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FINITE GEOMETRIES
IN THE THEORY OF THETA CHARACTERISTICS

by Neantro SAAVEDRA RIVANO

INTRODUCTION

The aim of this paper is to call attention upon the existence of a very
simple “finite geometry” on the set of either odd or even theta characteristics
(on an algebraic curve), and to develop on some of its properties and related
concepts. In particular, this finite geometry allows one to place in a general
context the classical theory of the 28 bitangents to a plane quartic (cf.
Weber [6]).

Part I of the paper recalls the several interpretations and definitions of
theta characteristics, and contains some examples to motivate the abstract
developments in Part II. In this later part, the finite geometry is defined
and its properties discussed. The main result is theorem II 2.6. Prop-
osition II 4.4 is also of important practical value.

It is my feeling that the finite geometries will be of help in studying such
problems as: relations between theta functions, filtrations in the space of
moduli of level two structures over curves of a given genus, degeneration
of algebraic curves. A sequel to this paper should contain applications to
these subjects.

I am heavily indebted to Herbert Clemens for his continuous support
during the preparation of this work, and also to Pierre Cartier for several
helpful conversations. Moreover, I owe thanks to the Institute for Advanced
Study for a very opportune grant, to Colombia University for its hospitality
and to the Guggenheim Foundation for financial support.

I. THETA CHARACTERISTICS
ON AN ALGEBRAIC CURVE

§ 0 REVIEW: QUADRATIC FORMS IN CHARACTERISTIC 2

In this section, a number of well-known results on quadratic forms in
characteristic two are recalled.
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0.1 Alternate forms. Let J be a finite-dimensional vector space over
227, e: J x J — Z[2Z a non-degenerate, alternate, bilinear form. Recall
that non-degenerate means that e makes J its own dual, i.e. that the induced
mapping J — J* is a bijection; alternate signifies that the equation

e(x,x) =0

1s valid throughout J. It can then be proved that there exists a basis
X1y -us Xgy X15 o-er X, fOr J such that

e(xi,x,) = e(x),x) = 0.

e (x;, x_]) = 5ij s

in particular that the dimension of J is even. Such a basis is called a sym-
plectic basis for (J, e). The symplectic group for (J, e), written Sp (J, e), is
the group of linear automorphisms of J compatible with e, i.e. linear auto-
morphisms ¢: J — J such that for any x, ye J

€ (x’ y) = 8(0' (X), G(y)) .

The symplectic group acts on the set of symplectic basis for (J/, e), and
clearly in a simply transitive way. A datum of the form (J, e) will be called
a symplectic pair for short.

0.2 Quadratic forms. Let J be a finite-dimensional vector space over
Z/27.. A quadratic form on J is a mapping ¢q: J — Z/2Z. with the property
that the mapping

e,(x,y) = q(x) +qO) +q(x+y)

is bilinear. It is clear that e, is also alternate.
Let e be a fixed non-degenerate, alternate, bilinear form on J. There
always is some quadratic form ¢ on J such that e, = e, for example

q(x) = Z A

where x = X A, x; + X 1, x; in terms of some symplectic basis x, ..., X,
X1, ..., X, for (J, ). Moreover, if Q (J, e) is the set of quadratic forms ¢

with the property e, = e, the group J acts on it through the formula

x+ () =q(y) +elx,y), x,yel,

and clearly in a simply transitive way; note that the action is written
additively. ‘
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0.3  Arf invariant. Let (J, e) be a symplectic pair, and let xj ,..., X,
X1y eens x; be a symplectic basis for (/, e). If g€ Q (J, e), it is easily proved
that the scalar X ¢ (x;) g (x;) is independent of the given symplectic basis;
this is called the Arf invariant of g and will be written Q, (¢). It is a mapping

Q.:Q(J,e) > Z/2Z
and it has the following property, that can be easily checked:

Q.(q@) +0.(x+q9) +Q,(v+q) + Q.(x+y+q) = e(x,)

where x, ye J, g€ Q (J, e), and the action defined at the end of 0.2 is being
used.

The Arf invariant has the following meaning: if g€ Q (J, e), the set
g~ (0) has either 2971 (294 1) or 2971 (29 —1) elements, and correspondingly
g~ 1 (1) has either 2971 (29—1) or 2971 (294 1) elements, where 2g = dim J;
the first (resp. the second) happens iff Q, (¢) equals O (resp. 1).

It is not difficult to prove that the set O, (0) of elements of Q (J, e)
with Arf invariant zero has order 297! (2+1) and correspondingly that
0,1 (1) has 2971 (29— 1) elements.

0.4 Functoriality. Let (J, e), (J', ') be two symplectic pairs, and let
o:J — J' be a linear isomorphism compatible with e, ¢’, i.e. verifying

e (0(x),0(») =e(x,y) x,yeJ.

The isomorphism ¢ induces a mapping

Q(0):Q(J,e) > Q(J ", ¢)
defined by the formula

Q(0)(q) =q-07",
and this has the property

Q@(x+q) =d(x) +Q( () xeJ,qeQ(J,e).

Moreover, Q (o) is compatible with the Arf invariant mappings Q,., Q..
in the sense that one has

Qe"Q(O‘) = Qe .

0.5 The standard situation. For a given natural number g (the “genus™),
let J, = (Z/2Z)%, e, be defined by the matrix

(7 o)
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where 0, [ are respectively the zero, identity g X g matrix. The datum
(J,, €,) 1s a symplectic pair, and is standard in the sense that for a fixed
(J, e), giving a symplectic basis for (J, ¢) amounts to the same thing as
giving a linear isomorphism J, ~ J compatible with e,, e. By 0.4, this in
turn defines an isomorphism Q (J,, e,) ~ Q (J, e) with the properties
stated there.

Going back to the standard situation, there is an obvious identification
0 (J,, e,) ~ (ZJ2Z)*, obtained associating with every quadratic form g its
values on the canonical basis of J,. With this identification in mind, the
action of J, on Q (J,, e,) defined at the end of 0.2 is the action of (Z/2Z)**
on itself by translations, and the Arf invariant is given by the mapping Q:
(e, &) |=> X ¢, ¢, where ¢, ¢’ € (Z/2Z)°.

We will use the following notation,

Jo(9) = (Z]22)*
So(9) = Qo eo)
S;(9) = {s€S5(9)/Q(s) = 0}
S, (9) = {seS,(9)/Q(s) = 1}

§ 1 THETA CHARACTERISTICS

1.1  On an algebraic curve. Let C be a non-singular projective algebraic
curve over an algebraically closed base field k£ of characteristic different
from 2. The set S (C) of theta characteristics on C is the set of isomorphism
classes of line bundles L on C whose tensor square is isomorphic to the
canonical bundle. If J, (C) is the group of points of order two in Pic (C),
1.e. the multiplicative group of isomorphism classes of line bundles on C
whose square is the trivial line bundle O, then clearly J, (C) acts on the
set S (C), and this in a simply transitive way. In addition, there is a function

Q:S(C) > Z/2Z
defined by
Q(L) =dim I'(C,L) (2).

