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II. THE ABSTRACT THEORY OF CHARACTERISTICS

§ 1 SYMPLECTIC TORSORS

1.1 Definitions. Recall that, if I' is a group, a I'-torsor (or torsor over I')
is a non-void set endowed with a simply transitive action of I on it. Let
(J, e) be a symplectic pair, a symplectic torsor over (J, e) is a pair (S, Q) of |
a J-torsor S and a mapping Q: S — Z/27Z having the property

(1.1.1) Q) +Q(x+s) +Q(y+s) + Q(x+y+s) = e(x,y)

where se S, x, yeJ. It is clearly equivalent to ask this property for a
fixed s € S or for all s € S, and it may be thought of as meaning that Q “is
a quadratic form.” Indeed, any s € S sets an identification J =~ S (x b x + ),
and through this identification Q becomes the map x|— Q (x+s). The
above property means that the map ¢,: J — Z/2Z defined by

(1.1.2) qs(x) = Q(x+s) + O (5)

is a quadratic form whose associated bilinear form is e. According to 0.4,
two possibilities may and do arise for Q: either Q7! (0) has 2971 (29+1)
or 2971 (2—1) elements, where g = dim J/2 will be called the genus
of (S, Q). In the first case, (S, Q) will be said to be even, odd in the second.
In what follows, all symplectic torsors will be even unless otherwise stated.
This because the symplectic torsors that will appear most often will be even
and because of the following simple construction. If (S, Q) is an even
(resp. odd) symplectic torsor over (J,e), and Q is defined by QO (s)
= Q(s) + 1, then (S, Q) is an odd (resp. even) symplectic torsor over
(J, e).
For a given (S, Q) the following notation will be used

ST =070 ST =07'(D).

The elements of S will be often called characteristics, those in St are
positive, those in S~ are negative.

1.2 Morphisms. Let (S, 0), (S, Q) be symplectic torsors respectively
over (J, e), (J', ¢). For any map f: S — S’ we defineamap ,: J X § - J’
by the property

f+s) =0,(x,8) +f(5);
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this can be done because S’ is a J'-torsor. Now, the following cocycle-type
property for o, is immediately checked, where x,y € J, s€ S

o;,(x+y+s) = 0,(x,y+5) + or(y,5),

and from it one infers the equivalence of the following statements:

(i) Foranys,s'e S, xeJ

o;(x,s) = a,(x,8).

(i) For some s€ S, any x, ye J

ap(x+y,5) = 0,(x,9 + 0,(¥,9)

(i) For any se S, x, yeJ

o, (x+y,5) = 0,(x,5) +0,(y,5).

So, when these statements hold, one gets a group homomorphisma,: J — J’
and has f(x+s) = o, (x) + f(s).

An isomorphism of (S, Q) onto (S’, Q') is a bijection f: § — S’ verifying
statements (i) to (iii) above, and also the condition

Q'of=0.

It is clear in this case that o,:J — J' is an isomorphism compatible with
e, e'. The group of automorphisms of (S, Q) will be denoted Sp (S, Q), so
the mapping /' — o, is a group homomorphism Sp (S, Q) — Sp (J, e).

1.3 An example. For any given (J, e) there is a canonical example of
an even symplectic torsor, namely (Q (J, e), Q.). The J-torsor Q (J, e) was
introduced in 0.2, the map Q, in 0.3 where it was also remarked that it has
property (1.1.1) and that Q,* (0) has 29~ (2?+1) elements.

If (J,e), (J', ) are two symplectic pairs, and if ¢:J — J' is a linear
isomorphism compatible with ¢, e’, a map Q (0): Q (J,e) > Q (J', ') was
defined in 0.4, where it was shown that it is an isomorphism of symplectic
torsors. Clearly Q (o) is canonical in any conceivable way.

