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where 0, [ are respectively the zero, identity g X g matrix. The datum
(J,, €,) 1s a symplectic pair, and is standard in the sense that for a fixed
(J, e), giving a symplectic basis for (J, ¢) amounts to the same thing as
giving a linear isomorphism J, ~ J compatible with e,, e. By 0.4, this in
turn defines an isomorphism Q (J,, e,) ~ Q (J, e) with the properties
stated there.

Going back to the standard situation, there is an obvious identification
0 (J,, e,) ~ (ZJ2Z)*, obtained associating with every quadratic form g its
values on the canonical basis of J,. With this identification in mind, the
action of J, on Q (J,, e,) defined at the end of 0.2 is the action of (Z/2Z)**
on itself by translations, and the Arf invariant is given by the mapping Q:
(e, &) |=> X ¢, ¢, where ¢, ¢’ € (Z/2Z)°.

We will use the following notation,

Jo(9) = (Z]22)*
So(9) = Qo eo)
S;(9) = {s€S5(9)/Q(s) = 0}
S, (9) = {seS,(9)/Q(s) = 1}

§ 1 THETA CHARACTERISTICS

1.1  On an algebraic curve. Let C be a non-singular projective algebraic
curve over an algebraically closed base field k£ of characteristic different
from 2. The set S (C) of theta characteristics on C is the set of isomorphism
classes of line bundles L on C whose tensor square is isomorphic to the
canonical bundle. If J, (C) is the group of points of order two in Pic (C),
1.e. the multiplicative group of isomorphism classes of line bundles on C
whose square is the trivial line bundle O, then clearly J, (C) acts on the
set S (C), and this in a simply transitive way. In addition, there is a function

Q:S(C) > Z/2Z
defined by
Q(L) =dim I'(C,L) (2).

The following formula holds, where x, yeJ, (C), s€ S(C), and we
use additive notation both for the group law in J, (C) and the action
of J, (C) on S(C):

Q@) +Q(x+5) + Q(y+9) + Q(x+y+s) = e(x,)).
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Here, e stands for the intersection pairing on J, (C). If g is the genus of C,
it is proved that 0~ * (0) (resp. Q™! (1)) has 2971 (29+1) (resp. 297 ' (29— 1))
elements.

The proof of these assertions goes back to Riemann in the case £ = C,
and in the general case it may be found in Mumford [5]. 4

1.2 On a principally polarized abelian variety. Let X be an abelian

variety over k, 6: X ~ X a principal polarization. The set S (X, ) of
theta characteristics on (X, 0) is the subset of Pic’ (X) determined by the
symmetric line bundles; i.e. the elements of S (X, 6) are the isomorphism
classes of line bundles L on X belonging to € and such that L ~ i* (L),
where i: X — X sends x € X into —x. Again, the group X, of points of
order two in X acts on S(X,6) through the induced isomorphism

0: X, =, X,, and this in a simply transitive way. Now, for any symmetric
line bundle L on X, there exists a unique isomorphism ¢: L =~ i* (L) such
that over the zero of X, ¢ induces the identity on the fibers. Over any
x € X,, the fibers of L, i* (L) identify naturally, and ¢ induces the multi-
plication by some scalar that will be denoted ei (x). It is proved that
eI; (x) = +1, and indeed that ef;: X, — ZJ27 is a quadratic form whose
associated bilinear form is the intersection pairing e on X,. Now we define
a mapping
0:S(X,0) - Z/27Z
by
O (s) = Arf invariant of e’ .

The following formula is valid, where additive notation is used both for
group law and group action, and where se S (X, 0), x, ye X,

Q@) +Q(x+9) +Q(r+x) + Q(x+y+s) = e(x,)).

It is also true that, if g = dim X, Q7' (0) (resp. Q% (1)) has 2971 (29+ 1)
(resp. 2971 (29—1)) elements.

All the preceding is proved in or follows easily from § 2 of Mumford [4]
and from §0 above. Note in addition that in Pic?® (X) there is a unique
totally symmetric line bundle L, (i.e. L, is symmetric and e*° (x) = 1 for
every x € X,), and that the symmetric line bundles in Pige (X) are the

line bundles L such that L? is isomorphic with L, (cf. Mumford [4]
loc. cit.). :
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