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§5. EXAMPLES

Given an elliptic curve E in the form of a minimal model (1.1) or (1.2),
one computes the bad primes by finding the prime divisors of the dis-
criminant 4. We can then apply the methods of the preceding sections to
determine f, and hence the type of reduction.

Example 5.1. Let E be given by Y2 = X? + X + 1. This equation is
minimal. The discriminant is 4 = —16 (31), so E has bad reduction at
p=2andp =31.Forp =2, C,_,=C;=a;=0s0we have additive
reduction at p = 2. For p = 31, we can apply Theorem 4.3 and Cor-

—2AB -2 . ,
ollary 44.f, = ( ) = <—31—> = —1, so that E has non-split multi-
p

plicative reduction at p = 31. Alternatively, one may use Deuring’s formula
to compute C,_;. A third possibility, of course, is to factor X° + X + 1
over Z/31Z and then analyse (4.14). ¢, = —48.

Example 5.2. Let E be given by Y? = X? + X — 1. The equation is

minimal and 4 = —16 (31). We have additive reduction at p = 2 since
—2AB 2
Cpo1 =Cy =a; =0, Forp =311, = =\37 = 1, so that
p
E has split multiplicative reduction at p = 31. ¢, = —48.

Remark. Comparing examples 5.1 and 5.2, one sees that ¢, is the same
in both cases. However, 5.1. exhibits non-split multiplicative reduction at
p = 31, while 5.2 exhibits split multiplicative reduction at the same prime.

Example 5.3. Let E be given by Y? = X® + 7X + 5. The equation is
minimal and 4 = —16 (23) (89). E has bad reduction at p = 2, 23, and 89.
For p =2, C,_y = Cy = a; =0, so we have additive reduction at

—2AB —70 —1
= 2. For p = 23, we have f, = ={—)=|—]=—1,
p p I ( 2 > < 23 ) <23) SO

that E has non-split multiplicative reduction at p = 23. For p = 89, we

—2AB 19
have f, = ( 5 ) = (@> = —1, so that E has non-split multiplicative

reduction at p = 89 as well.

P am—
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Remark. The computation of the Legendre symbol is much easier to
carry out in practice than either the computation of C,_; via Deuring’s
formula or by searching for roots of the polynomial X3 + 4X + B.
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