p-régulier si 'ordre de s est premier a p. Par convention tout
¢lément de G est O-régulier.

Le p.p.c.m. des ordres des éléments p-réguliers de G sera appelé I’exposant
p-régulier de G. L’exposant O-régulier est donc simplement I’exposant de G.

Nous pouvons continuer la liste des propriétés des ¥

ne

(5) Les opérations ¥, sont périodiques, i.e. si m est I’exposant p-
régulier de G, ou p = caract (F), on a

Tn+m = Tn : R(F G) ¥ R(F G)
pour tout entier n.

(6) Si F contient les racines du polynéme X™ — 1, ou m est I’exposant
p-régulier de G,p = caract (F), etsi oceAut (F) et seZ sont liés par
o (¢) = &¥ pour toute racine & de X™ — 1, alors ¥, (x) = o (x) pour
tout o« € R (FQG).

Remarque. 11 existe un théoréme de périodicité des opérations d’Adams
en topologie. (Cf. J.F. Adams, On the groups J(X)—III, Topology, Vol. 3
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(1965), 193-222, en particulier le § 5.) Mais il ne semble pas y avoir de rapport
entre ce théoréme et la propriété (5) ci-dessus.

Enfin, en considérant I'injection de F, (le corps fini & g éléments) dans
une cloture algébrique et en prenant ¢ = automorphisme de Frobenius,
on obtient comme corollaire la propriété suivante:

(7) L’opération ¥, :R(F,G) —» R(F,G) est 'identité.

Toutes ces propriétés sont faciles a démontrer en tenant compte des
théorémes I et II du § 1.

Les propriétés (3) et (4) se vérifient comme en topologie.

Démonstration de (3). Si V est un FG-module de dimension 1 sur F,
il s’agit de voir que ¥, (V) = V". Or, 'hypothése entraine que

12V= 13V= ves = O.
Donc pour # positif, on a

Y,V =20,4,V,0,..,00 = (4, V) = V".
On en déduit immédiatement la propriété (3).

Remarque. On a donc en fait ¥, (o) = " dés que A; & = 0 pour { > 1.
Cependant cette formulation n’est pas plus générale que la précédente.
En effet, si « € R (FG) satisfait & 4;« = 0 pour i > 1, alors « est la classe
d’un FG-module de dimension 1. Pour le voir, il suffit de remarquer que
les classes de FG-modules de dimension 1 sont inversibles dans ’anneau
R (FG),i.e.sidim V = 1, le produit VV ® V* est isomorphe au FG-module
trivial F. (Ceci justifie la convention [V']™' = [F'*] pour dim V' = 1 faite
précédemment.) L’isomorphisme est donné par v ® v* — v* (v). Si alors
o =U-—Vetlda=0pouri > 1, on compare les termes de plus haut
degré en ¢ dans lidentit¢ A(x).A (V) = A(U). On trouve o .dét (V)
= dét (U), ou dét (V) = Ay, v (V) est de dimension 1. Donc, « est la
classe dans R (FG) de dét (U) . {dét (V)}~! = dét (U) . dét (V'*).

D’une maniére générale, pour que o« € R (FG) soit la classe d’une
représentation il est évidemment nécessaire que A (x) soit un polyndome.
Mais cette condition n’est pas suffisante.

Exemple. Soient G = S,, le groupe des permutations de {1, 2, 3, 4}
et F = C. Il existe un CS,-module simple 7 de dimension 3 avec la forme
matricielle

[ 0 —1 ol 01 —1
p(12) =4 =1 0 0¢, p(12)(34) =410 -1 ¢,
| 0 o0-1] 00 —1 |
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(001 Ir 0 011
p(123)=! 100i,p(1234)= —~1 01},
010 | ] 0—11JI

(C’est le produit de la représentation signe par la composante, simple de
degré 3 dans la représentation de permutation naturelle.)

En calculant les valeurs propres, on vérifie sans difficult¢é que AV
=1+ Vt+ Ve*+ 13 Donc, A(V—1)=1+ ¥—=1¢t+t? un poly-
nome. Cependant V' — 1 est strictement virtuelle.

La propriété (4), i.e. ¥, (x) = o mod pR (FG) résulte immediatement
de l'identité Q,, (sy, ..., 5,) = s;? mod pZ [s4, ..., 5,], elle-mEme consequence
directe de

t? + oo+ 1,7 = (t +...+1,)? mod pZ[ty,....t,].