Indeed, if one still dares in these days to use the language of category
theory, what I just did was to define a functor from the category of sym-
plectic pairs to the category of even symplectic torsors (morphisms = iso-
morphisms, in both cases). In section 1.4 we will see that this is an equivalence
of categories.



— 205 —

1.4 Uniqueness of symplectic torsors. It will be shown here, that for a
given symplectic pair (J, e) there is essentially only one symplectic torsor
over it. Let (S, Q) be such an object; then there is a map

i8>0, e,

defined by the rule s |- ¢,, where g, was defined in (1.1.2). Let us prove
that f, is an isomorphism of symplectic torsors inducing the identity
idy: J — J. The formula

dets(¥) = (x+4q9) ()

is a mere restatement of condition (1.1.1), and the formula

Qeo-fs = Q

follows from the fact that (S, Q) is even and from the meaning of the
Arf invariant recalled in 0.3.

The isomorphisms f; are canonical, in the following sense. If (S, Q),
(S’, Q') are symplectic torsors over (J,e), (J',¢e), [ S — S’ is an iso-
morphism of symplectic torsors inducing an isomorphism o¢:J — J’, then
the following square commutes

S—f—> S’
fs J(fs’
¥
0,029 0y, e

Recalling the definitions, one has to check for s e S, x € J that

Q(a(x) +1(9)) + Q(f(5) = Q(x+5) + 0O ()

which is immediate from the definition of isomorphism in 1.2.

It comes out of this that for any isomorphism o:J — J’ there exists
one and only one isomorphism f: S — S’ inducing it. In particular, the
group homomorphism at the end of 1.2.

Sp (S, Q) = Sp (J, e)

is an isomorphism. A useful application of this is the following: If by some
unspecified means one is able to construct two symplectic torsors over a

pair (J,e), there is a unique isomorphism between them inducing the
identity of J.
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1.5 Some notation. a) Let J be a vector space over Z/2Z, S a J-torsor.
Let’s put
ES)=J1IS

the disjoint union of J, S; on this set there is a structure of vector space
over Z/2Z. In fact there is an exact sequence

0—>J—>E(S)—>Z/]2Z -0

where J is sent identically onto itself, and the inverse image of 0 (resp. 1)
in E(S) is J (resp. S). The addition law in £ (S) reduces to the given one
on J when both elements are in J, is the action of J on S when one element
is in J and the other in S, and finally s + s (for s, s" € S) is the unique
element x € J such that x + s = s’ (or equivalently x + s = s).

b) Given the standard pair (J,, ¢,), as in 0.5. I will write S, = Q (J,, ¢,),
Q, = Q.. Both J,, S, identify to (Z/27)*, but the following notations
will be used in compliance with tradition, where uy, ..., 4,, is the canonical
basis. An element of the form

M a

(& U;+& Ut ,)

Il

i=1

!/

&
g, & are row vectors. In particular, the addition law in E (S,) is the following:

’8> <n> e+ n
4 + / = / : l)

"8> [ 5] I:S + 17:|
14 + / = / 14
)Ll = e o
g [ 7] e + 1y
l:/] + / = < 14 /)
g '] g +n,

§ 2 FINITE GEOMETRIES ON SETS OF CHARACTERISTICS

€ € s , :
will be Written< /> or[ j|whether it is seen 1n J, or S, respectively, where
€

2.0 Let’s fix for paragraph § 2 a symplectic torsor (S, Q) over a sym-
plectic pair (J, e) of genus g. The letter X will stand for either the set S
of S 7, its cardinality is 29~ (29 + 1) (recall that according to 1.1 we assume
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all symplectic torsors are even). We will exclude from consideration in this
section the trivial case where X has only one element. This corresponds
tog=1land 2 = S".

In this paragraph a very simple combinatorial structure will be put
on X (the finite geometry) that will allow us to reconstitute J, ), (S, 0)
from X. In particular, the symplectic group Sp (J, e) =~ Sp (S, Q) will be
interpreted as the group of automorphisms of a combinatorial structure.
Let’s denote this symplectic group by I'.

