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§ 2 RELATION WITH THE CLASSICAL NOTATION

Throughout this section the base field is C.

2.1 Jacobians. 1 recall briefly the data associated with a nonsingular
projective curve C. We have two abelian varieties, the Jacobian variety
J(C) = H*° (C)*/H, (C, Z) and the Picard variety P°(C) =
H%! (C)/H! (C, Z). From standard dualities it turns out that P° (C) is
naturally isomorphic to the dual Jacobi variety J(C)”, and from Abel’s
theorem it results that there is in addition a natural isomorphism
P°(C) ~ J(C). Thus, we have associated with C a principally polarized
abelian variety that I will denote henceforth P° (C), 6. and will be called
the Picard or the Jacobi variety of C according to taste. If we visualize
P° (C) as the group of line bundles on C with Chern class zero, we are led
to introduce the family of sets P* (C), where P" (C) is the set of isomorphism
classes of line bundles with Chern class equal to 4 e Z. Each of the sets
P"(C) is a torsor under P°(C), i.e. is acted on by P°(C) in a simply
transitive way.

There is a natural embedding

C - P'(C)
and it can be proved that this induces an isomorphism of P° (C)-torsors
(2.1.1) Pic? P1 (C) = P(C)

where Pic? P! (C) is the set of line bundles P on P! (C) belonging to 6,
and g is the genus of C (see next section 2.2). Observe that Pic’ P (C) is
properly a P°(C)"-torsor, but it becomes a P°(C)-torsor through the
polarization .

2.2 A simple formalism. Let X be an abelian variety, P and X-torsor
such that the group action X X P — P be analytic. Then there are canonical
isomorphisms

H'(X,Z) ~ H'(P,Z)
H'(X,0,) ~ H'(P,0,)
and in particular
NS(X) ~NS(P)Pic’°(X) ~ Pic’(P).

This is because the translations induce the identity both in H' (X, Z),
H'(X,0,) as it may be easily seen. Recall that the Néron-Severi group
of X (resp. of P) is the quotient
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NS(X) = Pic(X)/Pic’°(X),
or also the kernel of the homomorphism
H*(X,Z) - H*(X,0,).

Now let : X —» X be a polarization, 0 corresponds naturally to an element
0 e NS (X), and the set Pic? (X) of isomorphism classes of line bundles

on X belonging to 6 is the coset of X in Pic (X) corresponding to 0 (cf. for
example, Mumford, Abelian Varieties). Thus, Pic’ (P) is well defined too,
since NS (P) and NS (X) identify.

Starting from (X, 0) and P we have the following situation. The set
Pic? (P) is a torsor over Pic’ (P), but Pic’ (P) identifies naturally with X,

thus Pic’ (P) is an X-torsor. The following formula makes explicit this

A

X-torsor as tensor product (the natural operation between torsors over a
A A
fixed abelian group) of two other X-torsors, Pic’ X and the X-torsor

A A
P ® y X obtained from P through the extension of scalars 0: X — X.

(2.2.1) Pic? (P) ~ Pic” (X ) ® (P®yX)

To have this natural isomorphism it is enough to define an X-equivariant
pairing Pic’ (X) x P — Pic? (P) and this is the obvious one: if L € Pic? (X),
pePandif z,: X — P is the isomorphism 7, (x) = p + x, then the pairing
associates with (L, p) the line bundle (z,). (L).

This isomorphism will be used in the next section.

2.3 Relation between 1.1, 1.2. Let C be a nonsingular projective alge-
braic curve, (P° (C), 0c) its Picard variety with its principal polarization.
Then, the definitions of theta characteristics of 1.1, 1.2 applied respectively
to C, (P°(C), 0c) yield objects that identify naturally. Indeed, if follows
from (2.1.1) and (2.2.1) that for any A € Z there is a natural isomorphism
of P’ (C)-torsors.

Pic’ (P"(C)) ~ P* 971 (),

where g is the genus of C. In particular, we have isomorphisms
Pic’ (P°(C)) =~ P~ (C)
Pic*’ (P°(C)) ~ P*72(C).