The following formula holds, where x, yeJ, (C), s€ S(C), and we
use additive notation both for the group law in J, (C) and the action
of J, (C) on S(C):

Q@) +Q(x+5) + Q(y+9) + Q(x+y+s) = e(x,)).
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Here, e stands for the intersection pairing on J, (C). If g is the genus of C,
it is proved that 0~ * (0) (resp. Q™! (1)) has 2971 (29+1) (resp. 297 ' (29— 1))
elements.

The proof of these assertions goes back to Riemann in the case £ = C,
and in the general case it may be found in Mumford [5]. 4

1.2 On a principally polarized abelian variety. Let X be an abelian

variety over k, 6: X ~ X a principal polarization. The set S (X, ) of
theta characteristics on (X, 0) is the subset of Pic’ (X) determined by the
symmetric line bundles; i.e. the elements of S (X, 6) are the isomorphism
classes of line bundles L on X belonging to € and such that L ~ i* (L),
where i: X — X sends x € X into —x. Again, the group X, of points of
order two in X acts on S(X,6) through the induced isomorphism

0: X, =, X,, and this in a simply transitive way. Now, for any symmetric
line bundle L on X, there exists a unique isomorphism ¢: L =~ i* (L) such
that over the zero of X, ¢ induces the identity on the fibers. Over any
x € X,, the fibers of L, i* (L) identify naturally, and ¢ induces the multi-
plication by some scalar that will be denoted ei (x). It is proved that
eI; (x) = +1, and indeed that ef;: X, — ZJ27 is a quadratic form whose
associated bilinear form is the intersection pairing e on X,. Now we define
a mapping
0:S(X,0) - Z/27Z
by
O (s) = Arf invariant of e’ .

The following formula is valid, where additive notation is used both for
group law and group action, and where se S (X, 0), x, ye X,

Q@) +Q(x+9) +Q(r+x) + Q(x+y+s) = e(x,)).

It is also true that, if g = dim X, Q7' (0) (resp. Q% (1)) has 2971 (29+ 1)
(resp. 2971 (29—1)) elements.

All the preceding is proved in or follows easily from § 2 of Mumford [4]
and from §0 above. Note in addition that in Pic?® (X) there is a unique
totally symmetric line bundle L, (i.e. L, is symmetric and e*° (x) = 1 for
every x € X,), and that the symmetric line bundles in Pige (X) are the

line bundles L such that L? is isomorphic with L, (cf. Mumford [4]
loc. cit.). :

b
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§ 2 RELATION WITH THE CLASSICAL NOTATION

Throughout this section the base field is C.

2.1 Jacobians. 1 recall briefly the data associated with a nonsingular
projective curve C. We have two abelian varieties, the Jacobian variety
J(C) = H*° (C)*/H, (C, Z) and the Picard variety P°(C) =
H%! (C)/H! (C, Z). From standard dualities it turns out that P° (C) is
naturally isomorphic to the dual Jacobi variety J(C)”, and from Abel’s
theorem it results that there is in addition a natural isomorphism
P°(C) ~ J(C). Thus, we have associated with C a principally polarized
abelian variety that I will denote henceforth P° (C), 6. and will be called
the Picard or the Jacobi variety of C according to taste. If we visualize
P° (C) as the group of line bundles on C with Chern class zero, we are led
to introduce the family of sets P* (C), where P" (C) is the set of isomorphism
classes of line bundles with Chern class equal to 4 e Z. Each of the sets
P"(C) is a torsor under P°(C), i.e. is acted on by P°(C) in a simply
transitive way.

There is a natural embedding

C - P'(C)
and it can be proved that this induces an isomorphism of P° (C)-torsors
(2.1.1) Pic? P1 (C) = P(C)

where Pic? P! (C) is the set of line bundles P on P! (C) belonging to 6,
and g is the genus of C (see next section 2.2). Observe that Pic’ P (C) is
properly a P°(C)"-torsor, but it becomes a P°(C)-torsor through the
polarization .

2.2 A simple formalism. Let X be an abelian variety, P and X-torsor
such that the group action X X P — P be analytic. Then there are canonical
isomorphisms

H'(X,Z) ~ H'(P,Z)
H'(X,0,) ~ H'(P,0,)
and in particular
NS(X) ~NS(P)Pic’°(X) ~ Pic’(P).

This is because the translations induce the identity both in H' (X, Z),
H'(X,0,) as it may be easily seen. Recall that the Néron-Severi group
of X (resp. of P) is the quotient
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NS(X) = Pic(X)/Pic’°(X),
or also the kernel of the homomorphism
H*(X,Z) - H*(X,0,).

Now let : X —» X be a polarization, 0 corresponds naturally to an element
0 e NS (X), and the set Pic? (X) of isomorphism classes of line bundles

on X belonging to 6 is the coset of X in Pic (X) corresponding to 0 (cf. for
example, Mumford, Abelian Varieties). Thus, Pic’ (P) is well defined too,
since NS (P) and NS (X) identify.

Starting from (X, 0) and P we have the following situation. The set
Pic? (P) is a torsor over Pic’ (P), but Pic’ (P) identifies naturally with X,

thus Pic’ (P) is an X-torsor. The following formula makes explicit this

A

X-torsor as tensor product (the natural operation between torsors over a
A A
fixed abelian group) of two other X-torsors, Pic’ X and the X-torsor

A A
P ® y X obtained from P through the extension of scalars 0: X — X.

(2.2.1) Pic? (P) ~ Pic” (X ) ® (P®yX)

To have this natural isomorphism it is enough to define an X-equivariant
pairing Pic’ (X) x P — Pic? (P) and this is the obvious one: if L € Pic? (X),
pePandif z,: X — P is the isomorphism 7, (x) = p + x, then the pairing
associates with (L, p) the line bundle (z,). (L).

This isomorphism will be used in the next section.

2.3 Relation between 1.1, 1.2. Let C be a nonsingular projective alge-
braic curve, (P° (C), 0c) its Picard variety with its principal polarization.
Then, the definitions of theta characteristics of 1.1, 1.2 applied respectively
to C, (P°(C), 0c) yield objects that identify naturally. Indeed, if follows
from (2.1.1) and (2.2.1) that for any A € Z there is a natural isomorphism
of P’ (C)-torsors.

Pic’ (P"(C)) ~ P* 971 (),

where g is the genus of C. In particular, we have isomorphisms
Pic’ (P°(C)) =~ P~ (C)
Pic*’ (P°(C)) ~ P*72(C).

