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FINITE GEOMETRIES
IN THE THEORY OF THETA CHARACTERISTICS

by Neantro SAAVEDRA RIVANO

INTRODUCTION

The aim of this paper is to call attention upon the existence of a very
simple “finite geometry” on the set of either odd or even theta characteristics
(on an algebraic curve), and to develop on some of its properties and related
concepts. In particular, this finite geometry allows one to place in a general
context the classical theory of the 28 bitangents to a plane quartic (cf.
Weber [6]).

Part I of the paper recalls the several interpretations and definitions of
theta characteristics, and contains some examples to motivate the abstract
developments in Part II. In this later part, the finite geometry is defined
and its properties discussed. The main result is theorem II 2.6. Prop-
osition II 4.4 is also of important practical value.

It is my feeling that the finite geometries will be of help in studying such
problems as: relations between theta functions, filtrations in the space of
moduli of level two structures over curves of a given genus, degeneration
of algebraic curves. A sequel to this paper should contain applications to
these subjects.

I am heavily indebted to Herbert Clemens for his continuous support
during the preparation of this work, and also to Pierre Cartier for several
helpful conversations. Moreover, I owe thanks to the Institute for Advanced
Study for a very opportune grant, to Colombia University for its hospitality
and to the Guggenheim Foundation for financial support.

I. THETA CHARACTERISTICS
ON AN ALGEBRAIC CURVE

§ 0 REVIEW: QUADRATIC FORMS IN CHARACTERISTIC 2

In this section, a number of well-known results on quadratic forms in
characteristic two are recalled.
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0.1 Alternate forms. Let J be a finite-dimensional vector space over
227, e: J x J — Z[2Z a non-degenerate, alternate, bilinear form. Recall
that non-degenerate means that e makes J its own dual, i.e. that the induced
mapping J — J* is a bijection; alternate signifies that the equation

e(x,x) =0

1s valid throughout J. It can then be proved that there exists a basis
X1y -us Xgy X15 o-er X, fOr J such that

e(xi,x,) = e(x),x) = 0.

e (x;, x_]) = 5ij s

in particular that the dimension of J is even. Such a basis is called a sym-
plectic basis for (J, e). The symplectic group for (J, e), written Sp (J, e), is
the group of linear automorphisms of J compatible with e, i.e. linear auto-
morphisms ¢: J — J such that for any x, ye J

€ (x’ y) = 8(0' (X), G(y)) .

The symplectic group acts on the set of symplectic basis for (J/, e), and
clearly in a simply transitive way. A datum of the form (J, e) will be called
a symplectic pair for short.

0.2 Quadratic forms. Let J be a finite-dimensional vector space over
Z/27.. A quadratic form on J is a mapping ¢q: J — Z/2Z. with the property
that the mapping

e,(x,y) = q(x) +qO) +q(x+y)

is bilinear. It is clear that e, is also alternate.
Let e be a fixed non-degenerate, alternate, bilinear form on J. There
always is some quadratic form ¢ on J such that e, = e, for example

q(x) = Z A

where x = X A, x; + X 1, x; in terms of some symplectic basis x, ..., X,
X1, ..., X, for (J, ). Moreover, if Q (J, e) is the set of quadratic forms ¢

with the property e, = e, the group J acts on it through the formula

x+ () =q(y) +elx,y), x,yel,

and clearly in a simply transitive way; note that the action is written
additively. ‘
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0.3  Arf invariant. Let (J, e) be a symplectic pair, and let xj ,..., X,
X1y eens x; be a symplectic basis for (/, e). If g€ Q (J, e), it is easily proved
that the scalar X ¢ (x;) g (x;) is independent of the given symplectic basis;
this is called the Arf invariant of g and will be written Q, (¢). It is a mapping

Q.:Q(J,e) > Z/2Z
and it has the following property, that can be easily checked:

Q.(q@) +0.(x+q9) +Q,(v+q) + Q.(x+y+q) = e(x,)

where x, ye J, g€ Q (J, e), and the action defined at the end of 0.2 is being
used.