2.1 The addition in E (S) (see 1.5.a) defines a map
(2.1.1) IxY = J

(s,8) —>s + s

its image will be written ¥ + X. For any x € J, x # 0, the set of non-ordered
pairs {s, s’} such that x = s + s’ will be written X (x). Then, the following
holds:

2.1.1 PROPOSITION. One has J = X + X and | Z(x)| = 2972 (277" +1)
for any x # 0.

2.1.2 Proof. Let’s show first how the first conclusion implies the second.
As the group I' acts on both X X X and J, in a way compatible with the
map (2.1.1), and transitively on J — {0}, it is clear that | X (x) | is the same
for any x # 0, and half the cardinality of the inverse image of x by the
map (2.1.1). Because this map is surjective, and the inverse image of 0 is
the diagonal, one has

212 (1T =) =12~ 2.

Replacing the values | J| = 2%, | X | = 297! (294 1) one finds the answer.
Now, turning back to the proof that J = X + X, writing 4 = X + X,
we have that
e(x,y) =0 xed,y¢A.
Indeed, x = s + s’ for some s, s'eX, and if t = y + 5, t' =y + s/, it

must be that # ¢ X, t" ¢ X, otherwise y would belong to 4; but by definition
of a symplectic torsor

Q) +0G) +0() +Q(t) = e(x,y)

and as Q(s) = Q(s), Q(t) = Q ('), this equals 0. Finally, with the
exception of the case where X consists of only one element that was excluded
in 2.0, 4 # {0}, and the proposition follows from the lemma
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2.1.3 Lemma. If A = J contains 0 and e(x,y) = 0 for xe 4, y ¢ A,
then either 4 = {0} or 4 = J.

2.1.4 Proof of the lemma. If A # {0} and #J, there would be x # 0,
y#0 with xed, yeB=[A4. As e(x, B) =0, e(4,y) = 0, and the
form e is non degenerate, it should be

|A| <2271 || <22 L,

But | 4 | + | B| must equal 2%, and there is a contradiction.

2.2 The symplectic group I' acts on S through the identification
I' = Sp(S, Q) (1.4), and in particular I" acts on ¥ = S*. As a corollary
to 2.1, we have that the action of I' on X is faithful, i.e. that the map

I' - Aut (2)

is injective, with the trivial exception where | 2 | = 1.
This follows at once from the compatibility of the actions of I' on
2 x 2, J with the map (2.1.1).

2.3 A quartet in ¥ is a quadruple (sy, 5,, 53, 54) € 2% such that s; + s,
+ 55 + 5, = 0, where the addition is performed in E(S) (1.5.a). If
24y © 2% denotes the set of quartets, X4, has the following properties

(1) X4y is globally invariant under the permutation group in four
letters acting on 2* by coordinate exchanges.

(i) 24y < (2%)? is an equivalence relation on X2.

In fact, these two properties alone for a subset of 24 (¥ an arbitrary set)
define what naturally could be seen as the generalization of equivalence
relations, when 4-relations are considered instead of 2-relations. In this case
we have a further and very restrictive property:

(iii) The projection maps X4, — 2> are injective.

A triplet in X is a triple (sq, 5, 53) € 2> that can be completed to a
quartet, i.e. that belongs to the image of any of the projection maps in (iii)
above, or still such that s, + s, + 55 € 2. The set of triplets will be denoted
by X(3. It is clear that any of the four projection maps sets a corresponding
bijection X4y — (3.

We will also need the notion of sextet in X; these are sextuples
(S15 .-r Sg) € 2° such that s; + ... + s = 0; they constitute a set Z,.
Clearly n-ets could be defined in general but there will be no use for them,
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and even our interest for the sextets will be short-lived (see 2.5). Observe
that X, is an equivalence relation on >3 and is symmetric.
Also, for any n > 2, consider the following relation R, in 2":

(515 or Sy) Ry (24, .., 1,) if there are 7, j€ {1, ..., n} with i # j such that
s, = tif k # i, k # jand (s, 55, 15, 1) € 24y v

If R, is the equivalence relation on 2" generated by R,, two n-uples will
be said to be congruent if they are equivalent under R,. For example, the
relation R, = R, coincides with X ,,.

