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FINITE GEOMETRIES
IN THE THEORY OF THETA CHARACTERISTICS

by Neantro SAAVEDRA RIVANO

INTRODUCTION

The aim of this paper is to call attention upon the existence of a very
simple “finite geometry” on the set of either odd or even theta characteristics
(on an algebraic curve), and to develop on some of its properties and related
concepts. In particular, this finite geometry allows one to place in a general
context the classical theory of the 28 bitangents to a plane quartic (cf.
Weber [6]).

Part I of the paper recalls the several interpretations and definitions of
theta characteristics, and contains some examples to motivate the abstract
developments in Part II. In this later part, the finite geometry is defined
and its properties discussed. The main result is theorem II 2.6. Prop-
osition II 4.4 is also of important practical value.

It is my feeling that the finite geometries will be of help in studying such
problems as: relations between theta functions, filtrations in the space of
moduli of level two structures over curves of a given genus, degeneration
of algebraic curves. A sequel to this paper should contain applications to
these subjects.

I am heavily indebted to Herbert Clemens for his continuous support
during the preparation of this work, and also to Pierre Cartier for several
helpful conversations. Moreover, I owe thanks to the Institute for Advanced
Study for a very opportune grant, to Colombia University for its hospitality
and to the Guggenheim Foundation for financial support.

I. THETA CHARACTERISTICS
ON AN ALGEBRAIC CURVE

§ 0 REVIEW: QUADRATIC FORMS IN CHARACTERISTIC 2

In this section, a number of well-known results on quadratic forms in
characteristic two are recalled.
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0.1 Alternate forms. Let J be a finite-dimensional vector space over
227, e: J x J — Z[2Z a non-degenerate, alternate, bilinear form. Recall
that non-degenerate means that e makes J its own dual, i.e. that the induced
mapping J — J* is a bijection; alternate signifies that the equation

e(x,x) =0

1s valid throughout J. It can then be proved that there exists a basis
X1y -us Xgy X15 o-er X, fOr J such that

e(xi,x,) = e(x),x) = 0.

e (x;, x_]) = 5ij s

in particular that the dimension of J is even. Such a basis is called a sym-
plectic basis for (J, e). The symplectic group for (J, e), written Sp (J, e), is
the group of linear automorphisms of J compatible with e, i.e. linear auto-
morphisms ¢: J — J such that for any x, ye J

€ (x’ y) = 8(0' (X), G(y)) .

The symplectic group acts on the set of symplectic basis for (J/, e), and
clearly in a simply transitive way. A datum of the form (J, e) will be called
a symplectic pair for short.

0.2 Quadratic forms. Let J be a finite-dimensional vector space over
Z/27.. A quadratic form on J is a mapping ¢q: J — Z/2Z. with the property
that the mapping

e,(x,y) = q(x) +qO) +q(x+y)

is bilinear. It is clear that e, is also alternate.
Let e be a fixed non-degenerate, alternate, bilinear form on J. There
always is some quadratic form ¢ on J such that e, = e, for example

q(x) = Z A

where x = X A, x; + X 1, x; in terms of some symplectic basis x, ..., X,
X1, ..., X, for (J, ). Moreover, if Q (J, e) is the set of quadratic forms ¢

with the property e, = e, the group J acts on it through the formula

x+ () =q(y) +elx,y), x,yel,

and clearly in a simply transitive way; note that the action is written
additively. ‘
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0.3  Arf invariant. Let (J, e) be a symplectic pair, and let xj ,..., X,
X1y eens x; be a symplectic basis for (/, e). If g€ Q (J, e), it is easily proved
that the scalar X ¢ (x;) g (x;) is independent of the given symplectic basis;
this is called the Arf invariant of g and will be written Q, (¢). It is a mapping

Q.:Q(J,e) > Z/2Z
and it has the following property, that can be easily checked:

Q.(q@) +0.(x+q9) +Q,(v+q) + Q.(x+y+q) = e(x,)

where x, ye J, g€ Q (J, e), and the action defined at the end of 0.2 is being
used.

The Arf invariant has the following meaning: if g€ Q (J, e), the set
g~ (0) has either 2971 (294 1) or 2971 (29 —1) elements, and correspondingly
g~ 1 (1) has either 2971 (29—1) or 2971 (294 1) elements, where 2g = dim J;
the first (resp. the second) happens iff Q, (¢) equals O (resp. 1).

It is not difficult to prove that the set O, (0) of elements of Q (J, e)
with Arf invariant zero has order 297! (2+1) and correspondingly that
0,1 (1) has 2971 (29— 1) elements.

0.4 Functoriality. Let (J, e), (J', ') be two symplectic pairs, and let
o:J — J' be a linear isomorphism compatible with e, ¢’, i.e. verifying

e (0(x),0(») =e(x,y) x,yeJ.

The isomorphism ¢ induces a mapping

Q(0):Q(J,e) > Q(J ", ¢)
defined by the formula

Q(0)(q) =q-07",
and this has the property

Q@(x+q) =d(x) +Q( () xeJ,qeQ(J,e).

Moreover, Q (o) is compatible with the Arf invariant mappings Q,., Q..
in the sense that one has

Qe"Q(O‘) = Qe .

0.5 The standard situation. For a given natural number g (the “genus™),
let J, = (Z/2Z)%, e, be defined by the matrix

(7 o)
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where 0, [ are respectively the zero, identity g X g matrix. The datum
(J,, €,) 1s a symplectic pair, and is standard in the sense that for a fixed
(J, e), giving a symplectic basis for (J, ¢) amounts to the same thing as
giving a linear isomorphism J, ~ J compatible with e,, e. By 0.4, this in
turn defines an isomorphism Q (J,, e,) ~ Q (J, e) with the properties
stated there.

Going back to the standard situation, there is an obvious identification
0 (J,, e,) ~ (ZJ2Z)*, obtained associating with every quadratic form g its
values on the canonical basis of J,. With this identification in mind, the
action of J, on Q (J,, e,) defined at the end of 0.2 is the action of (Z/2Z)**
on itself by translations, and the Arf invariant is given by the mapping Q:
(e, &) |=> X ¢, ¢, where ¢, ¢’ € (Z/2Z)°.

We will use the following notation,

Jo(9) = (Z]22)*
So(9) = Qo eo)
S;(9) = {s€S5(9)/Q(s) = 0}
S, (9) = {seS,(9)/Q(s) = 1}

§ 1 THETA CHARACTERISTICS

1.1  On an algebraic curve. Let C be a non-singular projective algebraic
curve over an algebraically closed base field k£ of characteristic different
from 2. The set S (C) of theta characteristics on C is the set of isomorphism
classes of line bundles L on C whose tensor square is isomorphic to the
canonical bundle. If J, (C) is the group of points of order two in Pic (C),
1.e. the multiplicative group of isomorphism classes of line bundles on C
whose square is the trivial line bundle O, then clearly J, (C) acts on the
set S (C), and this in a simply transitive way. In addition, there is a function

Q:S(C) > Z/2Z
defined by
Q(L) =dim I'(C,L) (2).

The following formula holds, where x, yeJ, (C), s€ S(C), and we
use additive notation both for the group law in J, (C) and the action
of J, (C) on S(C):

Q@) +Q(x+5) + Q(y+9) + Q(x+y+s) = e(x,)).
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