The Arf invariant has the following meaning: if g€ Q (J, e), the set
g~ (0) has either 2971 (294 1) or 2971 (29 —1) elements, and correspondingly
g~ 1 (1) has either 2971 (29—1) or 2971 (294 1) elements, where 2g = dim J;
the first (resp. the second) happens iff Q, (¢) equals O (resp. 1).

It is not difficult to prove that the set O, (0) of elements of Q (J, e)
with Arf invariant zero has order 297! (2+1) and correspondingly that
0,1 (1) has 2971 (29— 1) elements.

0.4 Functoriality. Let (J, e), (J', ') be two symplectic pairs, and let
o:J — J' be a linear isomorphism compatible with e, ¢’, i.e. verifying

e (0(x),0(») =e(x,y) x,yeJ.

The isomorphism ¢ induces a mapping

Q(0):Q(J,e) > Q(J ", ¢)
defined by the formula

Q(0)(q) =q-07",
and this has the property

Q@(x+q) =d(x) +Q( () xeJ,qeQ(J,e).

Moreover, Q (o) is compatible with the Arf invariant mappings Q,., Q..
in the sense that one has

Qe"Q(O‘) = Qe .

0.5 The standard situation. For a given natural number g (the “genus™),
let J, = (Z/2Z)%, e, be defined by the matrix

(7 o)
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where 0, [ are respectively the zero, identity g X g matrix. The datum
(J,, €,) 1s a symplectic pair, and is standard in the sense that for a fixed
(J, e), giving a symplectic basis for (J, ¢) amounts to the same thing as
giving a linear isomorphism J, ~ J compatible with e,, e. By 0.4, this in
turn defines an isomorphism Q (J,, e,) ~ Q (J, e) with the properties
stated there.

Going back to the standard situation, there is an obvious identification
0 (J,, e,) ~ (ZJ2Z)*, obtained associating with every quadratic form g its
values on the canonical basis of J,. With this identification in mind, the
action of J, on Q (J,, e,) defined at the end of 0.2 is the action of (Z/2Z)**
on itself by translations, and the Arf invariant is given by the mapping Q:
(e, &) |=> X ¢, ¢, where ¢, ¢’ € (Z/2Z)°.

We will use the following notation,

Jo(9) = (Z]22)*
So(9) = Qo eo)
S;(9) = {s€S5(9)/Q(s) = 0}
S, (9) = {seS,(9)/Q(s) = 1}

§ 1 THETA CHARACTERISTICS

1.1  On an algebraic curve. Let C be a non-singular projective algebraic
curve over an algebraically closed base field k£ of characteristic different
from 2. The set S (C) of theta characteristics on C is the set of isomorphism
classes of line bundles L on C whose tensor square is isomorphic to the
canonical bundle. If J, (C) is the group of points of order two in Pic (C),
1.e. the multiplicative group of isomorphism classes of line bundles on C
whose square is the trivial line bundle O, then clearly J, (C) acts on the
set S (C), and this in a simply transitive way. In addition, there is a function

Q:S(C) > Z/2Z
defined by
Q(L) =dim I'(C,L) (2).

The following formula holds, where x, yeJ, (C), s€ S(C), and we
use additive notation both for the group law in J, (C) and the action
of J, (C) on S(C):

Q@) +Q(x+5) + Q(y+9) + Q(x+y+s) = e(x,)).
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Here, e stands for the intersection pairing on J, (C). If g is the genus of C,
it is proved that 0~ * (0) (resp. Q™! (1)) has 2971 (29+1) (resp. 297 ' (29— 1))
elements.