In the last one it is easily seen that the canonical bundle corresponds to
the unique totally symmetric bundle in Pic*® P°(C). As the symmetric
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~ bundles in Pic’ (P° (C)) are exactly the square roots of this totally symmetric
~ line bundle, it follows that S (C), S(P°(C), 0c) identify naturally. More-
- over, this identification is compatible with their structures of J, (C)-torsors
and with the maps Q: S (C) » Z/2Z, Q: S(P°(C), 0c) - Z/2Z. This last
- point follows easily from proposition 2 in § 2 of Mumford [4] and from
the theorem of Riemann (see Fay [2], theorem 1.1) stating that for a line
bundle L € P9~ (C), the dimension of I" (C, L) equals the multiplicity of
~ the theta divisor at the point L. (In fact, observe that the theta divisor as
~ an element of Pic’ (P/~* (C)) corresponds to the canonical bundle on C
under the isomorphism Pic’ (P!~* (C)) = P**~* (C).

2.4 Theta functions. Let (X, ) be a principally polarized abelian variety.
There is a canonical isomorphism

X ~ HY°(X)*/H, (X, Z)

and the principal polarization corresponds to a nondegenerate alternate
bilinear pairing
0:H,(X,Z)xH,(X,Z) > Z.

- Let x4, ..., x,, X1y eens x; be a symplectic basis for 0 on H; (X, Z); then the

images of xj, ..., x, in H"° (X)* constitute a basis for this C-vector space,
and let wy, ..., w, be its dual basis for H™° (X). In other words,
fs; Wi = i -

Then the matrix © = (t;;) defined by

Ty = 5, Vi

belongs to the Siegel upper-half space of degree g, i.e. T is symmetric and
Im (1) is positive definite. The choice of the symplectic basis sets an identi-
- fication '

’ X ~C2?° DL .

- We may now consider the classical theta functions (Igusa [3])

Omms (T, 2) = Zg e[1((+ m) v ({+m) + ({+m)(z+m¥)].
EeZ
By the properties of these theta functions and through the preceding
~ identification, each 0,,,s (tr, —) defines a line bundle on X, and indeed an
~ element of Pic’ (X) that is independent of (m, m*) € R* mod Z*. In this
~ way we get a bijection |
‘ Pic? (X ) ~ R>/Z% .
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It follows from formula (6. 1) in p.49 of Igusa [3] that the subset of
Pic’ (X) defined by the symmetric line bundles on X corresponds to the
image in R*¢/Z29 of 3 Z.**.

We finally see that the symplectic basis on H; (X, Z) deﬁneg' an identi-

fication
S(X,0) ~ (Z]2Z)*° .

It is easy to see that this identification depends only on the symplectic

basis induced on
Hl (X> Z)/2H1 (X) Z) = Hl (X7 Z/2Z) )

and that it is compatible with the identification

)?2 ~ H,(X,Z[27) ~ (Z]2Z)**

that the later basis defines and with the respective action of X, on S (X, 0)
and of (Z/2Z.)* on itself by translations.

2.5 Summing up. If C is a nonsingular projective algebraic curve of
genus g, there are two equivalent ways of defining the set of theta charac-
teristics, either directly as in 1.1, or through its Picard variety as in 1.2.
The set of theta characteristic is endowed with a simply transitive action
of the group J, (C) and with a function Q: S (C) — Z/2Z closely related
to the intersection pairing e on J, (C). Also, we know that Q™! (0) has
2971 (294+1) elements and Q! (1) has 2971 (29—1) elements. Indeed, there
is a third way of defining the set of theta characteristics, namely as the
set O (J, (C), e) of all quadratic forms g on J, (C) whose associated bi-
linear form is e; we saw in § O that on this set there is a structure of the
same type as in S (C), S (X, 0), and in fact S (X, 0) is clearly isomorphic

with O (X,, e) ~ 0 (X,, e).

Now if we choose a symplectic basis xy, ..., X, X1y eons x; for J, (C),
the set S (C) identifies with (Z/2Z)*. In particular, 0 € (Z/2Z)** defines
a “base” theta characteristic. In terms of quadratic forms, this identification
corresponds to the one discussed in 0.5, in particular the base theta charac-
teristic is even (i.e. belongs to Q™! (0)) and it corresponds to the quadratic
form ¢, defined by ¢, (x;) = g, (x;) = 0. for i = 1, ...,g. Looking at
S (C) as a subset of PP~! (C), the base theta characteristic is nothing else
that the Riemann constant 4 in the non-intrinsic version of the Riemann
theorem referred to at the end of 2.3. (See theorem 1.1 in Fay [2] and its
corollary 1.5).
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§3 SOME SPECIAL CASES

I present here some examples in order to motivate the general discussion
in Part II. Proofs of most assertions are omitted and they may be found in
or follow easily from Part II. The base field is C to simplify things.

3.1 Genus two. Let C be of genus two, and let P, be the projective space
of hyperplanes in H*:° (C). Then P is a projective line, and the natural
map C — P presents C as a 2-sheeted covering of P. ramified over a sub-
set Rc = P¢ with | R¢| = 6. From the Riemann-Roch theorem it may be
proved that the line bundles L in S (C) with Q (L) = 1, i.e. the odd theta
characteristics, are those represented by effective divisors, and from here
it follows easily that the set S (C) of odd theta characteristics identifies
naturally with R.. If s, §,, 553 are three different elements of S~ (C)
represented by line bundles L,, L,, L5, it is also easily proved that
L, @ L, ® L3! is even. From this, and from 11 2.4 it follows that thereis
a natural group isomorphism

Sp(H, (C, Z/22)) ~ Aut(R,) .

It follows also from loc. cit. that it amounts to the same thing to give a
symplectic basis for H, (C, Z/2Z) or to give a bijection S, (2) ~ R,
where Sy (2) is the fixed 6-elements set defined in 0.5.

I will discuss S* (C) in a more general setting:

3.2 Even genus, hyperelliptic case. Let C be hyperelliptic. Then there
is a projective line P, and a map C — P, defined up to unique iso-
morphisms such that C — P, is a 2-sheeted covering. If R is the rami-
fication locus, | RCI = 2g + 2, and R identifies naturally with the set
of Weierstrass points of C.

The group H, (C, Z/2Z) can be reconstructed starting from R, in the
following way. If © = {n’,n"} is any partition of R, into two even-order
subsets, L, is the line bundle defined by the divisor > P — ) P where

Pen, Pern,
| ny | = |n, | and {my, 7,} partition n'. It is clear that L, is of order two,
thus defining an element of H, (C, Z/27Z). In this manner one gets a group
~ isomorphism _
P; (Ro) ~ H, (C, Z[2Z)
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where the group P (R.) is defined in I 3.5. It is easily verified that this
isomorphism is compatible with the intersection pairing on H; and with
the alternated bilinear form introduced in loc. cit.

All the preceding was valid for any genus g. Now if g is even, it follows
from II 3.6 and II 1.4 that we have an isomorphism

P37 (Re) 5 5(0)

compatible with the structures involved (i.e. an isomorphism of symplectic
torsors, cf. II 1.1). The results of II, § 3 may thus be applied to the study
of §(C). |

Observe that if g is odd, there is a natural theta characteristic; namely,
the line bundle of the divisor (g—1) P is independent of the Weierstrass
point P (compare II 3.6b)).