Observe, finally, that because of 2.1.1, any couple (resp. quadruple)
of elements of X can be completed to a triplet or a quartet (resp. to a sextet).
From this same observation, the number of elements in 23, 24), 2
can be computed

123y = 12| =277 272 1)* (271 £1)
|26 | =277+ D) (271 1),

2.4 PROPOSITION. The data of X4y, sy on X enables us to reconstitute
(J, e) and the symplectic torsor (S, Q). In particular,

J = 22,

2.4.1 Proof. It is clear by definition of X4, 24, and by proposition 2.1.1
that the maps 2 x ¥ - J, ¥ X ¥ x ¥ —» § defined by the addition in
E (S) induce identifications

J o 22X 4

S ~ 23/2(6) .

We have next to reconstitute from 24 and X,

a) The addition in J. Let x,y e J be represented respectively by the
couples (s, 8,), (s3,54). Then x + y is represented by (s;,ss), where
(515 +es S6) € (6.

b) The bilinear form e. Let x, y € J be represented respectively by the
couples (s, 5,), (53,5,) € 2% Then e(x,y) = 0 if both (s, 55, 5,) and
(52, 83, 84) belong or do not belong to X3, and e (x,y) = 1 otherwise.

¢) The action of J on S. Let xeJ, se S be represented respectively
by (51, 52) € 22, (53, 54, 55) € 2°. Then x + sis represented by (s, s, 5,) € 22,
where (s, 53, 53, 54, S6, 57) € Z( is any completion into a sextet of (s, ..., S4).

L’Enseignement mathém., t. XXII, fasc. 3-4. 14
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d) The map Q. Let se S be represented by (s, 55, 53) € 23. If X = S,
Q(s) equals 0 or 1 according to (sy, s,,s3) belongs to X, or not. If
2 = §7, the opposite is valid.

2.5 PROPOSITION. The data of Xy, X4y on the set X are equivalent,
and X, can be constructed from X .

2.5.1 Proof. 1t is clear that X3y is defined in terms of X4,. Conversely,
to define X, from X ,, one observes that (s, 55, 53, 54) € 2* is a quartet if
and only if the following holds: for any se2Z, (s, 81, 52) € 23
<> (5, 53, 84) € 23y, the proof of this fact is left as an exercise for the reader.
As for the last assertion, let’s remark first that it is trivial in the case g = 2,
2 = §7, because as [2[ = 6 there can be only one non-trivial sextet.
This exceptional case settled the following lemma—where in addition to
the assumption in 2.0 the preceding case is excluded from consideration—
shows that in the remaining cases the sextets are the sextuples congruent
(2.3) to those sextets containing a triplet. As these last ones are clearly
defined in terms of 24, the proposition is proved.

252 Lemma. If £ = S* (resp. £ = S7) any quadruple (resp. sex-
tuple) is congruent to a quadruple (resp. sextuple) containing a triplet.

2.5.3 Proof of the lemma. Let (s, ..., 5¢) € 2° be a sextuple. For any pair
(t,t’) € X2, the number of elements s € X such that (s, z, ¢') is a triplet equals
20-1 (2971 4+ 1) following 2.1.1. Thus, if

= {seZ/(s, sy, $2) € 23y}
= {se X/(s, s3, 84)62(3)}
= {s€X/(s, 55, 56) € 2(3)}

we have |T;| = N =217 x1) for i =1,2,3. It is easily seen
that 3N > | 2 [ = 2971 (294 1) and that if ¥ = S (so that + becomes +
everywhere) then 2N > | Z|. This implies that some two of the sets
T,, T,, T5 meet, and that T;, T, meet if ¥ = S* and the lemma follows.