The proof of these assertions goes back to Riemann in the case £ = C,
and in the general case it may be found in Mumford [5]. 4

1.2 On a principally polarized abelian variety. Let X be an abelian

variety over k, 6: X ~ X a principal polarization. The set S (X, ) of
theta characteristics on (X, 0) is the subset of Pic’ (X) determined by the
symmetric line bundles; i.e. the elements of S (X, 6) are the isomorphism
classes of line bundles L on X belonging to € and such that L ~ i* (L),
where i: X — X sends x € X into —x. Again, the group X, of points of
order two in X acts on S(X,6) through the induced isomorphism

0: X, =, X,, and this in a simply transitive way. Now, for any symmetric
line bundle L on X, there exists a unique isomorphism ¢: L =~ i* (L) such
that over the zero of X, ¢ induces the identity on the fibers. Over any
x € X,, the fibers of L, i* (L) identify naturally, and ¢ induces the multi-
plication by some scalar that will be denoted ei (x). It is proved that
eI; (x) = +1, and indeed that ef;: X, — ZJ27 is a quadratic form whose
associated bilinear form is the intersection pairing e on X,. Now we define
a mapping
0:S(X,0) - Z/27Z
by
O (s) = Arf invariant of e’ .

The following formula is valid, where additive notation is used both for
group law and group action, and where se S (X, 0), x, ye X,

Q@) +Q(x+9) +Q(r+x) + Q(x+y+s) = e(x,)).

It is also true that, if g = dim X, Q7' (0) (resp. Q% (1)) has 2971 (29+ 1)
(resp. 2971 (29—1)) elements.

All the preceding is proved in or follows easily from § 2 of Mumford [4]
and from §0 above. Note in addition that in Pic?® (X) there is a unique
totally symmetric line bundle L, (i.e. L, is symmetric and e*° (x) = 1 for
every x € X,), and that the symmetric line bundles in Pige (X) are the

line bundles L such that L? is isomorphic with L, (cf. Mumford [4]
loc. cit.). :

b
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§ 2 RELATION WITH THE CLASSICAL NOTATION

Throughout this section the base field is C.

2.1 Jacobians. 1 recall briefly the data associated with a nonsingular
projective curve C. We have two abelian varieties, the Jacobian variety
J(C) = H*° (C)*/H, (C, Z) and the Picard variety P°(C) =
H%! (C)/H! (C, Z). From standard dualities it turns out that P° (C) is
naturally isomorphic to the dual Jacobi variety J(C)”, and from Abel’s
theorem it results that there is in addition a natural isomorphism
P°(C) ~ J(C). Thus, we have associated with C a principally polarized
abelian variety that I will denote henceforth P° (C), 6. and will be called
the Picard or the Jacobi variety of C according to taste. If we visualize
P° (C) as the group of line bundles on C with Chern class zero, we are led
to introduce the family of sets P* (C), where P" (C) is the set of isomorphism
classes of line bundles with Chern class equal to 4 e Z. Each of the sets
P"(C) is a torsor under P°(C), i.e. is acted on by P°(C) in a simply
transitive way.

There is a natural embedding

C - P'(C)
and it can be proved that this induces an isomorphism of P° (C)-torsors
(2.1.1) Pic? P1 (C) = P(C)

where Pic? P! (C) is the set of line bundles P on P! (C) belonging to 6,
and g is the genus of C (see next section 2.2). Observe that Pic’ P (C) is
properly a P°(C)"-torsor, but it becomes a P°(C)-torsor through the
polarization .

2.2 A simple formalism. Let X be an abelian variety, P and X-torsor
such that the group action X X P — P be analytic. Then there are canonical
isomorphisms

H'(X,Z) ~ H'(P,Z)
H'(X,0,) ~ H'(P,0,)
and in particular
NS(X) ~NS(P)Pic’°(X) ~ Pic’(P).

This is because the translations induce the identity both in H' (X, Z),
H'(X,0,) as it may be easily seen. Recall that the Néron-Severi group
of X (resp. of P) is the quotient
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NS(X) = Pic(X)/Pic’°(X),
or also the kernel of the homomorphism
H*(X,Z) - H*(X,0,).

Now let : X —» X be a polarization, 0 corresponds naturally to an element
0 e NS (X), and the set Pic? (X) of isomorphism classes of line bundles

on X belonging to 6 is the coset of X in Pic (X) corresponding to 0 (cf. for
example, Mumford, Abelian Varieties). Thus, Pic’ (P) is well defined too,
since NS (P) and NS (X) identify.