3.3 Genus three. Two cases arise for C of genus three:

3.3.1  Chyperelliptic. Then there is the 2-sheeted covering C — P,
ramified over R, with [ R¢ l = §. It is seen in this case, as in 3.1, that there
is a natural identification between S~ (C) and the set of subsets of R,
consisting of exactly two elements. It is convenient to visualize the elements
of §7 (C) as segments joining the points of R, these being distributed on a
plane in an arbitrary way. Then, if s,, 5,, 55, 5, are four different elements
of §7(C), s; — s, = 55 — s, iff the segments corresponding to them
produce one of the following configurations

1L

From II 2.7 it follows that there is a canonical isomorphism between the
group Sp (H, (C, Z/2Z)) and the group of permutations of the set S~ (C)
that preserve the “geometry” defined by these quadruples. Two comments
are in order:

a) Although the permutation group Aut (R) is clearly a subgroup of
the automorphism group of the “geometry”, not every such automorphism
arises from a permutation of R,.

b) The automorphisms of the geometry do not preserve the type of
the configuration, they may send one quadruple of the first type drawn
above into the other. However in a continuous family of Ayperelliptic

curves of genus 3, each of the two configurations will be preserved as the
curve is deformed.
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3.3.2  C non hyperelliptic. Let Q = P (H"° (C)) be the projective
space of hyperplanes in H"° (C). Then Q. is a projective plane and the
natural map C — Q. is an immersion. The degree of C in Q is the degree
of the canonical bundle, i.e. 4 and C is thus a nonsingular plane quartic. It
is again a simple exercise to prove that the odd theta characteristics on
C correspond to the set of lines in Q. that are bitangents to C. Thus, if
B¢ 1s the set of bitangents to C in Q, there is a natural identification

B, ~ ST(0).

The theme of the 28 bitangents to a nonsingular plane quartic (28
= 2371 (2°—1)) is a classic one in geometry, see for instance Weber [6],
chapter 12. A triple (sq, s,, s;) of bitangents is called syzygetic (resp.
azygetic) if their six points of contact with C lie (resp. do not lie) in a conic.
A triple is syzygetic iff L, = L; ® L, ® L3' is an odd characteristic,
where L,, L,, L5 are the line bundles corresponding to s, s,, 53. When this
happens, the two points of contact of the bitangent s, corresponding
to L,, together with the preceding six, make up the full § = 2 X 4 common
points of the conic with the quartic.

An Aronhold system of bitangents (Weber [6]) is a set of seven bitangents
such that any different three of them constitute an azygetic triple. The
Aronhold systems are exactly the basis for the “geometry” in S~ (C)
defined by the syzygetic triples (in the sense of II 4.3). It follows from
IT 4.4 that the set of Aronhold systems is a torsor over the symplectic group
Sp (Hy (C, Z/27)), in particular that they have the same number of cle-
ments.

As any two “geometries” with the same genus are isomorphic (I 1.4),
one can also speak of Aronhold systems in the hyperclliptic case. It turns
out that they correspond to the following configurations

N AR\

There are 1,451,520 of them as it is “immediately” checked. Again, it will
be observed that the automorphisms of the geometry do not preserve the
type of the configuration.
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II. THE ABSTRACT THEORY OF CHARACTERISTICS

§ 1 SYMPLECTIC TORSORS

1.1 Definitions. Recall that, if I' is a group, a I'-torsor (or torsor over I')
is a non-void set endowed with a simply transitive action of I on it. Let
(J, e) be a symplectic pair, a symplectic torsor over (J, e) is a pair (S, Q) of |
a J-torsor S and a mapping Q: S — Z/27Z having the property

(1.1.1) Q) +Q(x+s) +Q(y+s) + Q(x+y+s) = e(x,y)

where se S, x, yeJ. It is clearly equivalent to ask this property for a
fixed s € S or for all s € S, and it may be thought of as meaning that Q “is
a quadratic form.” Indeed, any s € S sets an identification J =~ S (x b x + ),
and through this identification Q becomes the map x|— Q (x+s). The
above property means that the map ¢,: J — Z/2Z defined by

(1.1.2) qs(x) = Q(x+s) + O (5)

is a quadratic form whose associated bilinear form is e. According to 0.4,
two possibilities may and do arise for Q: either Q7! (0) has 2971 (29+1)
or 2971 (2—1) elements, where g = dim J/2 will be called the genus
of (S, Q). In the first case, (S, Q) will be said to be even, odd in the second.
In what follows, all symplectic torsors will be even unless otherwise stated.
This because the symplectic torsors that will appear most often will be even
and because of the following simple construction. If (S, Q) is an even
(resp. odd) symplectic torsor over (J,e), and Q is defined by QO (s)
= Q(s) + 1, then (S, Q) is an odd (resp. even) symplectic torsor over
(J, e).
For a given (S, Q) the following notation will be used

ST =070 ST =07'(D).

The elements of S will be often called characteristics, those in St are
positive, those in S~ are negative.

1.2 Morphisms. Let (S, 0), (S, Q) be symplectic torsors respectively
over (J, e), (J', ¢). For any map f: S — S’ we defineamap ,: J X § - J’
by the property

f+s) =0,(x,8) +f(5);
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this can be done because S’ is a J'-torsor. Now, the following cocycle-type
property for o, is immediately checked, where x,y € J, s€ S

o;,(x+y+s) = 0,(x,y+5) + or(y,5),

and from it one infers the equivalence of the following statements:

(i) Foranys,s'e S, xeJ

o;(x,s) = a,(x,8).

(i) For some s€ S, any x, ye J

ap(x+y,5) = 0,(x,9 + 0,(¥,9)

(i) For any se S, x, yeJ

o, (x+y,5) = 0,(x,5) +0,(y,5).

So, when these statements hold, one gets a group homomorphisma,: J — J’
and has f(x+s) = o, (x) + f(s).

An isomorphism of (S, Q) onto (S’, Q') is a bijection f: § — S’ verifying
statements (i) to (iii) above, and also the condition

Q'of=0.

It is clear in this case that o,:J — J' is an isomorphism compatible with
e, e'. The group of automorphisms of (S, Q) will be denoted Sp (S, Q), so
the mapping /' — o, is a group homomorphism Sp (S, Q) — Sp (J, e).

1.3 An example. For any given (J, e) there is a canonical example of
an even symplectic torsor, namely (Q (J, e), Q.). The J-torsor Q (J, e) was
introduced in 0.2, the map Q, in 0.3 where it was also remarked that it has
property (1.1.1) and that Q,* (0) has 29~ (2?+1) elements.

If (J,e), (J', ) are two symplectic pairs, and if ¢:J — J' is a linear
isomorphism compatible with ¢, e’, a map Q (0): Q (J,e) > Q (J', ') was
defined in 0.4, where it was shown that it is an isomorphism of symplectic
torsors. Clearly Q (o) is canonical in any conceivable way.

