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FINITE GEOMETRIES

IN THE THEORY OF THETA CHARACTERISTICS

by Neantro Saavedra Rivano

INTRODUCTION

The aim of this paper is to call attention upon the existence of a very
simple "finite geometry" on the set of either odd or even theta characteristics

(on an algebraic curve), and to develop on some of its properties and related

concepts. In particular, this finite geometry allows one to place in a general

context the classical theory of the 28 bitangents to a plane quartic (cf.
Weber [6]).

Part I of the paper recalls the several interpretations and definitions of
theta characteristics, and contains some examples to motivate the abstract

developments in Part II. In this later part, the finite geometry is defined

and its properties discussed. The main result is theorem II 2.6.
Proposition II 4.4 is also of important practical value.

It is my feeling that the finite geometries will be of help in studying such

problems as: relations between theta functions, filtrations in the space of
moduli of level two structures over curves of a given genus, degeneration
of algebraic curves. A sequel to this paper should contain applications to
these subjects.

I am heavily indebted to Herbert Clemens for his continuous support
during the preparation of this work, and also to Pierre Cartier for several

helpful conversations. Moreover, I owe thanks to the Institute for Advanced
Study for a very opportune grant, to Colombia University for its hospitality
and to the Guggenheim Foundation for financial support.

I. THETA CHARACTERISTICS
ON AN ALGEBRAIC CURVE

§0 Review: quadratic forms in characteristic 2

In this section, a number of well-known results on quadratic forms in
characteristic two are recalled.
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0.1 Alternate forms. Let J be a finite-dimensional vector space over
Z/2Z, e: J x /-> Z/2Z a non-degenerate, alternate, bilinear form. Recall
that non-degenerate means that e makes / its own dual, i.e. that the induced

mapping J -> /* is a bijection; alternate signifies that the equation

e (x, x) 0

is valid throughout J. It can then be proved that there exists a basis

x1? xg, x'l9 x'g for J such that

e(xhXj) e(xhx'j) 0.
e (xi9 x'j) Su

in particular that the dimension of J is even. Such a basis is called a sym-
plectic basis for (/, e). The symplectic group for (/, e), written Sp (/, e), is

the group of linear automorphisms of J compatible with e, i.e. linear
automorphisms a: J -> J such that for any x, y e J

e (x, y) e (a(x),a (y)).

The symplectic group acts on the set of symplectic basis for (/, e), and

clearly in a simply transitive way. A datum of the form (/, e) will be called

a symplectic pair for short.

0.2 Quadratic forms. Let J be a finite-dimensional vector space over

Z/2Z. A quadratic form on J is a mapping q: J -> Z/2Z with the property
that the mapping

(x, y) q(x) + q (y) + q (x +

is bilinear. It is clear that eq is also alternate.

Let e be a fixed non-degenerate, alternate, bilinear form on J. There

always is some quadratic form q on J such that eq e, for example

q(x) I Xt X[

where x I Xt xt + I Xt xt in terms of some symplectic basis xu xg,

x[, Xg for (/, e). Moreover, if Q (/, e) is the set of quadratic forms q

with the property eq c, the group J acts on it through the formula

(x+q)(y) q(y) +e(x,y),x,yeJ,

and clearly in a simply transitive way; note that the action is written

additively.
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0.3 Arf invariant. Let (/, e) be a symplectic pair, and let xg9

x[, x'g be a symplectic basis for (/, e). If q e Q (J, e), it is easily proved
that the scalar I q (xt) q (x-) is independent of the given symplectic basis;

this is called the Arf invariant of q and will be written Qe (q). It is a mapping

where x, y e /, q e Q (J, e), and the action defined at the end of 0.2 is being
used.

The Arf invariant has the following meaning: if qe Q (/, e), the set

q~1 (0) has either 29~1 (29 + 1) or 29~1 (29 — 1) elements, and correspondingly
q~x (1) has either 29~1 (29- 1) or 29~1 (2^+1) elements, where 2g dim J;
the first (resp. the second) happens iff Qe (q) equals 0 (resp. 1).