Starting from (X, 0) and P we have the following situation. The set
Pic? (P) is a torsor over Pic’ (P), but Pic’ (P) identifies naturally with X,

thus Pic’ (P) is an X-torsor. The following formula makes explicit this

A

X-torsor as tensor product (the natural operation between torsors over a
A A
fixed abelian group) of two other X-torsors, Pic’ X and the X-torsor

A A
P ® y X obtained from P through the extension of scalars 0: X — X.

(2.2.1) Pic? (P) ~ Pic” (X ) ® (P®yX)

To have this natural isomorphism it is enough to define an X-equivariant
pairing Pic’ (X) x P — Pic? (P) and this is the obvious one: if L € Pic? (X),
pePandif z,: X — P is the isomorphism 7, (x) = p + x, then the pairing
associates with (L, p) the line bundle (z,). (L).

This isomorphism will be used in the next section.

2.3 Relation between 1.1, 1.2. Let C be a nonsingular projective alge-
braic curve, (P° (C), 0c) its Picard variety with its principal polarization.
Then, the definitions of theta characteristics of 1.1, 1.2 applied respectively
to C, (P°(C), 0c) yield objects that identify naturally. Indeed, if follows
from (2.1.1) and (2.2.1) that for any A € Z there is a natural isomorphism
of P’ (C)-torsors.

Pic’ (P"(C)) ~ P* 971 (),

where g is the genus of C. In particular, we have isomorphisms
Pic’ (P°(C)) =~ P~ (C)
Pic*’ (P°(C)) ~ P*72(C).

In the last one it is easily seen that the canonical bundle corresponds to
the unique totally symmetric bundle in Pic*® P°(C). As the symmetric
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~ bundles in Pic’ (P° (C)) are exactly the square roots of this totally symmetric
~ line bundle, it follows that S (C), S(P°(C), 0c) identify naturally. More-
- over, this identification is compatible with their structures of J, (C)-torsors
and with the maps Q: S (C) » Z/2Z, Q: S(P°(C), 0c) - Z/2Z. This last
- point follows easily from proposition 2 in § 2 of Mumford [4] and from
the theorem of Riemann (see Fay [2], theorem 1.1) stating that for a line
bundle L € P9~ (C), the dimension of I" (C, L) equals the multiplicity of
~ the theta divisor at the point L. (In fact, observe that the theta divisor as
~ an element of Pic’ (P/~* (C)) corresponds to the canonical bundle on C
under the isomorphism Pic’ (P!~* (C)) = P**~* (C).

2.4 Theta functions. Let (X, ) be a principally polarized abelian variety.
There is a canonical isomorphism

X ~ HY°(X)*/H, (X, Z)

and the principal polarization corresponds to a nondegenerate alternate
bilinear pairing
0:H,(X,Z)xH,(X,Z) > Z.

- Let x4, ..., x,, X1y eens x; be a symplectic basis for 0 on H; (X, Z); then the

images of xj, ..., x, in H"° (X)* constitute a basis for this C-vector space,
and let wy, ..., w, be its dual basis for H™° (X). In other words,
fs; Wi = i -

Then the matrix © = (t;;) defined by

Ty = 5, Vi

belongs to the Siegel upper-half space of degree g, i.e. T is symmetric and
Im (1) is positive definite. The choice of the symplectic basis sets an identi-
- fication '

’ X ~C2?° DL .

- We may now consider the classical theta functions (Igusa [3])

Omms (T, 2) = Zg e[1((+ m) v ({+m) + ({+m)(z+m¥)].
EeZ
By the properties of these theta functions and through the preceding
~ identification, each 0,,,s (tr, —) defines a line bundle on X, and indeed an
~ element of Pic’ (X) that is independent of (m, m*) € R* mod Z*. In this
~ way we get a bijection |
‘ Pic? (X ) ~ R>/Z% .
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It follows from formula (6. 1) in p.49 of Igusa [3] that the subset of
Pic’ (X) defined by the symmetric line bundles on X corresponds to the
image in R*¢/Z29 of 3 Z.**.

