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1.5 Some notation. a) Let J be a vector space over Z/2Z, S a J-torsor.
Let’s put
ES)=J1IS

the disjoint union of J, S; on this set there is a structure of vector space
over Z/2Z. In fact there is an exact sequence

0—>J—>E(S)—>Z/]2Z -0

where J is sent identically onto itself, and the inverse image of 0 (resp. 1)
in E(S) is J (resp. S). The addition law in £ (S) reduces to the given one
on J when both elements are in J, is the action of J on S when one element
is in J and the other in S, and finally s + s (for s, s" € S) is the unique
element x € J such that x + s = s’ (or equivalently x + s = s).

b) Given the standard pair (J,, ¢,), as in 0.5. I will write S, = Q (J,, ¢,),
Q, = Q.. Both J,, S, identify to (Z/27)*, but the following notations
will be used in compliance with tradition, where uy, ..., 4,, is the canonical
basis. An element of the form

M a

(& U;+& Ut ,)

Il

i=1

!/

&
g, & are row vectors. In particular, the addition law in E (S,) is the following:

’8> <n> e+ n
4 + / = / : l)

"8> [ 5] I:S + 17:|
14 + / = / 14
)Ll = e o
g [ 7] e + 1y
l:/] + / = < 14 /)
g '] g +n,
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€ € s , :
will be Written< /> or[ j|whether it is seen 1n J, or S, respectively, where
€

2.0 Let’s fix for paragraph § 2 a symplectic torsor (S, Q) over a sym-
plectic pair (J, e) of genus g. The letter X will stand for either the set S
of S 7, its cardinality is 29~ (29 + 1) (recall that according to 1.1 we assume
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all symplectic torsors are even). We will exclude from consideration in this
section the trivial case where X has only one element. This corresponds
tog=1land 2 = S".

In this paragraph a very simple combinatorial structure will be put
on X (the finite geometry) that will allow us to reconstitute J, ), (S, 0)
from X. In particular, the symplectic group Sp (J, e) =~ Sp (S, Q) will be
interpreted as the group of automorphisms of a combinatorial structure.
Let’s denote this symplectic group by I'.

2.1 The addition in E (S) (see 1.5.a) defines a map
(2.1.1) IxY = J

(s,8) —>s + s

its image will be written ¥ + X. For any x € J, x # 0, the set of non-ordered
pairs {s, s’} such that x = s + s’ will be written X (x). Then, the following
holds:

2.1.1 PROPOSITION. One has J = X + X and | Z(x)| = 2972 (277" +1)
for any x # 0.

2.1.2 Proof. Let’s show first how the first conclusion implies the second.
As the group I' acts on both X X X and J, in a way compatible with the
map (2.1.1), and transitively on J — {0}, it is clear that | X (x) | is the same
for any x # 0, and half the cardinality of the inverse image of x by the
map (2.1.1). Because this map is surjective, and the inverse image of 0 is
the diagonal, one has

212 (1T =) =12~ 2.

Replacing the values | J| = 2%, | X | = 297! (294 1) one finds the answer.
Now, turning back to the proof that J = X + X, writing 4 = X + X,
we have that
e(x,y) =0 xed,y¢A.
Indeed, x = s + s’ for some s, s'eX, and if t = y + 5, t' =y + s/, it

must be that # ¢ X, t" ¢ X, otherwise y would belong to 4; but by definition
of a symplectic torsor

Q) +0G) +0() +Q(t) = e(x,y)

and as Q(s) = Q(s), Q(t) = Q ('), this equals 0. Finally, with the
exception of the case where X consists of only one element that was excluded
in 2.0, 4 # {0}, and the proposition follows from the lemma
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2.1.3 Lemma. If A = J contains 0 and e(x,y) = 0 for xe 4, y ¢ A,
then either 4 = {0} or 4 = J.