It is not difficult to prove that the set Q ~1 (0) of elements of Q (/, e)

with Arf invariant zero has order 29~1 (2^ + 1) and correspondingly that
Q~1 (1) has 2°~1 (2ß- 1) elements.

0.4 Functoriality. Let (/, e), (/', e') be two symplectic pairs, and let
a: J -» J' be a linear isomorphism compatible with e, e', i.e. verifying

and this has the property

6 O) (x+q) <j(x) + Q (a) xeJ,qeQ (J, e).

Moreover, Q (a) is compatible with the Arf invariant mappings Qe-, Qe.,
in the sense that one has

0.5 The standard situation. For a given natural number g (the "genus"),
let J0 (Z/2Z)2", e0 be defined by the matrix

Qt:Q(J,ë)-+ Z/2Z

and it has the following property, that can be easily checked:

Qeil) + Qe(X+?) + Qe(y + l) + +k + k)

e' (cr (x),a(y)) e (x, y) x,yeJ.

Qe'-Q(<?) Qe-

L'Enseignement mathém., t. XXII, fasc. 3-4.
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where 0,1 are respectively the zero, identity g x g matrix. The datum
(/0, e0) is a symplectic pair, and is standard in the sense that for a fixed

(/, e), giving a symplectic basis for (/, e) amounts to the same thing as

giving a linear isomorphism J0 ~ J compatible with e0, e. By 0.4, this in
turn defines an isomorphism Q (/0, e0) ~ Q (/, e) with the properties
stated there.

Going back to the standard situation, there is an obvious identification
Q (J0, e0) ~ (Z/2Z)2g, obtained associating with every quadratic form q its
values on the canonical basis of J0. With this identification in mind, the
action of J0 on Q (J09 e0) defined at the end of 0.2 is the action of (Z/2Z)2fir

on itself by translations, and the Arf invariant is given by the mapping Q :

(s, e') h> I St sh where s, s' e (.Z/2Z)9.
We will use the following notation,

J0(g) =(Z/2Z)2*
^0 (.g) Q Ofo> eo)

S+0(g) {seS0(g)IQ(s) 0}

S~(g) m {seS0(g)IQ(s) 1}

§ 1 Theta characteristics

1.1 On an algebraic curve. Let C be a non-singular projective algebraic
curve over an algebraically closed base field k of characteristic different
from 2. The set S (C) of theta characteristics on C is the set of isomorphism
classes of line bundles L on C whose tensor square is isomorphic to the

canonical bundle. If J2 (C) is the group of points of order two in Pic (C),
i.e. the multiplicative group of isomorphism classes of line bundles on C
whose square is the trivial line bundle Oc, then clearly J2 (C) acts on the

set S (C), and this in a simply transitive way. In addition, there is a function

g: 5(C) -> Z/2Z
defined by

Q (L) dim T (C, L) (2).

The following formula holds, where x,y eJ2 (C), s e S (C), and we

use additive notation both for the group law in J2 (C) and the action

of J2(C) on 5(C):

Q 0) + Q (x + s) + Q (y + s) + Q (x +y + s) e (x, y).
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Here, e stands for the intersection pairing on J2 (C). If g is the genus of C,

it is proved that Q~x (0) (resp. Q-1 (1)) has 2g~1 (2gjrl) (resp. 29~l (2g-\))
elements.

The proof of these assertions goes back to Riemann in the case k C,

and in the general case it may be found in Mumford [5].