2.6 THEOREM. The data of X4y (or X)) on X enable us to reconstitute
the whole situation: (J, e), (S, Q).

This is an immediate consequence of 2.4, 2.5. The structure X, will
be sometimes called the finite geometry on X, although I acknowledge it
is not one in the usual sense.
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2.7 COROLLARY. Let (S, Q), (S, Q') be symplectic torsors of genus g
over (J,e),(J',¢e), andlet X = S* 3" = S'*. Then, there are canonical

bijections

Isom ((J, e),(J ', e")) ~ Isom ((S,Q),(S", Q") g
~ Isom ((2, ), (27, Z,(4))) ‘

In particular, there are group isomorphisms

Sp(‘ja 6) = Sp(Sa Q) = AUt(z> 2(4)) .

§ 3 SYMPLECTIC TORSORS DEFINED BY FINITE SETS

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

A+B=AUB—-AnNnB A,Be2X

b) A map p: 2¥ - Z/2Z defined by
p(4) =[4](2) Ae2*

¢) A map e: 2% x 2¥ - Z/27Z defined by
e(A,B) = |AnB|(2) A4,Be2X
d) A map Q:2% — Z/2Z defined by
B| +1
Q(B) =L—'2~—(2> Be2?

whete 2% = p~! (1) is the set of subsets of odd order of X.

e) Amapgqg, = 2f — Z./2Z defined by

| A

go (4) = 7(2) Aer

where 2 = p~' (0).

Then, it is easily verified that

a) 2% is a vector space over Z/2Z, of dimension | X l
f) p is linear |

v) e is bilinear

a) The set 2% of subsets of X, with the operation of symmetric difference:

B e o O —— -
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d) Q has the following property (compare 1.1.1)
QB) +Q(A+B) +Q(A"+B) + Q(A+A"+B) = e(A4,A4")

whenever Be 2%, 4, 4’ € Zf
€) q,1s a quadratic form inducing the restriction of e to 2 f .

In the proof of these, one uses the following identity
|A+B| =|4|+|B|—=2|AnB| A,Be2*.

3.2 Let’s assume in the following three sections that X is of odd order,
| X| =29 + L.

3.2.1 PROPOSITION. The bilinear form e on 2 f is alternate and non-
degenerate. If Zf acts on 2% by translations, (2%, Q) is a symplectic
torsor over (Zf, e) which is even for g = 2,3 (4) and odd for g == 0, 1 (4).

3.2.2 Proof. It is clear that e is alternate on 2 f It is also non degenerate,
because if A4 er, A # ¢, let xe A; then A" = (X—A) U {x} is of even
order, and e (4, A") = 1. It is also clear that (2%, Q) is a symplectic torsor
over (2 f, e) (because of 3.1 ¢) and the definition of symplectic torsor.

To find out when this torsor is even or odd, we first observe that it is
clearly odd for g = 0, 1 (look at it), then apply descending induction using
the following fact (to be proved below). Let’s call ¢, the type of the torsor
corresponding to an X with | Xl =29 + 1 (and g > 2), thus ¢, = +1;
then e, = ¢,_; if g is odd, and ¢, = —¢,_; if g is even.

Proof of this fact: take a fixed 4, = X of order two. The set of Be2*
such that Q (B) = Q(4,+B) = 0 (recall that Q (B) = 0 means that
| B| = 1(4)) has cardinality 27~ " (29~ " +¢,) by definition of ¢, and prop-
osition 2.1.1. But clearly this number is also twice the cardinality of the
set of subsets C of X — A, such that | C| = 2g — 1 (4) (in fact any such B
defines a C by C = X — (4, uUB) and this map is two-fold) and the number
of these is 2972 (29" '+¢,_,) or 2972 (2" ' —¢,_,) according to 2g — 1
=1@4) or 2g — 1=13(4), i.e. g odd or even. This proves the fact and
completes the proof of the proposition.

