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1.5 Some notation, a) Let / be a vector space over Z/2Z, S a /-torsor.
Let's put

E(S) JUS

the disjoint union of J, S ; on this set there is a structure of vector space
over Z/2Z. In fact there is an exact sequence

0 -> J -> E(S) Z/2Z -> 0

where J is sent identically onto itself, and the inverse image of 0 (resp. 1)

in E (S) is J (resp. S). The addition law in E (S) reduces to the given one

on J when both elements are in J, is the action of J on S when one element
is in J and the other in S, and finally s + s' (for s, s' e S) is the unique
element x g J such that x + s s' (or equivalently x + sf s).

b) Given the standard pair (J0, e0), as in 0.5.1 will write S0 Q (J0, e0),

Q0 Qeo. Both J0, S0 identify to (Z/2Z)29, but the following notations
will be used in compliance with tradition, where uu ...,u2g is the canonical
basis. An element of the form

will be written
\ s

or
/ e'

X (£i Ui + S'i ui + g)

whether it is seen in J0 or S0 respectively, where

8, &' are row vectors. In particular, the addition law in E (S0) is the following:

01 + 1(;)i i

/'e + g \
\e' + rj'J

0)1 +
n

Ji

~
8 +

_8' + Yj'
_

8

E
+ jf-

/ 8 + rj\
\8f + n'J

§ 2 Finite geometries on sets of characteristics

2.0 Let's fix for paragraph § 2 a symplectic torsor (S, Q) over a sym-
plectic pair (/, e) of genus g. The letter I will stand for either the set S +

I of S~, its cardinality is I9'1 (.29 + 1) (recall that according to 1.1 we assume
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all symplectic torsors are even). We will exclude from consideration in this

section the trivial case where Z has only one element. This corresponds

to g 1 and Z S~.
In this paragraph a very simple combinatorial structure will be put

on Z (the finite geometry) that will allow us to reconstitute (/, e), (S, Q)

from Z. In particular, the symplectic group Sp (/, e) ce. Sp (S, Q) will be

interpreted as the group of automorphisms of a combinatorial structure.

Let's denote this symplectic group by f.
2.1 The addition in E (S) (see 1.5.a) defines a map

(2.1.1) ZxZ J

(.5, s') -» 5 + 5' ;

its image will be written Z + Z. For any xe/,x^ 0, the set of non-ordered

pairs {s, /} such that x s + s' will be written Z (x). Then, the following
holds:

2.1.1 Proposition. One has J Z + Z and j Z (x) j 29~2 (29~1 +1)
for any x + 0.

2.1.2 Proof Let's show first how the first conclusion implies the second.

As the group T acts on both Z x z and /, in a way compatible with the

map (2.1.1), and transitively on J — {0}, it is clear that | Z (x) | is the same
for any x # 0, and half the cardinality of the inverse image of x by the

map (2.1.1). Because this map is surjective, and the inverse image of 0 is

the diagonal, one has

2 I T (x) I • I / I -1) I Z \2 - |T|.
Replacing the values | /1 22^, \ z\ 29~x (29 ± 1) one finds the answer.

Now, turning back to the proof that J Z + Z, writing A Z + T,
we have that

e(x,y) 0 x e A, y A

Indeed, x s + s' for some i-, s' eZ, and if t y + s, t' y + s\ it
must be that t $ Z, t' $Z, otherwise y would belong to A ; but by definition
of a symplectic torsor

Q(s) + Q(s') +0(0 + Q(t') e(x,y)
and as Q (s) Q(sf), Q(t) Q(t'), this equals 0. Finally, with the
exception of the case where Z consists of only one element that was excluded

p in 2.0, A + {0}, and the proposition follows from the lemma
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2.1.3 Lemma. If A a J contains 0 and e (x, y) 0 for xœA, y £ A,
then either A {0} or A J.