Pour démontrer les propriétés (1) et (2), on utilise les théorémes I et II.
Puisque ¥, commute aux homomorphismes i : R(FG) - R(EG) d’ex-
tension de scalaires et commute également aux homomorphismes de
restrictions R (FG) - R (FC), il suffit de démontrer (1) et (2) dans le cas
d’un groupe cyclique et avec un corps de base algébriquement clos E.

Comme d’autre part R(EC) est engendré par les classes des EC-
modules simples, il est suffisant de vérifier (1) et (2) lorsque les variables
sont les classes de EC-modules simples. (On observera toutefois que cette
réduction pour la formule ¥, 4, = 4, ¥, exige de savoir déja que ¥,
est w = homomorphisme d’anneau. La démonstration de ¥, (a.f)
= ¥, (x). ¥, () doit donc précéder celle de ¥, 4,, = 4, ¥,.)

Or, on a vu au § 1 que tous les EC-modules simples sont de dimension
I sur E. Pour un EC-module de dimension 1, la vérification de (1) et (2)
par calcul direct est immédiate.

Pour démontrer (5) et (6) il est également suffisant, en vertu du théo-
reme II, de se borner au cas d’'un groupe cyclique C dont I’ordre divise
exposant p-régulier m du groupe donné G. (p = caract (F).) On peut
aussi supposer pour démontrer (5) que le corps de base E contient les
racines du polynéme X™ — 1.

Tout EC-module simple est alors de dimension 1 sur E et de la forme
E,, ou y e Hom (C, E*), 'action de C sur E, étant donnée par

s.z =y(s)z, seC, z€E,.
On a donc

Tn(Ex) = E(Xn)a et Tn-l-mEx — TnE

X

L’Enseignement mathém., t. XXII, fasc. 1-2. )
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résulte de x"™™ = y". (Card C divise m.) Comme les classes des EC-
modules simples engendrent R (EC), il en résulte

lI/n+m = TnR(EC) -—)R(EC),

puis (5) en général par la réduction faite ci-dessus.

Pour {6), on se sert des mémes remarques. On a

Y (E) = E(x)

comme on vient de le voir. Il reste a vérifier que o (E,) = E(x°), c.-a-d.
que C opere sur g (E,) par

x.0z =) (x)oz, zeE,, xeC.
Or,
x.0z=0(0""(x).2) =0(x.2) =0(x(x)z) =0 (x(x).0z,
et
a(x(®) = 2,

puisque y (x) est racine m-iéme de 'unité.

La propriété (7) est un corollaire facile de (6). Soit E une cloture algé-
brique de F,, le corps a g éléments et soit ¢ € Aut (E/F ) 'automorphisme
de Frobenius, i.e. o (a) = a? pour tout a € E. Comme i : R(F,G) - R(EG)
est injectif et commute a ¥, il est suffisant de voir que ¥, i = i. Or, d’aprés
(6), ¥, = of pour tout f € R(EG). Si B = ix on vérifie facilement que
of = f. (C’est trivial sur la forme matricielle d’une représentation.) Donc,
Y, iow = io, et ¥, a = o en résulte.

Remargque. Si ¢ appartient au sous-groupe des commutateurs de
Aut (F), son action sur R (FG) est triviale.

§ 5. ACTION DE ¥, DANS LE GROUPE DES CLASSES DE PROJECTIFS

Il existe un analogue K (FG) de R (FG) construit a l'aide des FG-
modules projectifs. Soit L’ le groupe abélien libre sur ’ensemble des
classes d’isomorphie de FG-modules projectifs de dimension finie. On
considére le sous-groupe L, de L’ engendré par les éléments P — P’ — P”
s’il existe une suite exacte 0 - P’ - P - P” — 0. (On a alors nécessai-
rement P =~ P’ @ P".)
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DEFINITION. K (FG) = L'/L,.

K (FG) est également un foncteur covariant en F. Si f:G — G est
un homomorphisme de groupes, on a toujours un homomorphisme induit
fe :K(FG) - K (FG’) déterminé par P —» FG' @ ¢ P, mais la restriction
n’existe que si FG' est projectif de type fini sur FG ce qui a lieu (G et G’
étant finis) si G est sous-groupe de G'. (FG' est méme alors FG-libre).
Dans ce cas, f: G = G’ (finis), on a donc un homomorphisme de restric-
tion /* : K (FG') —» K (FG).