Indeed, if one still dares in these days to use the language of category
theory, what I just did was to define a functor from the category of sym-
plectic pairs to the category of even symplectic torsors (morphisms = iso-
morphisms, in both cases). In section 1.4 we will see that this is an equivalence
of categories.
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1.4 Uniqueness of symplectic torsors. It will be shown here, that for a
given symplectic pair (J, e) there is essentially only one symplectic torsor
over it. Let (S, Q) be such an object; then there is a map

i8>0, e,

defined by the rule s |- ¢,, where g, was defined in (1.1.2). Let us prove
that f, is an isomorphism of symplectic torsors inducing the identity
idy: J — J. The formula

dets(¥) = (x+4q9) ()

is a mere restatement of condition (1.1.1), and the formula

Qeo-fs = Q

follows from the fact that (S, Q) is even and from the meaning of the
Arf invariant recalled in 0.3.

The isomorphisms f; are canonical, in the following sense. If (S, Q),
(S’, Q') are symplectic torsors over (J,e), (J',¢e), [ S — S’ is an iso-
morphism of symplectic torsors inducing an isomorphism o¢:J — J’, then
the following square commutes

S—f—> S’
fs J(fs’
¥
0,029 0y, e

Recalling the definitions, one has to check for s e S, x € J that

Q(a(x) +1(9)) + Q(f(5) = Q(x+5) + 0O ()

which is immediate from the definition of isomorphism in 1.2.

It comes out of this that for any isomorphism o:J — J’ there exists
one and only one isomorphism f: S — S’ inducing it. In particular, the
group homomorphism at the end of 1.2.

Sp (S, Q) = Sp (J, e)

is an isomorphism. A useful application of this is the following: If by some
unspecified means one is able to construct two symplectic torsors over a

pair (J,e), there is a unique isomorphism between them inducing the
identity of J.
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1.5 Some notation. a) Let J be a vector space over Z/2Z, S a J-torsor.
Let’s put
ES)=J1IS

the disjoint union of J, S; on this set there is a structure of vector space
over Z/2Z. In fact there is an exact sequence

0—>J—>E(S)—>Z/]2Z -0

where J is sent identically onto itself, and the inverse image of 0 (resp. 1)
in E(S) is J (resp. S). The addition law in £ (S) reduces to the given one
on J when both elements are in J, is the action of J on S when one element
is in J and the other in S, and finally s + s (for s, s" € S) is the unique
element x € J such that x + s = s’ (or equivalently x + s = s).

b) Given the standard pair (J,, ¢,), as in 0.5. I will write S, = Q (J,, ¢,),
Q, = Q.. Both J,, S, identify to (Z/27)*, but the following notations
will be used in compliance with tradition, where uy, ..., 4,, is the canonical
basis. An element of the form

M a

(& U;+& Ut ,)

Il

i=1

!/

&
g, & are row vectors. In particular, the addition law in E (S,) is the following:

’8> <n> e+ n
4 + / = / : l)

"8> [ 5] I:S + 17:|
14 + / = / 14
)Ll = e o
g [ 7] e + 1y
l:/] + / = < 14 /)
g '] g +n,

§ 2 FINITE GEOMETRIES ON SETS OF CHARACTERISTICS

€ € s , :
will be Written< /> or[ j|whether it is seen 1n J, or S, respectively, where
€

2.0 Let’s fix for paragraph § 2 a symplectic torsor (S, Q) over a sym-
plectic pair (J, e) of genus g. The letter X will stand for either the set S
of S 7, its cardinality is 29~ (29 + 1) (recall that according to 1.1 we assume




— 207 —

all symplectic torsors are even). We will exclude from consideration in this
section the trivial case where X has only one element. This corresponds
tog=1land 2 = S".

In this paragraph a very simple combinatorial structure will be put
on X (the finite geometry) that will allow us to reconstitute J, ), (S, 0)
from X. In particular, the symplectic group Sp (J, e) =~ Sp (S, Q) will be
interpreted as the group of automorphisms of a combinatorial structure.
Let’s denote this symplectic group by I'.

2.1 The addition in E (S) (see 1.5.a) defines a map
(2.1.1) IxY = J

(s,8) —>s + s

its image will be written ¥ + X. For any x € J, x # 0, the set of non-ordered
pairs {s, s’} such that x = s + s’ will be written X (x). Then, the following
holds:

2.1.1 PROPOSITION. One has J = X + X and | Z(x)| = 2972 (277" +1)
for any x # 0.

2.1.2 Proof. Let’s show first how the first conclusion implies the second.
As the group I' acts on both X X X and J, in a way compatible with the
map (2.1.1), and transitively on J — {0}, it is clear that | X (x) | is the same
for any x # 0, and half the cardinality of the inverse image of x by the
map (2.1.1). Because this map is surjective, and the inverse image of 0 is
the diagonal, one has

212 (1T =) =12~ 2.

Replacing the values | J| = 2%, | X | = 297! (294 1) one finds the answer.
Now, turning back to the proof that J = X + X, writing 4 = X + X,
we have that
e(x,y) =0 xed,y¢A.
Indeed, x = s + s’ for some s, s'eX, and if t = y + 5, t' =y + s/, it

must be that # ¢ X, t" ¢ X, otherwise y would belong to 4; but by definition
of a symplectic torsor

Q) +0G) +0() +Q(t) = e(x,y)

and as Q(s) = Q(s), Q(t) = Q ('), this equals 0. Finally, with the
exception of the case where X consists of only one element that was excluded
in 2.0, 4 # {0}, and the proposition follows from the lemma
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2.1.3 Lemma. If A = J contains 0 and e(x,y) = 0 for xe 4, y ¢ A,
then either 4 = {0} or 4 = J.

2.1.4 Proof of the lemma. If A # {0} and #J, there would be x # 0,
y#0 with xed, yeB=[A4. As e(x, B) =0, e(4,y) = 0, and the
form e is non degenerate, it should be

|A| <2271 || <22 L,

But | 4 | + | B| must equal 2%, and there is a contradiction.

2.2 The symplectic group I' acts on S through the identification
I' = Sp(S, Q) (1.4), and in particular I" acts on ¥ = S*. As a corollary
to 2.1, we have that the action of I' on X is faithful, i.e. that the map

I' - Aut (2)

is injective, with the trivial exception where | 2 | = 1.
This follows at once from the compatibility of the actions of I' on
2 x 2, J with the map (2.1.1).

2.3 A quartet in ¥ is a quadruple (sy, 5,, 53, 54) € 2% such that s; + s,
+ 55 + 5, = 0, where the addition is performed in E(S) (1.5.a). If
24y © 2% denotes the set of quartets, X4, has the following properties

(1) X4y is globally invariant under the permutation group in four
letters acting on 2* by coordinate exchanges.

(i) 24y < (2%)? is an equivalence relation on X2.