2.1.4 Proof of the lemma. If A # {0} and #/, there would be x A 0,

y # 0 with x e A, y e B ft A. As e{x, B) 0, e (A, y) 0, and the
form e is non degenerate, it should be

I A I < 2l9~1 \B I < I29"1

But \A \ + J 2? I must equal 229, and there is a contradiction.

2.2 The symplectic group r acts on S through the identification

r Sp (S, Q) (1.4), and in particular r acts on 1 S±. As a corollary
to 2.1, we have that the action of T on Z is faithful, i.e. that the map

r Aut (i)
is injective, with the trivial exception where | 11 1.

This follows at once from the compatibility of the actions of T on
Z x Z, J with the map (2.1.1).

2.3 A quartet in Z is a quadruple (sl9 s2, s3, ^4) e Z4 such that s1 + s2

+ + s4 0, where the addition is performed in E (S) (1.5.a). If
Z{4) c Z4 denotes the set of quartets, Z(4) has the following properties

(i) Z(4) is globally invariant under the permutation group in four
letters acting on Z4 by coordinate exchanges.

(ii) Z(4) a (Z2)2 is an equivalence relation on Z2.

In fact, these two properties alone for a subset of Z4 (Z an arbitrary set)

define what naturally could be seen as the generalization of equivalence
relations, when 4-relations are considered instead of 2-relations. In this case

we have a further and very restrictive property :

(iii) The projection maps T(4) -» Z3 are injective.

A triplet in Z is a triple (sl9 s2, s3) e Z3 that can be completed to a

quartet, i.e. that belongs to the image of any of the projection maps in (iii)
above, or still such that s1 + s2 + s3 e Z. The set of triplets will be denoted

by Z(3). It is clear that any of the four projection maps sets a corresponding
bijection T(4) T(3).

We will also need the notion of sextet in Z; these are sextuples

(slf ...,s6)eZ6 such that s1 + + 0; they constitute a set Z(6).

Clearly «-ets could be defined in general but there will be no use for them,
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and even our interest for the sextets will be short-lived (see 2.5). Observe

that Z(6) is an equivalence relation on Z3 and is symmetric.

Also, for any n > 2, consider the following relation Rn in Zn:

sn) Rn (tl9 tn) if there are i9je {1, n) with i ^ j such that

sk tk if k 5É h k # j and (si9 sj9 ti91J) e r(4).

If Rn is the equivalence relation on Zn generated by Rn, two w-uples will
be said to be congruent if they are equivalent under Rn. For example, the

relation R2 R2 coincides with I(4).
Observe, finally, that because of 2.1.1, any couple (resp. quadruple)

of elements of Z can be completed to a triplet or a quartet (resp. to a sextet).

From this same observation, the number of elements in Z"(3), r(4), Z(6)

can be computed

|Z(3)| I r(4> I 23®~3 (2s +1)2 (29_1 ± 1)

I T(6)I 2Sg~5 ±lf {2g~l ±\).

2.4 Proposition. The dataof E(4j, I(6j on E enables us to reconstitute
{J, e) and the symplectic torsor S,Q).In particular,

J * Z2/Z(4)

S * ^(6)
2.4.1 Proof. It is clear by definition of r(4), Z(6) and by proposition 2.1.1

that the maps Z x £ -> Z x Z x z -+ S defined by the addition in
E (S) induce identifications

J ce

S ce I3IE(6)

We have next to reconstitute from and

a) The addition inJ. Let x, y e J be represented respectively by the
couples s2), (s3,,v4). Then x + yis represented by (s3,s6), where
C5'

1 > •••) Sö) 6 2i(6)-

b) The bilinear form e. Let x,yeJ be represented respectively by the
couples (su s2),(s3,,s-4) e I2. Then e (x, y) 0 if both (su s4) and
02, s3,j4) belong or do not belong to I(3), and fx, y) 1 otherwise.

c) The action of J on S. Let x e J, s 6 be represented respectively
by (sus2)eZ2,(.s3,s4, s5)eI3.Thenx+ x is represented by (s5, e I3,
where (Tj, s2, s3,s4,s6, s7) eI{6)is any completion into a sextet of (s2,..., ,y4).