3.3 If Q is odd, let us agree to modify Q in the way described in 1.1 to
obtain an even torsor 0. With this convention, the following notation will
be adopted:

Jxy =27 ex=c¢e
Sx = 2i( Qx =0

or O according to the value of g mod 4.
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The identification S, ~ QO (Jy, ex) in 1.4 may be made explicit: if
B e Sy, B becomes the following quadratic form

| A |
B(A) = |AnB| +-—=-(2).

Let’s now make explicit the condition for a triple (By, B,, B;) of elements
of either S ¥ or S% to be a triplet (2.3). This means that

QX(ZBi) =2 QX (Bi) >
and this is equivalent to
Z |B;nB;| =1(2),
i<j
or still to
lUB | =[nB[(2).

3.4 The quadratic form g, on Jy singled out in 3.1 e) corresponds through
the identification Q (Jy, eyx) = Sy to X itself. As Q(X)=g + 1(2), it
results from the last part of 3.2.1 that the Arf invariant of ¢, is O for

= 0,3(4), 1 for g =1, 2 (4). In other words, g, S% for g = 0, 3 (4),
g, €Sy forg=1,2(4).

3.5 Let’s assume in this and the next sections that X is of even order,
| X| = 2g + 2. Then, the linear map p passes to the quotient 2¥ / {0, X}.
This quotient identifies naturally with the set of partitions of X into two
subsets, and will be denoted P, (X). If p: P, (X) —» Z/2Z still denotes the
induced map, we will write

P;(X) = p~(0)
P;(X) =pt(1).
With respect to the bilinear form e, X is orthogonal to 2 f , then inducing
an alternate bilinear form, still denoted by e, on P3 (X). This form is non-

degenerate. To prove this, observe that if 4 €2, 4 different from @ and X,
and xe€ 4, x" ¢ A; then, if 4" = {x, x'},e(4, 4") = 1.

3.6 Two cases may appear in this situation.

a) g is even. Then, the map Q:2% - Z/2Z passes to the quotient
P, (X), so this becomes a symplectic torsor over (P;L (X), e). But in this
case the canonical quadratic form g, does not pass to the quotient P (X).

b) g is odd. Then, the map Q does not pass to the quotient, but g, does,
so there is a natural characteristic.
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3.7 The following construction would help in developing the case where
| X'| is even along the lines of 3.2-3.5, which I won’t do. Let X be of odd
order | X| = 2g + 1, and define X’ = XII{X}, thus | X' | =29 +2.
We have a natural linear map

2X — 2X/

and this is compatible with p, e, Q, ¢,. Composing this with the passage
to the quotient, I have a linear isomorphism

2X — PZ (X ,) s
and by compatibility with p, p’, isomorphisms

27 > P3(X")

2¥ 5 PL(X).

The first is compatible with e, ¢/, and with the canonical quadratic forms
if g is odd. The second is compatible with Q, Q' if g is even.

§ 4 BASIS AND FUNDAMENTAL SETS

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) 1s a basis (x;),r for J with the property that e (x;, x;) = 1 for i # j,
the set of ordered normal basis (i.e. for I = {1, ..., 2g} if 2¢g = dim J)
will be denoted ONB (J, e). The symplectic group Sp (J, e) clearly acts on
ONB (J, e) and it does it simply transitively, because if two ordered normal
bases for (J, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (J, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (J, e) of symplectic basis is a torsor
over Sp (J, e), thus if ONB (J, e) is non-empty, both torsors should be
isomorphic and indeed there would be as many isomorphisms as elements
in the group Sp (J, ¢). What 1 proceed to exhibit now is a definite iso-
morphism

a:SB(J,e) > ONB(J, e)
with inverse f. If

xeSB(J,e),x = (x4, ...,xg,xi, ...,x;)

let’s put y = « (x), then by definition
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y2k—1 - xl + XL + xk + x; + o + x,;_l
y2k =x1+...+xk_1 +x;+..+x; k - 1,...,9.