Il est évident que I’on a un homomorphisme de groupes abéliens

¢: K(FG) - R(FG)

appelé homomorphisme de Cartan.
On va voir que K (FG) est également muni d’opérations d’Adams qui
sont compatibles, via ¢, avec les opérations sur R (FG).

Remargue. K (FG) n’a en général pas de A-structure compatible via ¢
avec celle de R (FG). Exemple: Soient F'le corps a 2 éléments et G le groupe
cyclique d’ordre 2. On constate que K (FG) = Z engendré par [FG], et
R (FG) = Z engendré par la classe de F. L’application ¢ : K (FG) — R (FG)
envoie [FG] sur 2 fois le générateur [F] de R(FG). Or, A, (FG)
F ¢ cK (FG).

La définition des ¥, du § 3 est donc inapplicable pour K (FG).

On va donner une nouvelle définition des ¥, inspirée par une construc-
tion analogue en topologie due & M. Atiyah. (Quart. Journal of Math. 17
(1966), 165-193. Cf. formule (2.7).)

Le point essentiel est la définition de ¥, pour / premier, / # caract (F).
La définition ci-dessous fonctionne aussi bien pour K (FG) que pour
R (FG).

Soient ¥ un FG-module et V' la [-idéme puissance tensorielle de V. Le
groupe S; de permutations des indices {1, ..., /} opére sur V! par

. (v ®... Qv =7, ®...
ol

ip = a ' (k),neS,,k=1,..1.

Soit y la permutation circulaire des indices 1, ...,/ ie. y (i) =
i + 1 mod /. On notera C; le sous-groupe (cyclique) de S, engendré par 7.
Soit enfin E le corps des racines sur F du polyndme X* — 1. Comme on a
supposé [ # caract (F), le EC,-module EV' se décompose en une somme
directe
EV' = @y (EV,
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olt y; est le groupe des racines de X' — 1 dans E et (EV'"); est le sous-espace
propre de EV' pour la valeur propre ¢ de v, ie. (EVY), = Ker (y—9).

Il est évident que (EV'); est sous EG-module de EV'.

Ona (E Vl),g >~ EQpV(E), ou V(E) estun FG-module univoquement
déterminé.

Ceci va résulter du lemme classique suivant.

LEMME. Soient W un EG-module et © un groupe fini d ’automorphismes
de E avec corps fixe F. Supposons que m opére sur W par automorphismes
semi-linéaires, 1.e.

g(aw) = o(a)o(w),

pour tout aeE, we W, cen et que les actions de m et G commutent.
Soit S : W - W définie par S(W) = > o0 W). Alors, S(W) est
un sous-FG-module de W et W =~ E®;S (W).

Remarque. Si, par ailleurs, on dispose déja d’un FG-module U tel que
W =FEQ®pU, etsil ® U est stable pour I'action de =, alors U = S (W),
comme FG-modules.

En effet, soit {¢ a},., une base normale de E/F. On définith : U — S (W)
par h(u) = Y ,cn0 (@ ® u). Il est clair que & commute a l'action de G.
D’autre part £ est injectif car

Zaena(a @U) = Zaeﬂd(a).a(l ®u) =0

entraine # = 0 puisque {o (a)} est une F-base de Eet c (1 @ u)el ® U
par hypothése. Comme dim,; U = dimy W = dim; S (W), il en résulte
que 4 est un isomorphisme.

Pour démontrer le lemme, on construit un EG-homomorphisme
FiEQrS(W)— W par fO,a;®@w;) = Y ;a;w;. On voit que f est
surjectif en prenant une forme ¢ € Homg (W, E) dont on suppose qu’elle
s’annule sur f(E ® ¢ S (W)) et en utilisant le théoréme de I'indépendance
des automorphismes pour démontrer que ¢ = 0. On constate ’injectivité
de f en écrivant les éléments de E ® y S (W) sous la forme ) .., 0a ® w,,
ol {0d},., est une base normale de E/F et en observant que les éléments
de S (W) sont invariants par I’action de 7.

On va appliquer ce lemme avec W = (EV'), et © = Gal (E/F).

