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NOTE SUR LE THÉORÈME DES TROIS CARRÉS

par A. R. Rajwade

Le théorème des trois carrés, de Gauss, dit qu'un entier positif m peut
être représenté par une somme de trois carrés entiers si et seulement si m

est de la forme m 2an, avec a et n entiers, n impair et n 7 (mod 8).

Fein, Gordon et Smith [1] ont démontré que ce sont les mêmes entiers m

pour lesquels — 1 peut être représenté par une somme de deux carrés dans

le corps Q (y/ — m). Risman [3] a remarqué que l'un de ces théorèmes peut
se déduire de l'autre. Nous allons établir ce même fait plus simplement
en donnant une démonstration tout à fait élémentaire du théorème suivant :

Théorème (voir [2]). Soit m un entier positif. Pour que — 1 soit somme

de deux carrés dans Q {yj — m), il faut et il suffit que m soit somme de trois
carrés entiers.

Notons d'abord que si — 1 est somme de 3 carrés dans un corps, — 1

est somme de 2 carrés dans le même corps. Car si —1 x2 + y2 + z2,

comme (xz+y)2 + (yz~x)2 (x2+y2) (1+z2) — (v2 + j/2)2, on a

x2+y2J \x2+y2

D'autre part, si m — a2 + b2 + c2, a, b, et c étant entiers,

,_i-^2 + ' y +
171/ \y/ — m) \\/"~m

est bien somme de trois carrés dans Q (v/ - m), et la suffisance de la condition
est établie.

Pour établir sa nécessité, supposons que -1 soit somme de 2 carrés

dans Q(y/-m), -1 a2 + ß2, avec a a + by/-m, ß c + dy/~m,
a, b, c et d étant rationnels. Nous montrerons d'abord que m est alors
somme de trois carrés dans Q. En égalant parties réelles et imaginaires,
on a

a2 + c2 - m (b2 + d2) - 1 et ab + cd 0
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Si b — 0, alors <7 =£ 0, c 0 et û2 - md2 — 1 d'où

De même si d 0, on a

Enfin, si bd # 0, on a

d'où

m

m

/a\2 m2
-- + Ih\d) \dj

/c\2 m2
r + I -\b) \b

a c

d " b

a2 c2 a2 + c2

d2 + b2

et
a2 + c2 1 c2 1 t'c\

m — T~ö To + TV TV 7i +
£>2 + ù2 Z?2 + d2 b2 b2 + d2

' b \2 i d
+

~Q

b +d / \b + d'

Pour être complet, montrons encore (d'après Serre [4], où l'on trouvera
aussi une démonstration complète du théorème des trois carrés) que, si m
est somme de trois carrés dans Q, m est somme de trois carrés dans Z.

Il s'agit de prouver que si la sphère de centre 0 et de rayon y/m dans R3

contient un point rationnel, elle contient aussi un point entier. Soit ^ un
point rationnel sur cette sphère et t le plus petit entier positif tel que tÇ

soit un point entier. Il suffira de montrer que si t > l il existe sur cette

sphère un autre point rationnel et un entier positif t' < t tels que t'Ç
soit un point entier: notre assertion s'en déduit immédiatement. Soit alors y
un point entier de R? dont la distance à £ soit minimum, en sorte que
| y — £ |2 < 3/4 < l. La droite passant par y et £ recoupe la sphère en un
autre point rationnel £' et l'on a

— y 2(£ —y) avec X e R

D'autre part, on sait que la valeur du produit scalaire (£r-y). (£-y)
(« puissance de y par rapport à la sphère ») ne change pas si l'on déplace £

sur la sphère. En l'amenant sur la droite passant pas y et 0, on obtient

Or-n -(Z-y) i\y\-\//)-(\ym
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d'où
y y — m

Â(ç-j') • (£-}') y. y - m et Ç' -
En multipliant cette dernière relation par

t' t(£-y).(Ç-y) tç.Ç-2tç.y + ty.y,
qui est entier, vu que | c m, t, tl et y sont entiers, on voit que t'Ç est

entier, et t' < t puisque (ç~y). (C~>') | y ~ £ |2 < 1, ce qui achève

la démonstration.
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