Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 22 (1976)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: FINITE GEOMETRIES IN THE THEORY OF THETA

CHARACTERISTICS

Autor: Rivano, Neantro Saavedra

Kapitel: §1 Theta characteristics

DOI: https://doi.org/10.5169/seals-48185

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

where 0, I are respectively the zero, identity $g \times g$ matrix. The datum (J_o, e_o) is a symplectic pair, and is standard in the sense that for a fixed (J, e), giving a symplectic basis for (J, e) amounts to the same thing as giving a linear isomorphism $J_o \simeq J$ compatible with e_o , e. By 0.4, this in turn defines an isomorphism $Q(J_o, e_o) \simeq Q(J, e)$ with the properties stated there.

Going back to the standard situation, there is an obvious identification $Q(J_o, e_o) \simeq (\mathbf{Z}/2\mathbf{Z})^{2g}$, obtained associating with every quadratic form q its values on the canonical basis of J_o . With this identification in mind, the action of J_o on $Q(J_o, e_o)$ defined at the end of 0.2 is the action of $(\mathbf{Z}/2\mathbf{Z})^{2g}$ on itself by translations, and the Arf invariant is given by the mapping Q: $(\varepsilon, \varepsilon') \mapsto \Sigma \ \varepsilon_i \ \varepsilon_i'$, where $\varepsilon, \varepsilon' \in (\mathbf{Z}/2\mathbf{Z})^g$.

We will use the following notation,

$$J_{0}(g) = (\mathbf{Z}/2\mathbf{Z})^{2g}$$

$$S_{0}(g) = Q(J_{0}, e_{0})$$

$$S_{0}^{+}(g) = \{s \in S_{0}(g)/Q(s) = 0\}$$

$$S_{0}^{-}(g) = \{s \in S_{0}(g)/Q(s) = 1\}$$

§ 1 THETA CHARACTERISTICS

1.1 On an algebraic curve. Let C be a non-singular projective algebraic curve over an algebraically closed base field k of characteristic different from 2. The set S(C) of theta characteristics on C is the set of isomorphism classes of line bundles L on C whose tensor square is isomorphic to the canonical bundle. If $J_2(C)$ is the group of points of order two in Pic (C), i.e. the multiplicative group of isomorphism classes of line bundles on C whose square is the trivial line bundle O_C , then clearly $J_2(C)$ acts on the set S(C), and this in a simply transitive way. In addition, there is a function

$$Q: S(C) \to \mathbb{Z}/2\mathbb{Z}$$

defined by

$$Q(L) = \dim \Gamma(C, L)$$
 (2).

The following formula holds, where $x, y \in J_2(C)$, $s \in S(C)$, and we use additive notation both for the group law in $J_2(C)$ and the action of $J_2(C)$ on S(C):

$$Q(s) + Q(x+s) + Q(y+s) + Q(x+y+s) = e(x,y)$$
.

Here, e stands for the intersection pairing on $J_2(C)$. If g is the genus of C, it is proved that $Q^{-1}(0)$ (resp. $Q^{-1}(1)$) has $2^{g-1}(2^g+1)$ (resp. $2^{g-1}(2^g-1)$) elements.

The proof of these assertions goes back to Riemann in the case $k = \mathbb{C}$, and in the general case it may be found in Mumford [5].

1.2 On a principally polarized abelian variety. Let X be an abelian variety over k, $\theta \colon X \overset{\frown}{\hookrightarrow} X$ a principal polarization. The set $S(X,\theta)$ of theta characteristics on (X,θ) is the subset of $\operatorname{Pic}^{\theta}(X)$ determined by the symmetric line bundles; i.e. the elements of $S(X,\theta)$ are the isomorphism classes of line bundles L on X belonging to θ and such that $L \simeq i^*(L)$, where $i \colon X \to X$ sends $x \in X$ into -x. Again, the group X_2 of points of order two in X acts on $S(X,\theta)$ through the induced isomorphism $\theta \colon X_2 \overset{\frown}{\hookrightarrow} X_2$, and this in a simply transitive way. Now, for any symmetric line bundle L on X, there exists a unique isomorphism $\varphi \colon L \overset{\frown}{\hookrightarrow} i^*(L)$ such that over the zero of X, φ induces the identity on the fibers. Over any $x \in X_2$, the fibers of L, $i^*(L)$ identify naturally, and φ induces the multiplication by some scalar that will be denoted $e^L(x)$. It is proved that $e^L(x) = \pm 1$, and indeed that $e^L(x) \to \mathbb{Z}/2\mathbb{Z}$ is a quadratic form whose associated bilinear form is the intersection pairing e on X_2 . Now we define a mapping

$$Q: S(X, \theta) \to \mathbb{Z}/2\mathbb{Z}$$

by

$$Q(s) = Arf invariant of e_s^s$$
.

The following formula is valid, where additive notation is used both for group law and group action, and where $s \in S(X, \theta)$, $x, y \in X_2$

$$Q(s) + Q(x+s) + Q(y+x) + Q(x+y+s) = e(x, y).$$

It is also true that, if $g = \dim X$, $Q^{-1}(0)$ (resp. $Q^{-1}(1)$) has $2^{g-1}(2^g+1)$ (resp. $2^{g-1}(2^g-1)$) elements.

All the preceding is proved in or follows easily from § 2 of Mumford [4] and from § 0 above. Note in addition that in $\operatorname{Pic}^{2\theta}(X)$ there is a unique totally symmetric line bundle L_o (i.e. L_o is symmetric and $e^{L_o}(x) = 1$ for every $x \in X_2$), and that the symmetric line bundles in $\operatorname{Pic}^{\theta}(X)$ are the line bundles L such that L^2 is isomorphic with L_o (cf. Mumford [4], loc. cit.).