On fait opérer 7 = Gal (E/F) sur V! comme suit:

On a linjection # = Gal (E/F) — U (Z/IZ) donnée par

cg—smodlsic(é) = &°
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pour tout & € u,. D’autre part, & s € U (Z/IZ) on associe la permutation o

donnée par
a,(i+1) =1is + 1 mod [.

La composition n — U(Z/IZ) — S,, notée o — 2, suivie.de l'action
de S, sur V! fournit une action de n sur V"

On pose alors

g(a®v) = 0(a) ® u,(v)

poura e E,ve V%

11 est clair que cette formule définit une action semi-linéaire de 7 sur
EV' qui commute & I'action de G et laisse stable 1 ® V.

On vérifie que #,.7y = y°. %, pour tout s € U (Z//Z). On a donc

cy(@) = ya(v),veE V!

et o & = & pour tout ¢ € y, et par suite I'action de © préserve (EV').. En
effet,
yo(@ = (V) =0 ({°v) = a (&)o@ = Lo (),

ouss’ = 1 mod L
En vertu du lemme, on a donc

12

(EV): 2 E®rV(),

avec
V(&) = S(EVY,,
ou
S(W) = Y seno(w), we(E VY.

DEFINITION. ¥, (V) = [V (1)] = [V (0], ol { est un générateur (quel-
conque) du groupe u, = E' des racines de X' — 1 et [ ] désigne la classe
du module entre crochets dans le groupe de Grothendieck K (FG),
resp. R (FG).

Cette définition exige de vérifier

(1) que V(1) et V' ({) sont FG-projectifs si c’est le cas pour V,
(2) que [V (0] est indépendant du générateur choisi { € p,.

Pour contrdler (1), on observe que
S(E Vl) = @g’eul S(E Vl)r: = ®§eul V(é) .
Comme V! est stable par «, la remarque qui suit le lemme ci-dessus entraine

V' SEVY = @y V(O
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ce qui montre bien que V (§) est projectif si c’est le cas pour V, et donc
pour V'

Pour démontrer (2) on va en fait exhiber un isomorphisme de FG-
modules V ({) = V(n) pour deux générateurs quelconques {, 7€ .
Puisque {,  sont des générateurs de u,, il existe un entier » premier a / et
tel que n = {". Soit, comme ci-dessus, a, € S, la permutation donnée par
la formule

o,(i+1) =in + 1 mod I.

Onavuquea,.y = y".q, Il en résulte que I’on a un £EG-homomorphisme
o, : (EV'), > (EV'),. Cest évidemment un isomorphisme, par symétrie
de la construction. D’autre part o, commute a ’action de n et fournit donc
un FG-isomorphisme o, : S (EV?Y), - S(EV?),.

La définition a donc un sens. Pour démontrer que ¥, induit une opé-
ration (additive) sur K (FG), resp. R (FG), il suffit de vérifier que si 0 =V,
— ¥V, —> V — 0 est une suite exacte de FG-modules, projectifs si I'on
s’intéresse a K (FG), on a

VY, =WV, + P V.
Soit Q le FG-module défini par la suite exacte
0-0->Vi->V -0.

Comme ci-dessus, on a des opérations semi-linéaires de n = Gal (E/F)
sur EVi, EV' et donc sur EQ, ainsi que des actions de S, sur ces modules.
Il est clair que EVy = EQ et EV; est stable par G, n, S;. On va démontrer
que

[S(EQIE V)] = [S(EQIE V)]

pour tout & e y,;, ou 'indice ¢ signifie que ’on prend I’espace propre pour
la valeur propre ¢ de y, la permutation circulaire (y (i) =i + 1 mod /),
et S est définie comme ci-dessus S = ) .. 0.

La suite exacte

0>EQIEV)-SEVIEV)—>EV' -0
se décompose en somme directe de suites

0~ (EQ/E V) = (EVIEVo)e > (EV) >0
exactes pour chaque ¢ € ;. D’ou

0> S(EQIEVY, »SEVHEVYH: » SEVH, »0.
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On a évidemment aussi les suites exactes
0= S(EVY: > SEV): > SEVEVy:—0.