2.1.4 Proof of the lemma. If A # {0} and #J, there would be x # 0,
y#0 with xed, yeB=[A4. As e(x, B) =0, e(4,y) = 0, and the
form e is non degenerate, it should be

|A| <2271 || <22 L,

But | 4 | + | B| must equal 2%, and there is a contradiction.

2.2 The symplectic group I' acts on S through the identification
I' = Sp(S, Q) (1.4), and in particular I" acts on ¥ = S*. As a corollary
to 2.1, we have that the action of I' on X is faithful, i.e. that the map

I' - Aut (2)

is injective, with the trivial exception where | 2 | = 1.
This follows at once from the compatibility of the actions of I' on
2 x 2, J with the map (2.1.1).

2.3 A quartet in ¥ is a quadruple (sy, 5,, 53, 54) € 2% such that s; + s,
+ 55 + 5, = 0, where the addition is performed in E(S) (1.5.a). If
24y © 2% denotes the set of quartets, X4, has the following properties

(1) X4y is globally invariant under the permutation group in four
letters acting on 2* by coordinate exchanges.

(i) 24y < (2%)? is an equivalence relation on X2.

In fact, these two properties alone for a subset of 24 (¥ an arbitrary set)
define what naturally could be seen as the generalization of equivalence
relations, when 4-relations are considered instead of 2-relations. In this case
we have a further and very restrictive property:

(iii) The projection maps X4, — 2> are injective.

A triplet in X is a triple (sq, 5, 53) € 2> that can be completed to a
quartet, i.e. that belongs to the image of any of the projection maps in (iii)
above, or still such that s, + s, + 55 € 2. The set of triplets will be denoted
by X(3. It is clear that any of the four projection maps sets a corresponding
bijection X4y — (3.

We will also need the notion of sextet in X; these are sextuples
(S15 .-r Sg) € 2° such that s; + ... + s = 0; they constitute a set Z,.
Clearly n-ets could be defined in general but there will be no use for them,
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and even our interest for the sextets will be short-lived (see 2.5). Observe
that X, is an equivalence relation on >3 and is symmetric.
Also, for any n > 2, consider the following relation R, in 2":

(515 or Sy) Ry (24, .., 1,) if there are 7, j€ {1, ..., n} with i # j such that
s, = tif k # i, k # jand (s, 55, 15, 1) € 24y v

If R, is the equivalence relation on 2" generated by R,, two n-uples will
be said to be congruent if they are equivalent under R,. For example, the
relation R, = R, coincides with X ,,.

Observe, finally, that because of 2.1.1, any couple (resp. quadruple)
of elements of X can be completed to a triplet or a quartet (resp. to a sextet).
From this same observation, the number of elements in 23, 24), 2
can be computed

123y = 12| =277 272 1)* (271 £1)
|26 | =277+ D) (271 1),

2.4 PROPOSITION. The data of X4y, sy on X enables us to reconstitute
(J, e) and the symplectic torsor (S, Q). In particular,

J = 22,

2.4.1 Proof. It is clear by definition of X4, 24, and by proposition 2.1.1
that the maps 2 x ¥ - J, ¥ X ¥ x ¥ —» § defined by the addition in
E (S) induce identifications

J o 22X 4

S ~ 23/2(6) .

We have next to reconstitute from 24 and X,

a) The addition in J. Let x,y e J be represented respectively by the
couples (s, 8,), (s3,54). Then x + y is represented by (s;,ss), where
(515 +es S6) € (6.

b) The bilinear form e. Let x, y € J be represented respectively by the
couples (s, 5,), (53,5,) € 2% Then e(x,y) = 0 if both (s, 55, 5,) and
(52, 83, 84) belong or do not belong to X3, and e (x,y) = 1 otherwise.

¢) The action of J on S. Let xeJ, se S be represented respectively
by (51, 52) € 22, (53, 54, 55) € 2°. Then x + sis represented by (s, s, 5,) € 22,
where (s, 53, 53, 54, S6, 57) € Z( is any completion into a sextet of (s, ..., S4).