In the last one it is easily seen that the canonical bundle corresponds to
the unique totally symmetric bundle in Pic*® P°(C). As the symmetric
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~ bundles in Pic’ (P° (C)) are exactly the square roots of this totally symmetric
~ line bundle, it follows that S (C), S(P°(C), 0c) identify naturally. More-
- over, this identification is compatible with their structures of J, (C)-torsors
and with the maps Q: S (C) » Z/2Z, Q: S(P°(C), 0c) - Z/2Z. This last
- point follows easily from proposition 2 in § 2 of Mumford [4] and from
the theorem of Riemann (see Fay [2], theorem 1.1) stating that for a line
bundle L € P9~ (C), the dimension of I" (C, L) equals the multiplicity of
~ the theta divisor at the point L. (In fact, observe that the theta divisor as
~ an element of Pic’ (P/~* (C)) corresponds to the canonical bundle on C
under the isomorphism Pic’ (P!~* (C)) = P**~* (C).

2.4 Theta functions. Let (X, ) be a principally polarized abelian variety.
There is a canonical isomorphism

X ~ HY°(X)*/H, (X, Z)

and the principal polarization corresponds to a nondegenerate alternate
bilinear pairing
0:H,(X,Z)xH,(X,Z) > Z.

- Let x4, ..., x,, X1y eens x; be a symplectic basis for 0 on H; (X, Z); then the

images of xj, ..., x, in H"° (X)* constitute a basis for this C-vector space,
and let wy, ..., w, be its dual basis for H™° (X). In other words,
fs; Wi = i -

Then the matrix © = (t;;) defined by

Ty = 5, Vi

belongs to the Siegel upper-half space of degree g, i.e. T is symmetric and
Im (1) is positive definite. The choice of the symplectic basis sets an identi-
- fication '

’ X ~C2?° DL .

- We may now consider the classical theta functions (Igusa [3])

Omms (T, 2) = Zg e[1((+ m) v ({+m) + ({+m)(z+m¥)].
EeZ
By the properties of these theta functions and through the preceding
~ identification, each 0,,,s (tr, —) defines a line bundle on X, and indeed an
~ element of Pic’ (X) that is independent of (m, m*) € R* mod Z*. In this
~ way we get a bijection |
‘ Pic? (X ) ~ R>/Z% .
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It follows from formula (6. 1) in p.49 of Igusa [3] that the subset of
Pic’ (X) defined by the symmetric line bundles on X corresponds to the
image in R*¢/Z29 of 3 Z.**.

We finally see that the symplectic basis on H; (X, Z) deﬁneg' an identi-

fication
S(X,0) ~ (Z]2Z)*° .

It is easy to see that this identification depends only on the symplectic

basis induced on
Hl (X> Z)/2H1 (X) Z) = Hl (X7 Z/2Z) )

and that it is compatible with the identification

)?2 ~ H,(X,Z[27) ~ (Z]2Z)**

that the later basis defines and with the respective action of X, on S (X, 0)
and of (Z/2Z.)* on itself by translations.

2.5 Summing up. If C is a nonsingular projective algebraic curve of
genus g, there are two equivalent ways of defining the set of theta charac-
teristics, either directly as in 1.1, or through its Picard variety as in 1.2.
The set of theta characteristic is endowed with a simply transitive action
of the group J, (C) and with a function Q: S (C) — Z/2Z closely related
to the intersection pairing e on J, (C). Also, we know that Q™! (0) has
2971 (294+1) elements and Q! (1) has 2971 (29—1) elements. Indeed, there
is a third way of defining the set of theta characteristics, namely as the
set O (J, (C), e) of all quadratic forms g on J, (C) whose associated bi-
linear form is e; we saw in § O that on this set there is a structure of the
same type as in S (C), S (X, 0), and in fact S (X, 0) is clearly isomorphic

with O (X,, e) ~ 0 (X,, e).

Now if we choose a symplectic basis xy, ..., X, X1y eons x; for J, (C),
the set S (C) identifies with (Z/2Z)*. In particular, 0 € (Z/2Z)** defines
a “base” theta characteristic. In terms of quadratic forms, this identification
corresponds to the one discussed in 0.5, in particular the base theta charac-
teristic is even (i.e. belongs to Q™! (0)) and it corresponds to the quadratic
form ¢, defined by ¢, (x;) = g, (x;) = 0. for i = 1, ...,g. Looking at
S (C) as a subset of PP~! (C), the base theta characteristic is nothing else
that the Riemann constant 4 in the non-intrinsic version of the Riemann
theorem referred to at the end of 2.3. (See theorem 1.1 in Fay [2] and its
corollary 1.5).
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