1.2 On a principally polarized abelian variety. Let X be an abelian
/\

variety over k9 0: XX, X a principal polarization. The set 5 (X, 6) of
theta characteristics on (X, 0) is the subset of Pic0 (X) determined by the

symmetric line bundles; i.e. the elements of S (X, 6) are the isomorphism
classes of line bundles L on X belonging to 9 and such that L ~ i* (L).
where i: X -» X sends xe X into — x. Again, the group A2 of points of
order two in X acts on 5 (X, 9) through the induced isomorphism

A
6: X2 2k X2, and this in a simply transitive way. Now, for any symmetric
line bundle L on X, there exists a unique isomorphism cp\ L 2+i* (L) such
that over the zero of X, cp induces the identity on the fibers. Over any
x e X2, the fibers of L, i* (L) identify naturally, and cp induces the
multiplication by some scalar that will be denoted eL^ (x). It is proved that

(x) ±1, and indeed that e\\ X2 -» Z/2Z is a quadratic form whose
associated bilinear form is the intersection pairing e on X2. Now we define
a mapping

0: S(X, 6) -> Z/2Z
by

Q (s) Arf invariant of es.

The following formula is valid, where additive notation is used both for
group law and group action, and where s e S (X, 0), x, y e X2

Q(s) + Q (x + s) + Q (y + x) + Q (x + y + s) e (x, y)

It is also true that, if g dim X, g"1 (0) (resp. Q_1 (1)) has 25"1 (2gL 1)

(resp. 2g~1 (2g-\)) elements.

All the preceding is proved in or follows easily from § 2 of Mumford [4J
and from § 0 above. Note in addition that in Pic20 (X) there is a unique
totally symmetric line bundle L0 (i.e. L0 is symmetric and eL° (x) 1 for
every x e X2\ and that the symmetric line bundles in Pic0 (X) are the
line bundles L such that L2 is isomorphic with L0 (cf. Mumford [4]r
loc. cit.).
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§ 2 Relation with the classical notation

Throughout this section the base field is C.

2.1 Jacobians. I recall briefly the data associated with a nonsingular
projective curve C. We have two abelian varieties, the Jacobian variety
/(C) H1'0 (C)^/H1 (C, Z) and the Picard variety P° (C)
H0,1 (C)/H1 (C, Z). From standard dualities it turns out that P° (C) is

naturally isomorphic to the dual Jacobi variety / (C)A, and from Abel's
theorem it results that there is in addition a natural isomorphism
P° (C) / (C). Thus, we have associated with C a principally polarized
abelian variety that I will denote henceforth P° (C), 6C and will be called
the Picard or the Jacobi variety of C according to taste. If we visualize
P° (C) as the group of line bundles on C with Chern class zero, we are led

to introduce the family of sets Ph (C), where Ph (C) is the set of isomorphism
classes of line bundles with Chern class equal to he Z. Each of the sets

Ph (C) is a torsor under P° (C), i.e. is acted on by P° (C) in a simply
transitive way.

There is a natural embedding

C-+PX(C)

and it can be proved that this induces an isomorphism of P° (C)-torsors

(2.1.1) PicBP1 (C) (C)

where Pic0 P1 (C) is the set of line bundles P on P1 (C) belonging to 0,

and g is the genus of C (see next section 2.2). Observe that Pic0 P1 (C) is

properly a P° (C)A-torsor, but it becomes a P° (C)-torsor through the

polarization 9.

2.2 A simple formalism. Let X be an abelian variety, P and X-torsor
such that the group action X x P -» P be analytic. Then there are canonical

isomorphisms
1F(X, Z) ~ff(P,Z)
Hl{X9Oà ^ ff(P, Op)

and in particular
NS(X) ~ NS (P) Pic0 (X - Pic0 (P).

This is because the translations induce the identity both in H1 (X, Z),
H1 (X, OJ as it may be easily seen. Recall that the Néron-Severi group
of X (resp. of P) is the quotient
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NS(X) Pic (X)/Pic°(X

or also the kernel of the homomorphism

ff2(X,Z)-+ff2(X,0 x).
A

Now let 8: X -> Xbe a polarization, 8 corresponds naturally to an element

6 e NS (X), and the set Pic0 (X) of isomorphism classes of line bundles
A

on X belonging to 9is the coset of X in Pic (X) corresponding to 9 (cf. for
example, Mumford, Abelian Varieties). Thus, Pic0 (P) is well defined too,
since NS (P) and NS (X) identify.