A condition d’avoir démontré que les modules considérés sont pro-
jectifs si Vy, V', et V' le sont, on a alors

[SEV):] = [SEVD:] —[SEV:] — [SEQE V)] -

En soustrayant membre 4 membre ces égalités pour & = 1 et £ = (,
un générateur de y,;, on obtient

YV =V, -V, V,.

Reste donc & démontrer que [S(EQ/E Vé)é] a un sens dans K (FG),
resp. R (FG) et ne dépend pas de & € p,.

Pour toute suite & = (¢4, ...,¢) avec ¢ =0 ou 1, posons V,
=Vy ®Vy ®...® V. Cest un sous FG-module de Vi. On note |¢|
=g, + ...+ ¢. Les égalités | e| = 0 et | ¢| = [ caractérisent les suites
0, ...,0) et (1, ..., 1) respectivement. D’autre part, les V, avec |e| = A,
constant, sont permutés entre eux par S;. De méme, les £V, sont permutés
entre eux par 7. On voit que

Q = Z|s|<l Va .
Les FG-modules V, fournissent une filtration de Q. Pour tout A tel que
0<41=1[-1,onpose

Q, = Z|£|_4_/l Fe »
Les Q, sont des sous FG-modules de Q et

Q=Qt~13---3Q1DQ0=V(I)-

De méme £Q = EQ,_; > ... D EQ, 2 EQ, = EV}, et les groupes =
et S; préservent la filtration.

On va expliciter la structure de £(Q,/Q,_ ) pour 1 # 0, I.

Notation. Soit W, le produit tensoriel obtenu en remplagant par V
chaque facteur V', dans V. E.g.si/ = 5,¢ = (1,1,0,0, 1), on a

Va:V1®V1®VO®VO®V1
et

We=VRoVRVVeV.

On a une application évidente surjective ¥, » W, qui commute a I’action
de G. Remarquons aussi que tous les W, sont projectifs si ¥ et V, le sont.
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Il est commode de faire opérer S, sur les suites ¢ = (g, ..., &) par
permutation des indices. Le fait essentiel est que C,; opére sans point fixe sur
I’ensemble des suites ¢ telles que | e | # 0, [. Il en résulte que les C,-orbites
de ces suites ont toutes la méme cardinalité / (qui est premier). Rappelons
d’autre part que & gexn tel que o & = £°, on a associé la permutation
oy € S; donnée par o, (i+1) = is + 1 mod . Comme les «, normalisent
C,, 1l en résulte que n opére sur les orbites de C,. Comme de plus 7 est
abelien, il est facile de voir qu’il existe un systéeme R, de représentants des
C-orbites dans I’ensemble des suites & telles que |e| = A # 0, qui est
stable par [’action de .

Ces remarques permettent d’expliciter la structure de E(Q,/Q;_ ).
Je dis que

E(Q;/0:-1) 2 EC, Qp(®eer, EW))

par un isomorphisme qui commute avec les actions de G sur le deuxiéme
facteur et de C; sur le premier (dans le membre de droite). On s’occupera
plus tard de ’action de =.

On définit f; : EC, @p(®cr,EW,) = E(Q;/Q;-1) comme suit. Soit
z=7yQ@wavecw = w; @ ..Q w,e W, et y le générateur choisi de C,.
Pour ¢, = 1, on a w, e V et pour ¢, = 0, w, € VV,. Pour chaque indice k
tel que ¢, = 1, on choisit un élément v, € V/; se projettant sur w, par la
fleche donnée V', — V. Si ¢, = 0, on définit v, par v, = w, e V,. On pose

LG°0wW) =9 (v Q... ®0v)EEQ,/Q;_; .

Il est facile de voir que f; est bien définie sur les éléments de la forme
¥ ® w. On I’étend & EC, ®p (@ ,cr,EW,) tout entier par linéarité.

Il est clair que f; commute a I'action de G naturelle sur @ ,.g, EW, et
triviale sur EC,. 11 est également évident que f, est surjective. Pour voir que
f; est un isomorphisme, on compare les dimension sur £ des deux membres.

1
dimg E C, ®E(@eeRlE W) =1. 7(51) (dimg V)* (dim, Vp)'™* .