As for the inverse, if y € ONB (J, e), and x = B (), then one gets from the
definition of «

Xp = Y1 + oo + Vor—2 + Yar—1
Xp = V1 + o V2 v k=1,..9.

It is clear from this definition that « is compatible with the actions
of Sp (J, e) on both sets.

4.2 Azygetic sets. Let (S, Q) be a symplectic torsor over a symplectic
pair (J, e). A subset 4 = S is azygetic if for any three different elements
Si, 85,53 € A one has Q(s;) + Q(sy) + Q(s3) + Q(sy+s,+s3) =1, or
equivalently if e (s;,+5,, 5; +53) = 1. A is homogeneous if Q is constant on
it, i.e. if either A = S* or 4 = S~. And the subset A4 is linearly independent
if for some (or equivalently, for any) s € 4, the subset s + (A—{s}) = J is
linearly independent, or equivalently if 4 + A spans a subspace of J of
dimension | 4 | — 1.

Let A be an azygetic subset, se 4, and let B = s + (A—{s}), T will

show that the only possible linear relation on B is X x = 0. Indeed,
XeB

if ¥ A.x = 0 is such a relation, for any y € B, one has

0=ce(y,YAx) = Ae(y,x) = ) A

xeB
X Fy

S A, =0

x#y
Adding these equations for any y, )y’ € B, one concludes that 4, = 4,
which was to be shown. As a consequence of this, it follows that any azy-
getic subset of odd order is linearly independent, and that an azygetic
subset has at most 2g + 2 elements. It is easy to verify that if 4 is an
azygetic subset of odd order and if s = X 7, AU {s} is still azygetic.

ted
4.3 Basis for symplectic torsors. A basis for a symplectic torsor (S, Q)

over (J, e) is a maximal homogeneous, linearly independent, azygetic subset
of S. A basis has exactly 2g + 1 elements, where g is the genus of (S, Q).
This comes from the fact that any symplectic torsor is isomorphic to one
of the form (S, Q) constructed in § 3 because of the uniqueness result in
1.4, that for Sy, X < Sy is clearly a basis with 2g + 1 elements, and that
a linearly independent subset can have at most 2g + 1 elements.
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The set of ordered basis for (S, Q) will be denoted by OB (S, Q), the
group Sp (S, Q) acts on it.

The following construction is fundamental. Let X < S be a basis, we
have then a map

Fy: 2% 5 E(S)
(cf. 1.5.a) for the definition of E (S)), defined by

sed
It is clear that Fy is a group homomorphism, that sends subsets of X
of even (resp. odd) order into J (resp. S), thereby inducing a linear homo-
morphism
ox: 2% = J

and a map compatible with the respective group actions
fx:2¥ 58S,

To proceed further, let’s choose a total order on X, X = {s,, ..., 55,}.
Then, the X; = {s,, s;} (resp. x; = s, + 5;) for i = 1, ..., 2g constitute an
ordered normal basis for 2 f (resp. J), and as o4 (X;) = x; we have that oy
18 a symplectic isomorphism. It follows that f, is a bijection, and indeed f,
defines an isomorphism of symplectic torsors between (Sy, Q) and (S, Q).

To see this, we have to prove that if 4, A" = Xaresuchthat| 4 | = | 4’| (4),
then
(2 s)=2() s).
seA sed’

We know that Q is constant on X, and the condition on X of being azygetic
means that for any three different s, 5,, 53 € X, Q (s; +5, +s55) is different
from the value of Q on X. From this remark, the fact to be proved follows
easily by induction and using the defining property (1.1.1) of symplectic
torsors. For example, if | A | = 5, and we order 4 = {sy, ..., 55}, we have

Q(Zs) +Q(s1) = Q(sy+5;+53) + Q(s1+54+55)
because e (s, +53, 54 +55) = 0, thus

Q(s1) = Q(Zs).