Starting from (X, 9) and P we have the following situation. The set
A

Pic0 (P) is a torsor over Pic0 (P), but Pic0 (P) identifies naturally with X,
A

thus Pic0 (P) is an X-torsor. The following formula makes explicit this
A
X-torsor as tensor product (the natural operation between torsors over a

A A
fixed abelian group) of two other X-torsors, Pic0 X and the X-torsor

A A
P ®xX obtained from P through the extension of scalars 0: X -> X.

(2.2.1) Pic0(P) - Pic0 (X) ® (P®xX)

To have this natural isomorphism it is enough to define an X-equivariant
pairing Pic0 (X) x p -» Pic0 (P) and this is the obvious one: ifL e Pic0 (X),
p e P and if tp : X - P is the isomorphism tp (x) p + x, then the pairing
associates with (L,p) the line bundle (tp)* (L).

This isomorphism will be used in the next section.

2.3 Relation between 7.7, 1.2. Let C be a nonsingular projective
algebraic curve, (P° (C), 0C) its Picard variety with its principal polarization.
Then, the definitions of theta characteristics of 1.1, 1.2 applied respectively
to C, (P° (C), 0C) yield objects that identify naturally. Indeed, if follows
from (2.1.1) and (2.2.1) that for any he Z there is a natural isomorphism
of P° (C)-torsors.

Pic0 (Pft(C)) -P^-^C),
where g is the genus of C. In particular, we have isomorphisms

Pic0 (P°(C)) -P^C)
Pic20 (P°(C)) ~ P2g~2(C).

In the last one it is easily seen that the canonical bundle corresponds to
the unique totally symmetric bundle in Pic20 P°(C). As the symmetric
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bundles in Pic0 (P° (C)) are exactly the square roots of this totally symmetric
line bundle, it follows that S (C), S (P° (C), 6C) identify naturally. Moreover,

this identification is compatible with their structures of J2 (C)-torsors
and with the maps Q : S.(C) ->• Z/2Z, Q: S (P° (C), 6C) -> Z/2Z. This last

point follows easily from proposition 2 in § 2 of Mumford [4] and from
the theorem of Riemann (see Fay [2], theorem 1.1) stating that for a line
bundle LeP9~1 (C), the dimension of F (C,L) equals the multiplicity of
the theta divisor at the point L. (In fact, observe that the theta divisor as

an element of Pic0(P6r~1 (C)) corresponds to the canonical bundle on C

under the isomorphism Pic0 (P9-1 (C)) » p2^~2 (C).

2.4 Theta functions. Let (X, 9) be a principally polarized abelian variety.
There is a canonical isomorphism

X ~ H1>°(X)*IH1(X,Z)

and the principal polarization corresponds to a nondegenerate alternate
bilinear pairing

Q:H± (X, Z)xH± (X, Z) ^ Z

Let xl9xg, x'g be a symplectic basis for 6 on H1 (X, Z); then the

images of x[, xg in H1,0 (X)* constitute a basis for this C-vector space,
and let wu wg be its dual basis for H1,0 (X). In other words,

L wj su

Then the matrix t (tz7) defined by

L wj

belongs to the Siegel upper-half space of degree g9 i.e. % is symmetric and

Im (t) is positive definite. The choice of the symplectic basis sets an
identification

X ~ C9l(TZg® Zg)

We may now consider the classical theta functions (Igusa [3])

z) Y e [i(C+m)Tf(C + m) + (C + m)'(z + m*)]
SeTß

By the properties of these theta functions and through the preceding

identification, each 9mm*(t, -) defines a line bundle on X, and indeed an

element of Pic® (X) that is independent of (m, m*) e R2g mod Z2g. In this

way we get a bijection
Pic°(X) ^ R^/Z29
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It follows from formula (6. 1) in p. 49 of Igusa [3] that the subset of
Pic0 (X) defined by the symmetric line bundles on X corresponds to the

image in R2*/Z2* of^Z2*.
We finally see that the symplectic basis on H1 (X, Z) defines an

identification

s(x, e) ~(z/2Z)2*.