We finally see that the symplectic basis on H; (X, Z) deﬁneg' an identi-

fication
S(X,0) ~ (Z]2Z)*° .

It is easy to see that this identification depends only on the symplectic

basis induced on
Hl (X> Z)/2H1 (X) Z) = Hl (X7 Z/2Z) )

and that it is compatible with the identification

)?2 ~ H,(X,Z[27) ~ (Z]2Z)**

that the later basis defines and with the respective action of X, on S (X, 0)
and of (Z/2Z.)* on itself by translations.

2.5 Summing up. If C is a nonsingular projective algebraic curve of
genus g, there are two equivalent ways of defining the set of theta charac-
teristics, either directly as in 1.1, or through its Picard variety as in 1.2.
The set of theta characteristic is endowed with a simply transitive action
of the group J, (C) and with a function Q: S (C) — Z/2Z closely related
to the intersection pairing e on J, (C). Also, we know that Q™! (0) has
2971 (294+1) elements and Q! (1) has 2971 (29—1) elements. Indeed, there
is a third way of defining the set of theta characteristics, namely as the
set O (J, (C), e) of all quadratic forms g on J, (C) whose associated bi-
linear form is e; we saw in § O that on this set there is a structure of the
same type as in S (C), S (X, 0), and in fact S (X, 0) is clearly isomorphic

with O (X,, e) ~ 0 (X,, e).

Now if we choose a symplectic basis xy, ..., X, X1y eons x; for J, (C),
the set S (C) identifies with (Z/2Z)*. In particular, 0 € (Z/2Z)** defines
a “base” theta characteristic. In terms of quadratic forms, this identification
corresponds to the one discussed in 0.5, in particular the base theta charac-
teristic is even (i.e. belongs to Q™! (0)) and it corresponds to the quadratic
form ¢, defined by ¢, (x;) = g, (x;) = 0. for i = 1, ...,g. Looking at
S (C) as a subset of PP~! (C), the base theta characteristic is nothing else
that the Riemann constant 4 in the non-intrinsic version of the Riemann
theorem referred to at the end of 2.3. (See theorem 1.1 in Fay [2] and its
corollary 1.5).
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§3 SOME SPECIAL CASES

I present here some examples in order to motivate the general discussion
in Part II. Proofs of most assertions are omitted and they may be found in
or follow easily from Part II. The base field is C to simplify things.

3.1 Genus two. Let C be of genus two, and let P, be the projective space
of hyperplanes in H*:° (C). Then P is a projective line, and the natural
map C — P presents C as a 2-sheeted covering of P. ramified over a sub-
set Rc = P¢ with | R¢| = 6. From the Riemann-Roch theorem it may be
proved that the line bundles L in S (C) with Q (L) = 1, i.e. the odd theta
characteristics, are those represented by effective divisors, and from here
it follows easily that the set S (C) of odd theta characteristics identifies
naturally with R.. If s, §,, 553 are three different elements of S~ (C)
represented by line bundles L,, L,, L5, it is also easily proved that
L, @ L, ® L3! is even. From this, and from 11 2.4 it follows that thereis
a natural group isomorphism

Sp(H, (C, Z/22)) ~ Aut(R,) .

It follows also from loc. cit. that it amounts to the same thing to give a
symplectic basis for H, (C, Z/2Z) or to give a bijection S, (2) ~ R,
where Sy (2) is the fixed 6-elements set defined in 0.5.

I will discuss S* (C) in a more general setting:

3.2 Even genus, hyperelliptic case. Let C be hyperelliptic. Then there
is a projective line P, and a map C — P, defined up to unique iso-
morphisms such that C — P, is a 2-sheeted covering. If R is the rami-
fication locus, | RCI = 2g + 2, and R identifies naturally with the set
of Weierstrass points of C.

