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§3 SOME SPECIAL CASES

I present here some examples in order to motivate the general discussion
in Part II. Proofs of most assertions are omitted and they may be found in
or follow easily from Part II. The base field is C to simplify things.

3.1 Genus two. Let C be of genus two, and let P, be the projective space
of hyperplanes in H*:° (C). Then P is a projective line, and the natural
map C — P presents C as a 2-sheeted covering of P. ramified over a sub-
set Rc = P¢ with | R¢| = 6. From the Riemann-Roch theorem it may be
proved that the line bundles L in S (C) with Q (L) = 1, i.e. the odd theta
characteristics, are those represented by effective divisors, and from here
it follows easily that the set S (C) of odd theta characteristics identifies
naturally with R.. If s, §,, 553 are three different elements of S~ (C)
represented by line bundles L,, L,, L5, it is also easily proved that
L, @ L, ® L3! is even. From this, and from 11 2.4 it follows that thereis
a natural group isomorphism

Sp(H, (C, Z/22)) ~ Aut(R,) .

It follows also from loc. cit. that it amounts to the same thing to give a
symplectic basis for H, (C, Z/2Z) or to give a bijection S, (2) ~ R,
where Sy (2) is the fixed 6-elements set defined in 0.5.

I will discuss S* (C) in a more general setting:

3.2 Even genus, hyperelliptic case. Let C be hyperelliptic. Then there
is a projective line P, and a map C — P, defined up to unique iso-
morphisms such that C — P, is a 2-sheeted covering. If R is the rami-
fication locus, | RCI = 2g + 2, and R identifies naturally with the set
of Weierstrass points of C.

The group H, (C, Z/2Z) can be reconstructed starting from R, in the
following way. If © = {n’,n"} is any partition of R, into two even-order
subsets, L, is the line bundle defined by the divisor > P — ) P where

Pen, Pern,
| ny | = |n, | and {my, 7,} partition n'. It is clear that L, is of order two,
thus defining an element of H, (C, Z/27Z). In this manner one gets a group
~ isomorphism _
P; (Ro) ~ H, (C, Z[2Z)
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where the group P (R.) is defined in I 3.5. It is easily verified that this
isomorphism is compatible with the intersection pairing on H; and with
the alternated bilinear form introduced in loc. cit.

All the preceding was valid for any genus g. Now if g is even, it follows
from II 3.6 and II 1.4 that we have an isomorphism

P37 (Re) 5 5(0)

compatible with the structures involved (i.e. an isomorphism of symplectic
torsors, cf. II 1.1). The results of II, § 3 may thus be applied to the study
of §(C). |

Observe that if g is odd, there is a natural theta characteristic; namely,
the line bundle of the divisor (g—1) P is independent of the Weierstrass
point P (compare II 3.6b)).

3.3 Genus three. Two cases arise for C of genus three:

3.3.1  Chyperelliptic. Then there is the 2-sheeted covering C — P,
ramified over R, with [ R¢ l = §. It is seen in this case, as in 3.1, that there
is a natural identification between S~ (C) and the set of subsets of R,
consisting of exactly two elements. It is convenient to visualize the elements
of §7 (C) as segments joining the points of R, these being distributed on a
plane in an arbitrary way. Then, if s,, 5,, 55, 5, are four different elements
of §7(C), s; — s, = 55 — s, iff the segments corresponding to them
produce one of the following configurations

1L

From II 2.7 it follows that there is a canonical isomorphism between the
group Sp (H, (C, Z/2Z)) and the group of permutations of the set S~ (C)
that preserve the “geometry” defined by these quadruples. Two comments
are in order:

a) Although the permutation group Aut (R) is clearly a subgroup of
the automorphism group of the “geometry”, not every such automorphism
arises from a permutation of R,.

b) The automorphisms of the geometry do not preserve the type of
the configuration, they may send one quadruple of the first type drawn
above into the other. However in a continuous family of Ayperelliptic

curves of genus 3, each of the two configurations will be preserved as the
curve is deformed.
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3.3.2  C non hyperelliptic. Let Q = P (H"° (C)) be the projective
space of hyperplanes in H"° (C). Then Q. is a projective plane and the
natural map C — Q. is an immersion. The degree of C in Q is the degree
of the canonical bundle, i.e. 4 and C is thus a nonsingular plane quartic. It
is again a simple exercise to prove that the odd theta characteristics on
C correspond to the set of lines in Q. that are bitangents to C. Thus, if
B¢ 1s the set of bitangents to C in Q, there is a natural identification

B, ~ ST(0).

The theme of the 28 bitangents to a nonsingular plane quartic (28
= 2371 (2°—1)) is a classic one in geometry, see for instance Weber [6],
chapter 12. A triple (sq, s,, s;) of bitangents is called syzygetic (resp.
azygetic) if their six points of contact with C lie (resp. do not lie) in a conic.
A triple is syzygetic iff L, = L; ® L, ® L3' is an odd characteristic,
where L,, L,, L5 are the line bundles corresponding to s, s,, 53. When this
happens, the two points of contact of the bitangent s, corresponding
to L,, together with the preceding six, make up the full § = 2 X 4 common
points of the conic with the quartic.

An Aronhold system of bitangents (Weber [6]) is a set of seven bitangents
such that any different three of them constitute an azygetic triple. The
Aronhold systems are exactly the basis for the “geometry” in S~ (C)
defined by the syzygetic triples (in the sense of II 4.3). It follows from
IT 4.4 that the set of Aronhold systems is a torsor over the symplectic group
Sp (Hy (C, Z/27)), in particular that they have the same number of cle-
ments.

As any two “geometries” with the same genus are isomorphic (I 1.4),
one can also speak of Aronhold systems in the hyperclliptic case. It turns
out that they correspond to the following configurations

N AR\

There are 1,451,520 of them as it is “immediately” checked. Again, it will
be observed that the automorphisms of the geometry do not preserve the
type of the configuration.
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