It is easy to see that this identification depends only on the symplectic

basis induced on
H1 (X, Z)/2H1 (X, Z) ~ if (X, Z/2Z),

and that it is compatible with the identification

X2 Ä H, (X, Z/2Z) =* (Z/2Z)2*
A

that the later basis defines and with the respective action of X2 on S (X, 6)

and of (.Z/2Z)2g on itself by translations.

2.5 Summing up. If C is a nonsingular projective algebraic curve of
genus g, there are two equivalent ways of defining the set of theta
characteristics, either directly as in 1.1, or through its Picard variety as in 1.2.

The set of theta characteristic is endowed with a simply transitive action
of the group J2 (C) and with a function Q : S (C) -> Z/2Z closely related

to the intersection pairing e on J2 (C). Also, we know that Q~1 (0) has

2g-i (29+l) elements and Q~1 (1) has 26r_1 (2^—1) elements. Indeed, there
is a third way of defining the set of theta characteristics, namely as the

set Q {J2 (C), e) of all quadratic forms g on J2 (C) whose associated
bilinear form is e; we saw in § 0 that on this set there is a structure of the

same type as in S (C), S (X, 0), and in fact S (X, 6) is clearly isomorphic

with Q (X2, e) ~ Q (X2, e).

Now if we choose a symplectic basis xl9 xg, x{,..., x'g for J2 (C),
the set S (C) identifies with (Z/2Z)2g. In particular, 0 e (Z/2Z)2g defines

a "base" theta characteristic. In terms of quadratic forms, this identification
corresponds to the one discussed in 0.5, in particular the base theta characteristic

is even (i.e. belongs to g-1 (0)) and it corresponds to the quadratic
form q0 defined by q0(xt) q0 (*•) 0. for i 1, ...,#. Looking at
S (C) as a subset of P9-1 (C), the base theta characteristic is nothing else

that the Riemann constant A in the non-intrinsic version of the Riemann
theorem referred to at the end of 2.3. (See theorem 1.1 in Fay [2] and its
corollary 1.5).
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§ 3 Some special cases

I present here some examples in order to motivate the general discussion
in Part II. Proofs of most assertions are omitted and they may be found in
or follow easily from Part II. The base field is C to simplify things.

3.1 Genus two. Let C be of genus two, and let Pc be the projective space
of hyperplanes in H1,0 (C). Then Pc is a projective line, and the natural

map C —> Pc presents C as a 2-sheeted covering of Pc ramified over a subset

Rc ci Pc with I Rc I 6. From the Riemann-Roch theorem it may be

proved that the line bundles L in S (C) with Q (.L) 1, i.e. the odd theta
characteristics, are those represented by effective divisors, and from here

it follows easily that the set S (C) of odd theta characteristics identifies

naturally with Rc. If sl9 s2, s3 are three different elements of S~ (C)
represented by line bundles Lu L2, L3, it is also easily proved that
L1 © L2 ©LI1 is even. From this, and from II 2.4 it follows that there is

a natural group isomorphism

Sp(H1(C, Z/2Z)) c Aut (Rc).

It follows also from loc. cit. that it amounts to the same thing to give a

symplectic basis for H1 (C, Z/2Z) or to give a bijection Sq (2) ~ Rc,
where SÖ (2) is the fixed 6-elements set defined in 0.5.

I will discuss S+ (C) in a more general setting:

3.2 Even genus, hyperelliptic case. Let C be hyperelliptic. Then there
is a projective line Pc and a map C -» Pc defined up to unique
isomorphisms such that C —» Pc is a 2-sheeted covering. If Rc is the
ramification locus, I Rc I 2# + 2, and Rc identifies naturally with the set

of Weierstrass points of C.

The group H1 (C, Z/2Z) can be reconstructed starting from Rc in the

following way. If % {%',%"} is any partition of Rc into two even-order

subsets, Ln is the line bundle defined by the divisor £ ~ Z where

I P'e7t[ Pe7r2

711 I 17i2 I and {n'u ^2} partition n'. It is clear that Ln is of order two,
thus defining an element of Hi (C, Z/2Z). In this manner one gets a group
isomorphism

Pi (Rc) ^ H1 (C, Z/2Z)
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where the group P2 (Rc) is defined in II 3.5. It is easily verified that this

isomorphism is compatible with the intersection pairing on H1 and with
the alternated bilinear form introduced in loc. cit.