L'Enseignement mathém., t. XXII, fasc. 3-4. 14
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d) The map Q. Let s e S be represented by (.s1!, s2, s3) e I3. If I S +,

Q (s) equals 0 or 1 according to (sl9 s2, s3) belongs to T(3) or not. If
I — S~, the opposite is valid.

2.5 Proposition. The data of r(3), T(4) on the set I are equivalent,
and r(6) ca/z be constructed from

2.5.1 Proof It is clear that T(3) is defined in terms of T(4). Conversely,
to define I(4) from T(3), one observes that s2, s3i s4) e I4 is a quartet if
and only if the following holds: for any sel, (s, sx, s2) e I{3)
0 (s, s3, s4) e I(3)m, the proof of this fact is left as an exercise for the reader.

As for the last assertion, let's remark first that it is trivial in the case g 2,

1 S~, because as 111 6 there can be only one non-trivial sextet.

This exceptional case settled the following lemma—where in addition to
the assumption in 2.0 the preceding case is excluded from consideration—
shows that in the remaining cases the sextets are the sextuples congruent
(2.3) to those sextets containing a triplet. As these last ones are clearly
defined in terms of T(4), the proposition is proved.

2.5.2 Lemma. If I S+ (resp. I S~) any quadruple (resp.
sextuple) is congruent to a quadruple (resp. sextuple) containing a triplet.

2.5.3 Proof of the lemma. Let (^l5 ...,s6)el6 be a sextuple. For any pair
(t, t')e I2, the number of elements sei such that (s, t, t') is a triplet equals
29'1 (29'1 ± 1) following 2.1.1. Thus, if

Tx {sell(s, su s2)el{3)}

T2 {sgI/(S, S3, s4)el(3)}

T3 {sel/(s, s5, s6)eF(3)}

i we have | Tt | N =» 29'1 (29"1 ±1) for i 1,2,3. It is easily seen
I- that 3N > 111 29~1 (2^ + 1) and that if I S+ (so that ± becomes +

everywhere) then 2N > 111. This implies that some two of the sets

Tu T2, T3 meet, and that Tu T2 meet if I S+ and the lemma follows.

2.6 Theorem. The data of 2,(4) (or T(3)) on I enable us to reconstitute

the whole situation : (/, e),(S, Q).

This is an immediate consequence of 2.4, 2.5. The structure T(4) will
be sometimes called the finite geometry on I, although I acknowledge it
is not one in the usual sense.
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2.7 Corollary. Let (S, g), (S", g') symplectic torsors of genus g

over (J,e),(J',e'), and let I S±,I' Sr±. Then, there are canonical

bijections
Isom ((J, e), (J e')) ^ Isom((S, g), (S g'))

^ Isom ((X, X(4)), (I', X'(4)))

In particular, t/zere are group isomorphisms

Sp (J, e) ~ Sp (5, 0 Aut (T, r(4)).

§ 3 Symplectic torsors defined by finite sets

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

a) The set 2X of subsets of X, with the operation of symmetric difference :

A+B=AuB-AnB A, Be 2X

b) A map p: 2X -* Z/2Z defined by

p(A)\A\(2)e2*

c) A map e: 2X x 2X -> Z/2Z defined by

e(A,£) I A nB | (2) A,Be2x

d) A map Q: 2X_ Z/2Z defined by

g(B) =L^L±2(2)

wheie 2* (1) is the set of subsets of odd order of X.

e) A map q0 2X -> Z/2Z defined by

4o04) ~~2~^ Ae2x

where 2* /?_1 (0).

Then, it is easily verified that

a) 2X is a vector space over Z/2Z, of dimension | X |.

ß) p is linear

y e is bilinear
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