In fact, these two properties alone for a subset of 24 (¥ an arbitrary set)
define what naturally could be seen as the generalization of equivalence
relations, when 4-relations are considered instead of 2-relations. In this case
we have a further and very restrictive property:

(iii) The projection maps X4, — 2> are injective.

A triplet in X is a triple (sq, 5, 53) € 2> that can be completed to a
quartet, i.e. that belongs to the image of any of the projection maps in (iii)
above, or still such that s, + s, + 55 € 2. The set of triplets will be denoted
by X(3. It is clear that any of the four projection maps sets a corresponding
bijection X4y — (3.

We will also need the notion of sextet in X; these are sextuples
(S15 .-r Sg) € 2° such that s; + ... + s = 0; they constitute a set Z,.
Clearly n-ets could be defined in general but there will be no use for them,
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and even our interest for the sextets will be short-lived (see 2.5). Observe
that X, is an equivalence relation on >3 and is symmetric.
Also, for any n > 2, consider the following relation R, in 2":

(515 or Sy) Ry (24, .., 1,) if there are 7, j€ {1, ..., n} with i # j such that
s, = tif k # i, k # jand (s, 55, 15, 1) € 24y v

If R, is the equivalence relation on 2" generated by R,, two n-uples will
be said to be congruent if they are equivalent under R,. For example, the
relation R, = R, coincides with X ,,.

Observe, finally, that because of 2.1.1, any couple (resp. quadruple)
of elements of X can be completed to a triplet or a quartet (resp. to a sextet).
From this same observation, the number of elements in 23, 24), 2
can be computed

123y = 12| =277 272 1)* (271 £1)
|26 | =277+ D) (271 1),

2.4 PROPOSITION. The data of X4y, sy on X enables us to reconstitute
(J, e) and the symplectic torsor (S, Q). In particular,

J = 22,

2.4.1 Proof. It is clear by definition of X4, 24, and by proposition 2.1.1
that the maps 2 x ¥ - J, ¥ X ¥ x ¥ —» § defined by the addition in
E (S) induce identifications

J o 22X 4

S ~ 23/2(6) .

We have next to reconstitute from 24 and X,

a) The addition in J. Let x,y e J be represented respectively by the
couples (s, 8,), (s3,54). Then x + y is represented by (s;,ss), where
(515 +es S6) € (6.

b) The bilinear form e. Let x, y € J be represented respectively by the
couples (s, 5,), (53,5,) € 2% Then e(x,y) = 0 if both (s, 55, 5,) and
(52, 83, 84) belong or do not belong to X3, and e (x,y) = 1 otherwise.

¢) The action of J on S. Let xeJ, se S be represented respectively
by (51, 52) € 22, (53, 54, 55) € 2°. Then x + sis represented by (s, s, 5,) € 22,
where (s, 53, 53, 54, S6, 57) € Z( is any completion into a sextet of (s, ..., S4).

L’Enseignement mathém., t. XXII, fasc. 3-4. 14
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d) The map Q. Let se S be represented by (s, 55, 53) € 23. If X = S,
Q(s) equals 0 or 1 according to (sy, s,,s3) belongs to X, or not. If
2 = §7, the opposite is valid.

2.5 PROPOSITION. The data of Xy, X4y on the set X are equivalent,
and X, can be constructed from X .

2.5.1 Proof. 1t is clear that X3y is defined in terms of X4,. Conversely,
to define X, from X ,, one observes that (s, 55, 53, 54) € 2* is a quartet if
and only if the following holds: for any se2Z, (s, 81, 52) € 23
<> (5, 53, 84) € 23y, the proof of this fact is left as an exercise for the reader.
As for the last assertion, let’s remark first that it is trivial in the case g = 2,
2 = §7, because as [2[ = 6 there can be only one non-trivial sextet.
This exceptional case settled the following lemma—where in addition to
the assumption in 2.0 the preceding case is excluded from consideration—
shows that in the remaining cases the sextets are the sextuples congruent
(2.3) to those sextets containing a triplet. As these last ones are clearly
defined in terms of 24, the proposition is proved.

252 Lemma. If £ = S* (resp. £ = S7) any quadruple (resp. sex-
tuple) is congruent to a quadruple (resp. sextuple) containing a triplet.

2.5.3 Proof of the lemma. Let (s, ..., 5¢) € 2° be a sextuple. For any pair
(t,t’) € X2, the number of elements s € X such that (s, z, ¢') is a triplet equals
20-1 (2971 4+ 1) following 2.1.1. Thus, if

= {seZ/(s, sy, $2) € 23y}
= {se X/(s, s3, 84)62(3)}
= {s€X/(s, 55, 56) € 2(3)}

we have |T;| = N =217 x1) for i =1,2,3. It is easily seen
that 3N > | 2 [ = 2971 (294 1) and that if ¥ = S (so that + becomes +
everywhere) then 2N > | Z|. This implies that some two of the sets
T,, T,, T5 meet, and that T;, T, meet if ¥ = S* and the lemma follows.

2.6 THEOREM. The data of X4y (or X)) on X enable us to reconstitute
the whole situation: (J, e), (S, Q).

This is an immediate consequence of 2.4, 2.5. The structure X, will
be sometimes called the finite geometry on X, although I acknowledge it
is not one in the usual sense.
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2.7 COROLLARY. Let (S, Q), (S, Q') be symplectic torsors of genus g
over (J,e),(J',¢e), andlet X = S* 3" = S'*. Then, there are canonical

bijections

Isom ((J, e),(J ', e")) ~ Isom ((S,Q),(S", Q") g
~ Isom ((2, ), (27, Z,(4))) ‘

In particular, there are group isomorphisms

Sp(‘ja 6) = Sp(Sa Q) = AUt(z> 2(4)) .

§ 3 SYMPLECTIC TORSORS DEFINED BY FINITE SETS

In this paragraph, X will be a finite set.

3.1 The basic construction. Starting from X one has

A+B=AUB—-AnNnB A,Be2X

b) A map p: 2¥ - Z/2Z defined by
p(4) =[4](2) Ae2*

¢) A map e: 2% x 2¥ - Z/27Z defined by
e(A,B) = |AnB|(2) A4,Be2X
d) A map Q:2% — Z/2Z defined by
B| +1
Q(B) =L—'2~—(2> Be2?

whete 2% = p~! (1) is the set of subsets of odd order of X.

e) Amapgqg, = 2f — Z./2Z defined by

| A

go (4) = 7(2) Aer

where 2 = p~' (0).

Then, it is easily verified that

a) 2% is a vector space over Z/2Z, of dimension | X l
f) p is linear |

v) e is bilinear

a) The set 2% of subsets of X, with the operation of symmetric difference:

B e o O —— -
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d) Q has the following property (compare 1.1.1)
QB) +Q(A+B) +Q(A"+B) + Q(A+A"+B) = e(A4,A4")

whenever Be 2%, 4, 4’ € Zf
€) q,1s a quadratic form inducing the restriction of e to 2 f .