On utilise ici le fait que C; opére sans point fixe sur {¢, | | # 0, /} pour
dénombrer Card R; = 7 (}). Chacune de ces dimensions est supérieure

ou égale a dimy Q,/Q,_, . Or,

Y121 () . (dim V)* (dim Vo) ™* = (dim V + dim V)" — dim V! — dimV g
= dim V! - dim V' — dim V}
= dim (Q/Vé) = Z/{;i dim Q;/Q ;- .
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Donc, chaque f;, 4 = 1, ...,/ — 1 est un isomorphisme.
Comme f; commute a I’action de C;, on a

E(Q;/Q:-1) = (E C, ®E(®eeR;hE We))§
= (E C), ®E(®aeRlE We)

puisque ’action de C, dans le deuxiéme membre se réduit a I’action sur le
premier facteur EC,.

En outre, on remarque que le membre de droite est EG-isomorphe a
D e, £ W, puisque (EC), est de dimension 1 et que Gy opere trivialement.

Le EG-module E(Q;/Q;_;): est donc finalement isomorphe a
D.er, EW, qui est indépendant de ¢ € y,.

Reste a voir comment ces isomorphismes se comportent pour ’action
de m = Gal (E/F). On fait agir o € & sur EC, par

o (Zlaiyi) = Zi o (a;) }’is >

ou smod/ est déterminé par o (&) = &° pour tout &epu,. On prend
I’action diagonale de n sur EC, ®p (@D,er, EW,), en observant que =
opére bien sur le deuxiéme facteur car R; est stable par 7. On vérifie alors
sans difficulté¢ que f;, ¢ = of;.

Un choix de vecteur base pour (EC)); est

1 .
u =72ié—z,})z

et cet élément est invariant par 7. Donc,

S (E Cz)z ®E(®85RAE W, — E(Qz/Qx—Jg

commute a P’action de 7, et il en est de méme de P'isomorphisme

g,:(EC); ®E(@aeRlE W, — Deer, £ W,
puisque 7 opére trivialement sur u.
Ainsi,
9. f;l :E(Q/I/Ql—l)é - ®seRiE W,

est un isomorphisme de EG-modules qui commute 4 Iaction de 7 et il
en résulte:

SE(Q4/Qs-1): = S(@eer, EW,) = Deer, We -

(Le deuxiéme isomorphisme en vertu de la remarque qui suit le lemme.)
On conclut que

SE(QA/Q/I-I){ = @seR,l W,
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est indépendant de &£ a FG-isomorphisme prés et est un FG-module pro-
jectif si V', V et donc W, le sont.
On considere les suites exactes

0—>E (Q1—1/V(l)) —* E(QA/V(I)) - E(Q;/Q;-1) =0

qui fournissent les suites exactes

0— SE(QA—1/V(I))§ — SE(Q,l/V(I))g -* SE(QA/QA—I)& - 0.

On voit alors par récurrence sur A = 1, ...,/ — 1 que SE (Q,/ Vé)6 est
FG-projectif si Vy, V'le sont, et que sa classe [ SE (Q,/ Vé)é] est indépendante
de £. Explicitement, on obtient

[SEQIVo):] = YiZi (=)' [ @k, W]
On a donc démontré ,
(V) = Vi (Vo) + (V).

Il reste a vérifier que le diagramme

K(FG ° R(FG)
IR e
K(FG) ° R(FG)

commute. Ceci est facile. 11 est suffisant de vérifier res. i (¢¥,— ¥,c) = 0,
avec res.i: R(FG)—> R(LG) = [Jcee R(LC), ou L est une cloture
algébrique de F et ¥ est la famille des sous-groupes cycliques p-réguliers de G.

On sait que ¥; commute a res.i. Pour ‘PI le méme résultat est de
vérification facile. On est donc ramené & démontrer ¢ ¥,V — ¥, cV =0
dans le cas ou F est algébriquement clos et G est cyclique (d’ordre premier
a caract (F)). On peut méme supposer que V est un FG-module simple,
donc de dimension 1, puisque ¥, et ¥, sont toutes deux additives.

Le groupe cyclique C; opére alors trivialement sur V' comme on le
voit en identifiant ¥ 4 F (comme F-espace vectoriel) puis V' & F par

X Q... 0x;, »>x,...x,€F.
Dans ce cas, on a donc

Ker (y—1) = V', et Ker (y—=¢) = 0.
Comme n = {1} puisque F est algébriquement clos, on obtient
¥, (V) =[V] = [V]'eK(FG).
cW (V) =c[V] = ¥, c(V).
On notera également ¥, ’'endomorphisme ¥, : K (FG) —» K (FG).