All the preceding was valid for any genus g. Now if g is even, it follows

from II 3.6 and II 1.4 that we have an isomorphism

P~2 (Rc)^S(C)

compatible with the structures involved (i.e. an isomorphism of symplectic

torsors, cf. II 1.1). The results of II, § 3 may thus be applied to the study
of 5 (C).

Observe that if g is odd, there is a natural theta characteristic; namely,
the line bundle of the divisor (g-\)P is independent of the Weierstrass

point P (compare II 3.6b)).

3.3 Genus three. Two cases arise for C of genus three:

3.3.1 Chyperelliptic. Then there is the 2-sheeted covering C -> Pc
ramified over Rc with | Rc | 8. It is seen in this case, as in 3.1, that there
is a natural identification between S~ (C) and the set of subsets of Rc
consisting of exactly two elements. It is convenient to visualize the elements

of S~ (C) as segments joining the points of Rc, these being distributed on a

plane in an arbitrary way. Then, if st, s2, s3, s4 are four different elements

of S" (C), sx - s2 s3 - s4 iff the segments corresponding to them
produce one of the following configurations

From II 2.7 it follows that there is a canonical isomorphism between the

group Sp (H1 (C, Z/2Z)) and the group of permutations of the set S~ (C)
that preserve the "geometry" defined by these quadruples. Two comments
are in order :

a) Although the permutation group Aut (Rc) is clearly a subgroup of
the automorphism group of the "geometry", not every such automorphism
arises from a permutation of Rc.

b) The automorphisms of the geometry do not preserve the type of
the configuration, they may send one quadruple of the first type drawn
above into the other. However in a continuous family of hyperelliptic
curves of genus 3, each of the two configurations will be preserved as the
curve is deformed.
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3.3.2 C non hyperelliptic. Let Qc P (H1,0 (C)) be the projective
space of hyperplanes in H1,0 (C). Then Qc is a projective plane and the
natural map C Qc is an immersion. The degree of C in Qc is the degree
of the canonical bundle, i.e. 4 and C is thus a nonsingular plane quartic. It
is again a simple exercise to prove that the odd theta characteristics on
C correspond to the set of lines in Qc that are bitangents to C. Thus, if
Bc is the set of bitangents to C in Qc, there is a natural identification

Bc ~ S" (C).

The theme of the 28 bitangents to a nonsingular plane quartic (28
23_1 (23 —1)) is a classic one in geometry, see for instance Weber [6],

chapter 12. A triple (sl9 s2, s3) of bitangents is called syzygetic (resp.
azygetic) if their six points of contact with C lie (resp. do not lie) in a conic.
A triple is syzygetic iff L4 L1 ® L2 0 L11 is an odd characteristic,
where LUL2, L3 are the line bundles corresponding to sl9 s2, s3. When this
happens, the two points of contact of the bitangent s4 corresponding
to jL4, together with the preceding six, make up the full 8 2x4 common
points of the conic with the quartic.

An Aronhold system of bitangents (Weber [6]) is a set of seven bitangents
such that any different three of them constitute an azygetic triple. The
Aronhold systems are exactly the basis for the "geometry" in S~ (C)
defined by the syzygetic triples (in the sense of II 4.3). It follows from
II 4.4 that the set of Aronhold systems is a torsor over the symplectic group
Sp {H1 (C, Z/2Z)), in particular that they have the same number of
elements.

As any two "geometries" with the same genus are isomorphic (II 1.4),

one can also speak of Aronhold systems in the hyperclliptic case. It turns
out that they correspond to the following configurations

There are 1,451,520 of them as it is "immediately" checked. Again, it will
be observed that the automorphisms of the geometry do not preserve the

type of the configuration.
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