In the proof of these, one uses the following identity
|A+B| =|4|+|B|—=2|AnB| A,Be2*.

3.2 Let’s assume in the following three sections that X is of odd order,
| X| =29 + L.

3.2.1 PROPOSITION. The bilinear form e on 2 f is alternate and non-
degenerate. If Zf acts on 2% by translations, (2%, Q) is a symplectic
torsor over (Zf, e) which is even for g = 2,3 (4) and odd for g == 0, 1 (4).

3.2.2 Proof. It is clear that e is alternate on 2 f It is also non degenerate,
because if A4 er, A # ¢, let xe A; then A" = (X—A) U {x} is of even
order, and e (4, A") = 1. It is also clear that (2%, Q) is a symplectic torsor
over (2 f, e) (because of 3.1 ¢) and the definition of symplectic torsor.

To find out when this torsor is even or odd, we first observe that it is
clearly odd for g = 0, 1 (look at it), then apply descending induction using
the following fact (to be proved below). Let’s call ¢, the type of the torsor
corresponding to an X with | Xl =29 + 1 (and g > 2), thus ¢, = +1;
then e, = ¢,_; if g is odd, and ¢, = —¢,_; if g is even.

Proof of this fact: take a fixed 4, = X of order two. The set of Be2*
such that Q (B) = Q(4,+B) = 0 (recall that Q (B) = 0 means that
| B| = 1(4)) has cardinality 27~ " (29~ " +¢,) by definition of ¢, and prop-
osition 2.1.1. But clearly this number is also twice the cardinality of the
set of subsets C of X — A, such that | C| = 2g — 1 (4) (in fact any such B
defines a C by C = X — (4, uUB) and this map is two-fold) and the number
of these is 2972 (29" '+¢,_,) or 2972 (2" ' —¢,_,) according to 2g — 1
=1@4) or 2g — 1=13(4), i.e. g odd or even. This proves the fact and
completes the proof of the proposition.

3.3 If Q is odd, let us agree to modify Q in the way described in 1.1 to
obtain an even torsor 0. With this convention, the following notation will
be adopted:

Jxy =27 ex=c¢e
Sx = 2i( Qx =0

or O according to the value of g mod 4.
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The identification S, ~ QO (Jy, ex) in 1.4 may be made explicit: if
B e Sy, B becomes the following quadratic form

| A |
B(A) = |AnB| +-—=-(2).

Let’s now make explicit the condition for a triple (By, B,, B;) of elements
of either S ¥ or S% to be a triplet (2.3). This means that

QX(ZBi) =2 QX (Bi) >
and this is equivalent to
Z |B;nB;| =1(2),
i<j
or still to
lUB | =[nB[(2).

3.4 The quadratic form g, on Jy singled out in 3.1 e) corresponds through
the identification Q (Jy, eyx) = Sy to X itself. As Q(X)=g + 1(2), it
results from the last part of 3.2.1 that the Arf invariant of ¢, is O for

= 0,3(4), 1 for g =1, 2 (4). In other words, g, S% for g = 0, 3 (4),
g, €Sy forg=1,2(4).

3.5 Let’s assume in this and the next sections that X is of even order,
| X| = 2g + 2. Then, the linear map p passes to the quotient 2¥ / {0, X}.
This quotient identifies naturally with the set of partitions of X into two
subsets, and will be denoted P, (X). If p: P, (X) —» Z/2Z still denotes the
induced map, we will write

P;(X) = p~(0)
P;(X) =pt(1).
With respect to the bilinear form e, X is orthogonal to 2 f , then inducing
an alternate bilinear form, still denoted by e, on P3 (X). This form is non-

degenerate. To prove this, observe that if 4 €2, 4 different from @ and X,
and xe€ 4, x" ¢ A; then, if 4" = {x, x'},e(4, 4") = 1.

3.6 Two cases may appear in this situation.

a) g is even. Then, the map Q:2% - Z/2Z passes to the quotient
P, (X), so this becomes a symplectic torsor over (P;L (X), e). But in this
case the canonical quadratic form g, does not pass to the quotient P (X).

b) g is odd. Then, the map Q does not pass to the quotient, but g, does,
so there is a natural characteristic.
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3.7 The following construction would help in developing the case where
| X'| is even along the lines of 3.2-3.5, which I won’t do. Let X be of odd
order | X| = 2g + 1, and define X’ = XII{X}, thus | X' | =29 +2.
We have a natural linear map

2X — 2X/

and this is compatible with p, e, Q, ¢,. Composing this with the passage
to the quotient, I have a linear isomorphism

2X — PZ (X ,) s
and by compatibility with p, p’, isomorphisms

27 > P3(X")

2¥ 5 PL(X).

The first is compatible with e, ¢/, and with the canonical quadratic forms
if g is odd. The second is compatible with Q, Q' if g is even.

§ 4 BASIS AND FUNDAMENTAL SETS

4.1 Normal basis. Let (J, e) be a symplectic pair. A normal basis for
(/, e) 1s a basis (x;),r for J with the property that e (x;, x;) = 1 for i # j,
the set of ordered normal basis (i.e. for I = {1, ..., 2g} if 2¢g = dim J)
will be denoted ONB (J, e). The symplectic group Sp (J, e) clearly acts on
ONB (J, e) and it does it simply transitively, because if two ordered normal
bases for (J, e) are given, the unique linear automorphism transforming
one into the other is obviously symplectic.

I have not yet shown that the set ONB (J, e) is non-empty, this we will
see as a consequence of the following construction, that relates symplectic
basis (0.1) with normal basis. The set SB (J, e) of symplectic basis is a torsor
over Sp (J, e), thus if ONB (J, e) is non-empty, both torsors should be
isomorphic and indeed there would be as many isomorphisms as elements
in the group Sp (J, ¢). What 1 proceed to exhibit now is a definite iso-
morphism

a:SB(J,e) > ONB(J, e)
with inverse f. If

xeSB(J,e),x = (x4, ...,xg,xi, ...,x;)

let’s put y = « (x), then by definition
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y2k—1 - xl + XL + xk + x; + o + x,;_l
y2k =x1+...+xk_1 +x;+..+x; k - 1,...,9.

As for the inverse, if y € ONB (J, e), and x = B (), then one gets from the
definition of «

Xp = Y1 + oo + Vor—2 + Yar—1
Xp = V1 + o V2 v k=1,..9.

It is clear from this definition that « is compatible with the actions
of Sp (J, e) on both sets.

4.2 Azygetic sets. Let (S, Q) be a symplectic torsor over a symplectic
pair (J, e). A subset 4 = S is azygetic if for any three different elements
Si, 85,53 € A one has Q(s;) + Q(sy) + Q(s3) + Q(sy+s,+s3) =1, or
equivalently if e (s;,+5,, 5; +53) = 1. A is homogeneous if Q is constant on
it, i.e. if either A = S* or 4 = S~. And the subset A4 is linearly independent
if for some (or equivalently, for any) s € 4, the subset s + (A—{s}) = J is
linearly independent, or equivalently if 4 + A spans a subspace of J of
dimension | 4 | — 1.