The group H, (C, Z/2Z) can be reconstructed starting from R, in the
following way. If © = {n’,n"} is any partition of R, into two even-order
subsets, L, is the line bundle defined by the divisor > P — ) P where

Pen, Pern,
| ny | = |n, | and {my, 7,} partition n'. It is clear that L, is of order two,
thus defining an element of H, (C, Z/27Z). In this manner one gets a group
~ isomorphism _
P; (Ro) ~ H, (C, Z[2Z)
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where the group P (R.) is defined in I 3.5. It is easily verified that this
isomorphism is compatible with the intersection pairing on H; and with
the alternated bilinear form introduced in loc. cit.

All the preceding was valid for any genus g. Now if g is even, it follows
from II 3.6 and II 1.4 that we have an isomorphism

P37 (Re) 5 5(0)

compatible with the structures involved (i.e. an isomorphism of symplectic
torsors, cf. II 1.1). The results of II, § 3 may thus be applied to the study
of §(C). |

Observe that if g is odd, there is a natural theta characteristic; namely,
the line bundle of the divisor (g—1) P is independent of the Weierstrass
point P (compare II 3.6b)).

3.3 Genus three. Two cases arise for C of genus three:

3.3.1  Chyperelliptic. Then there is the 2-sheeted covering C — P,
ramified over R, with [ R¢ l = §. It is seen in this case, as in 3.1, that there
is a natural identification between S~ (C) and the set of subsets of R,
consisting of exactly two elements. It is convenient to visualize the elements
of §7 (C) as segments joining the points of R, these being distributed on a
plane in an arbitrary way. Then, if s,, 5,, 55, 5, are four different elements
of §7(C), s; — s, = 55 — s, iff the segments corresponding to them
produce one of the following configurations

1L

From II 2.7 it follows that there is a canonical isomorphism between the
group Sp (H, (C, Z/2Z)) and the group of permutations of the set S~ (C)
that preserve the “geometry” defined by these quadruples. Two comments
are in order:

a) Although the permutation group Aut (R) is clearly a subgroup of
the automorphism group of the “geometry”, not every such automorphism
arises from a permutation of R,.

b) The automorphisms of the geometry do not preserve the type of
the configuration, they may send one quadruple of the first type drawn
above into the other. However in a continuous family of Ayperelliptic

curves of genus 3, each of the two configurations will be preserved as the
curve is deformed.
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3.3.2  C non hyperelliptic. Let Q = P (H"° (C)) be the projective
space of hyperplanes in H"° (C). Then Q. is a projective plane and the
natural map C — Q. is an immersion. The degree of C in Q is the degree
of the canonical bundle, i.e. 4 and C is thus a nonsingular plane quartic. It
is again a simple exercise to prove that the odd theta characteristics on
C correspond to the set of lines in Q. that are bitangents to C. Thus, if
B¢ 1s the set of bitangents to C in Q, there is a natural identification

B, ~ ST(0).

The theme of the 28 bitangents to a nonsingular plane quartic (28
= 2371 (2°—1)) is a classic one in geometry, see for instance Weber [6],
chapter 12. A triple (sq, s,, s;) of bitangents is called syzygetic (resp.
azygetic) if their six points of contact with C lie (resp. do not lie) in a conic.
A triple is syzygetic iff L, = L; ® L, ® L3' is an odd characteristic,
where L,, L,, L5 are the line bundles corresponding to s, s,, 53. When this
happens, the two points of contact of the bitangent s, corresponding
to L,, together with the preceding six, make up the full § = 2 X 4 common
points of the conic with the quartic.

An Aronhold system of bitangents (Weber [6]) is a set of seven bitangents
such that any different three of them constitute an azygetic triple. The
Aronhold systems are exactly the basis for the “geometry” in S~ (C)
defined by the syzygetic triples (in the sense of II 4.3). It follows from
IT 4.4 that the set of Aronhold systems is a torsor over the symplectic group
Sp (Hy (C, Z/27)), in particular that they have the same number of cle-
ments.

As any two “geometries” with the same genus are isomorphic (I 1.4),
one can also speak of Aronhold systems in the hyperclliptic case. It turns
out that they correspond to the following configurations

N AR\

There are 1,451,520 of them as it is “immediately” checked. Again, it will
be observed that the automorphisms of the geometry do not preserve the
type of the configuration.
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