Summing up: starting from a basis X < S, one gets an isomorphism
of symplectic pairs
Ox- (JX: eX) -—A—J)(J9 e)
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underlying an isomorphism of symplectic torsors

fx:(Sx, 0x) =(S,0).
As a consequence of this, we have that a basis 18 necessarily contained
in St forg=20,1(4), in S~ for g = 2,3 (4) (cf. 3.2.1).

4.4 PROPOSITION. The set OB (S, Q) of ordered basis for a symplectic
torsor (S, Q) is a torsor over the group Sp (S, Q). Moreover, the map

OB(S,Q) - ONB(J,e)
defined by

(8)0—iz2g > (S0 + )1 ziz2g
is an isomorphism of torsors over Sp (S, Q) ~ Sp (J, e).

4.4.1 Proof. The map defined above is clearly compatible with the
actions of Sp (S, Q), Sp (J, ¢) and the isomorphism between these groups
described in 1.4. To prove the proposition, it is enough to show that this
map is bijective. As OB (S, Q) is non-empty and ONB (J, e) is a torsor,
this map is onto. It is injective too, because starting from the x; = 5, + s;
I can recover the s; in the followingway. If s = X s;, by the identification

0=i=2g
S ~ Q(J,e) in 1.5, s corresponds to the unique quadratic form ¢, on J
whose value on each of the x; is 1 as it can be easily seen, thus s can be
defined in terms of the x;; but then

s; =5+ Y x;(0<<i<<2g,1<j<2g).
i7i

4.5 Fundamental sets. A fundamental set for a symplectic torsor (S, Q) is
a maximal azygetic subset F < S. Any basis X for S defines a fundamental

set, it suffices to put Fy = X U {sy}, where sy = X s. Also, if F is a
se X

fundamental set and if x e J, x + Fis a fundamental set too, as it is easily
seen. In fact, for any fundamental set F, there exists a basis X and an
x €J such that F = x + Fy. Let F = {t,, ..., t,,+1} be an ordering of F,
it is clear that if

x; =ty +(1<i<<2g+1),

the x; for 1 << i < 2¢g constitute a normal basis for J, thus there exists a
unique ordered basis X = {s,, ..., 5,,} for S such that x; = s, + 5, (4.4).
Then, if x = s, +1¢, we have #; = x + sy, because Xf;, = 0 and
Sy = X 8.

Observe that a fundamental set arising from a basis is homogeneous
iff g is even. Indeed, it is homogeneous iff 2g + 1 = 1 (4), i.e. iff g is even.
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It follows from the last part of prop. 3.2.1 that, in this case, the number of
odd characteristics in the fundamental sets is congruent to g mod 4. We
will see that this is a general fact.

4.5.1 PROPOSITION. Let O (F) be the number of odd characteristics in
a fundamental set F. Then O (F)= g (4). Conversely, for any [== g (4),
and | < 2g + 2, there are fundamental sets F with O (F) = L

4.5.2 Proof. We may safely restrict ourselves to the case where the
symplectic torsor is Sy with its standard basis X, and F = {4} + (X u {X})
where 4 = X is of even order | A4 | = 2k (cf. 4.3). Then, in F there are
2k characteristics corresponding to subsets of X with 2k — 1 elements,
2(g—k) + 1 characteristics with 2k + 1 elements, and 1 characteristic
with 2(g—k) + 1 elements, namely the ones obtained adding A4 to
respectively the characteristics of the form {s} (sed), {s} (s¢A4), X. When g
is even the second and third types have the same parity; when g is odd the
first and third types have the same parity. From these remarks, it is easy to
see that the number of elements of the same parity in F and X U {X} are
congruent mod 4, and that with this only restriction, this number can be
arbitrary for F by conveniently choosing 4. The proposition follows from
this and from what was said just before its statement.

4.5.3 In Coble [1], additional material on fundamental sets may be
found.
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