Let A be an azygetic subset, se 4, and let B = s + (A—{s}), T will

show that the only possible linear relation on B is X x = 0. Indeed,
XeB

if ¥ A.x = 0 is such a relation, for any y € B, one has

0=ce(y,YAx) = Ae(y,x) = ) A

xeB
X Fy

S A, =0

x#y
Adding these equations for any y, )y’ € B, one concludes that 4, = 4,
which was to be shown. As a consequence of this, it follows that any azy-
getic subset of odd order is linearly independent, and that an azygetic
subset has at most 2g + 2 elements. It is easy to verify that if 4 is an
azygetic subset of odd order and if s = X 7, AU {s} is still azygetic.

ted
4.3 Basis for symplectic torsors. A basis for a symplectic torsor (S, Q)

over (J, e) is a maximal homogeneous, linearly independent, azygetic subset
of S. A basis has exactly 2g + 1 elements, where g is the genus of (S, Q).
This comes from the fact that any symplectic torsor is isomorphic to one
of the form (S, Q) constructed in § 3 because of the uniqueness result in
1.4, that for Sy, X < Sy is clearly a basis with 2g + 1 elements, and that
a linearly independent subset can have at most 2g + 1 elements.
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The set of ordered basis for (S, Q) will be denoted by OB (S, Q), the
group Sp (S, Q) acts on it.

The following construction is fundamental. Let X < S be a basis, we
have then a map

Fy: 2% 5 E(S)
(cf. 1.5.a) for the definition of E (S)), defined by

sed
It is clear that Fy is a group homomorphism, that sends subsets of X
of even (resp. odd) order into J (resp. S), thereby inducing a linear homo-
morphism
ox: 2% = J

and a map compatible with the respective group actions
fx:2¥ 58S,

To proceed further, let’s choose a total order on X, X = {s,, ..., 55,}.
Then, the X; = {s,, s;} (resp. x; = s, + 5;) for i = 1, ..., 2g constitute an
ordered normal basis for 2 f (resp. J), and as o4 (X;) = x; we have that oy
18 a symplectic isomorphism. It follows that f, is a bijection, and indeed f,
defines an isomorphism of symplectic torsors between (Sy, Q) and (S, Q).

To see this, we have to prove that if 4, A" = Xaresuchthat| 4 | = | 4’| (4),
then
(2 s)=2() s).
seA sed’

We know that Q is constant on X, and the condition on X of being azygetic
means that for any three different s, 5,, 53 € X, Q (s; +5, +s55) is different
from the value of Q on X. From this remark, the fact to be proved follows
easily by induction and using the defining property (1.1.1) of symplectic
torsors. For example, if | A | = 5, and we order 4 = {sy, ..., 55}, we have

Q(Zs) +Q(s1) = Q(sy+5;+53) + Q(s1+54+55)
because e (s, +53, 54 +55) = 0, thus

Q(s1) = Q(Zs).

Summing up: starting from a basis X < S, one gets an isomorphism
of symplectic pairs
Ox- (JX: eX) -—A—J)(J9 e)
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underlying an isomorphism of symplectic torsors

fx:(Sx, 0x) =(S,0).
As a consequence of this, we have that a basis 18 necessarily contained
in St forg=20,1(4), in S~ for g = 2,3 (4) (cf. 3.2.1).

4.4 PROPOSITION. The set OB (S, Q) of ordered basis for a symplectic
torsor (S, Q) is a torsor over the group Sp (S, Q). Moreover, the map

OB(S,Q) - ONB(J,e)
defined by

(8)0—iz2g > (S0 + )1 ziz2g
is an isomorphism of torsors over Sp (S, Q) ~ Sp (J, e).

4.4.1 Proof. The map defined above is clearly compatible with the
actions of Sp (S, Q), Sp (J, ¢) and the isomorphism between these groups
described in 1.4. To prove the proposition, it is enough to show that this
map is bijective. As OB (S, Q) is non-empty and ONB (J, e) is a torsor,
this map is onto. It is injective too, because starting from the x; = 5, + s;
I can recover the s; in the followingway. If s = X s;, by the identification

0=i=2g
S ~ Q(J,e) in 1.5, s corresponds to the unique quadratic form ¢, on J
whose value on each of the x; is 1 as it can be easily seen, thus s can be
defined in terms of the x;; but then

s; =5+ Y x;(0<<i<<2g,1<j<2g).
i7i

4.5 Fundamental sets. A fundamental set for a symplectic torsor (S, Q) is
a maximal azygetic subset F < S. Any basis X for S defines a fundamental

set, it suffices to put Fy = X U {sy}, where sy = X s. Also, if F is a
se X

fundamental set and if x e J, x + Fis a fundamental set too, as it is easily
seen. In fact, for any fundamental set F, there exists a basis X and an
x €J such that F = x + Fy. Let F = {t,, ..., t,,+1} be an ordering of F,
it is clear that if

x; =ty +(1<i<<2g+1),

the x; for 1 << i < 2¢g constitute a normal basis for J, thus there exists a
unique ordered basis X = {s,, ..., 5,,} for S such that x; = s, + 5, (4.4).
Then, if x = s, +1¢, we have #; = x + sy, because Xf;, = 0 and
Sy = X 8.

Observe that a fundamental set arising from a basis is homogeneous
iff g is even. Indeed, it is homogeneous iff 2g + 1 = 1 (4), i.e. iff g is even.
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It follows from the last part of prop. 3.2.1 that, in this case, the number of
odd characteristics in the fundamental sets is congruent to g mod 4. We
will see that this is a general fact.

4.5.1 PROPOSITION. Let O (F) be the number of odd characteristics in
a fundamental set F. Then O (F)= g (4). Conversely, for any [== g (4),
and | < 2g + 2, there are fundamental sets F with O (F) = L

4.5.2 Proof. We may safely restrict ourselves to the case where the
symplectic torsor is Sy with its standard basis X, and F = {4} + (X u {X})
where 4 = X is of even order | A4 | = 2k (cf. 4.3). Then, in F there are
2k characteristics corresponding to subsets of X with 2k — 1 elements,
2(g—k) + 1 characteristics with 2k + 1 elements, and 1 characteristic
with 2(g—k) + 1 elements, namely the ones obtained adding A4 to
respectively the characteristics of the form {s} (sed), {s} (s¢A4), X. When g
is even the second and third types have the same parity; when g is odd the
first and third types have the same parity. From these remarks, it is easy to
see that the number of elements of the same parity in F and X U {X} are
congruent mod 4, and that with this only restriction, this number can be
arbitrary for F by conveniently choosing 4. The proposition follows from
this and from what was said just before its statement.

4.5.3 In Coble [1], additional material on fundamental sets may be
found.
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