Donc,
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Résumé. Soient F un corps de caractéristique p et G un groupe fini.
Pour tout nombre premier / # p, il existe une opération d’Adams
Y, : K(FG) - K(FQG) telle que le diagramme

K(FG) £ R(FG)
LY LY
K(FG) 5 R(FQG)
commute.

Remargues. On peut maintenant définir ¥, : K(FG) — K (FG) pour
tout m premier a p = caract (F) par

Y. = [[: 55, ou m = [, 15,

(Avant de savoir que ¢ est injectif, prendre les facteurs ¥,, dans un ordre
fixé, par exemple celui prescrit par /; </, < ....)

Ona¥,c=cY¥, pour tout m premier a p.

Soit en particulier m ’exposant p-régulier de G. Par définition m est
premier a p. Pour tout FG-module projectif P, on a par périodicité

(dimpP).1 = Yoc(P) = ¥, c(P) = c ¥, (P)ec K(FG).

Il en résulte facilement que R (FG)/c K (FG) a pour exposant exact le
p.g.c.d. des dimensions des FG-modules projectifs.

Cet exposant est évidemment un diviseur de Card G = dim; FG.

Comme R (FG) est de génération finie, R(FG)/cK (FG) est un groupe fini.

On voit assez facilement que K (FG) et R (FG) sont abéliens libres de
méme rang. On retrouve donc le fait que ¢ est injective. (Cf.[Serre], p. 136,
Cor. 2.)

Il est facile de montrer que 'exposant de Coker ¢ est la plus grande
puissance de p divisant Card G.

En effet, soient / # p un nombre premier et H = H, un /-sous-groupe
de Sylow de G. Puisque / est premier a p, le FH-module trivial F est FH-

projectif. (La surjection FH — F admet la section a — ff{g_l_] Y sens.) Donc
P, = FG @y F est FG-projectif. On a dimy P, = [G:H]. 1l est clair que

p.gcd. {{G:H], pour Il # p} = p",

la plus grande puissance de p divisant Card G. Donc ’exposant de Coker ¢
divise p".

Soit maintenant H un p-sous-groupe de Sylow de G. On a Card H
= p". Si P est FG-projectif, il est aussi FH-projectif par restriction, et on
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voit facilement que cela implique FH-libre. Donc dimy P est un multiple
de [H:1] = p". (Cf. [Serre], p. 145, Exercice 3.)

L’exposant de Coker ¢ est donc exactement p”.

Il reste encore a définir

Y,:K(FG) > K(FG),
ou p = caract (F)

Dans le cas ou F est parfait, e.g. algébriquement clos, la définition
est dictée par le fait que F admet I’automorphisme de Frobenius ¢ : F — F
tel que o (@) = af. D’aprés la propriété (6) au §4, ¥, (x) = o (x) pour
tout « € R (FG).

On n’a donc pas le choix:

v,(P) = o (P),

ol o (P) est évidemment FG-projectif si P ’est.

Pour attraper ¥, :K(FG) —» K(FG) pour F quelconque, on peut
utiliser le fait bien connu que iy : K (FG)— K(LG) est une injection
directe. (caract (F) # 0, L une cl6ture algébrique de F. Cf. [Serre], p. 136.)
Donc, Coker iy est sans torsion.

Le diagramme

K(FG) °E R(FG)
Lig Lig
K (LG) ° R(LG)
nous apprend alors que
c; . Coker iy — Coker iy

est injectif. (Compte tenu du fait démontré ci-dessus que Coker cj est fini.)
Or, pour tout « € K (FG), on a

CLTlea - Y]chlKa = Tlechx = lR TPCFOC.

Donc, ¢;, ¥, ix o représente 0 € Coker ig. Il en résulte que ¥, igeiyx K(FG)
et il existe un élément f € K(FG), unique puisque ig est injectif, tel que
V,ixa = ixB. Onpose ¥,a = f.

La définition de ¥, pour n entier quelconque est immédiate et dictée
par les propriétés ¥,, = ¥, . ¥, et la périodicité ou la propriété ¥ _, («)
= (¥,0)*.

( Recu le 5 mai 1975)
M. Kervaire
Section de Mathématiques

2-4, rue du Li¢vre
1211 Genéve 24
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