L’Enseignement mathém., t. XXII, fasc. 3-4. 14
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d) The map Q. Let se S be represented by (s, 55, 53) € 23. If X = S,
Q(s) equals 0 or 1 according to (sy, s,,s3) belongs to X, or not. If
2 = §7, the opposite is valid.

2.5 PROPOSITION. The data of Xy, X4y on the set X are equivalent,
and X, can be constructed from X .

2.5.1 Proof. 1t is clear that X3y is defined in terms of X4,. Conversely,
to define X, from X ,, one observes that (s, 55, 53, 54) € 2* is a quartet if
and only if the following holds: for any se2Z, (s, 81, 52) € 23
<> (5, 53, 84) € 23y, the proof of this fact is left as an exercise for the reader.
As for the last assertion, let’s remark first that it is trivial in the case g = 2,
2 = §7, because as [2[ = 6 there can be only one non-trivial sextet.
This exceptional case settled the following lemma—where in addition to
the assumption in 2.0 the preceding case is excluded from consideration—
shows that in the remaining cases the sextets are the sextuples congruent
(2.3) to those sextets containing a triplet. As these last ones are clearly
defined in terms of 24, the proposition is proved.

252 Lemma. If £ = S* (resp. £ = S7) any quadruple (resp. sex-
tuple) is congruent to a quadruple (resp. sextuple) containing a triplet.

2.5.3 Proof of the lemma. Let (s, ..., 5¢) € 2° be a sextuple. For any pair
(t,t’) € X2, the number of elements s € X such that (s, z, ¢') is a triplet equals
20-1 (2971 4+ 1) following 2.1.1. Thus, if

= {seZ/(s, sy, $2) € 23y}
= {se X/(s, s3, 84)62(3)}
= {s€X/(s, 55, 56) € 2(3)}

we have |T;| = N =217 x1) for i =1,2,3. It is easily seen
that 3N > | 2 [ = 2971 (294 1) and that if ¥ = S (so that + becomes +
everywhere) then 2N > | Z|. This implies that some two of the sets
T,, T,, T5 meet, and that T;, T, meet if ¥ = S* and the lemma follows.

2.6 THEOREM. The data of X4y (or X)) on X enable us to reconstitute
the whole situation: (J, e), (S, Q).

This is an immediate consequence of 2.4, 2.5. The structure X, will
be sometimes called the finite geometry on X, although I acknowledge it
is not one in the usual sense.
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2.7 COROLLARY. Let (S, Q), (S, Q') be symplectic torsors of genus g
over (J,e),(J',¢e), andlet X = S* 3" = S'*. Then, there are canonical

bijections

Isom ((J, e),(J ', e")) ~ Isom ((S,Q),(S", Q") g
~ Isom ((2, ), (27, Z,(4))) ‘

In particular, there are group isomorphisms

Sp(‘ja 6) = Sp(Sa Q) = AUt(z> 2(4)) .

§ 3 SYMPLECTIC TORSORS DEFINED BY FINITE SETS

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

A+B=AUB—-AnNnB A,Be2X

b) A map p: 2¥ - Z/2Z defined by
p(4) =[4](2) Ae2*

¢) A map e: 2% x 2¥ - Z/27Z defined by
e(A,B) = |AnB|(2) A4,Be2X
d) A map Q:2% — Z/2Z defined by
B| +1
Q(B) =L—'2~—(2> Be2?

whete 2% = p~! (1) is the set of subsets of odd order of X.

e) Amapgqg, = 2f — Z./2Z defined by

| A

go (4) = 7(2) Aer

where 2 = p~' (0).

Then, it is easily verified that

a) 2% is a vector space over Z/2Z, of dimension | X l
f) p is linear |

v) e is bilinear

a) The set 2% of subsets of X, with the operation of symmetric difference:

B e o O —— -
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