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(3) E has split multiplicative reduction at 3 < ai + a, = 1 (mod 3).
(4) E has non-split multiplicative reduction at 3 < a7 + a, = —1 (mod 3).

Proof:
¢, =h3 — 24b, =b3 =(ai +4a,)*=(a] +a,)* (mod 3).
The theorem then follows immediately from formula (3.1) and Corollary 1.2.

Remark. C3 = ¢, (mod 3). Note that C, = a7 + a, is a more sensitive
invariant than ¢, in that the residue class of C, modulo 3 allows us to dis-
tinguish between split and non-split multiplicative reduction, while ¢, does
not allow us to separate these two possibilities.

§4. THE CASE p > 5

Assume p > 5. Then there exists a minimal Weierstrass equation for E
at p of the form

(4.1) Y? = X® 4+ AX +B

with 4, B € Z. The coefficient C,_; modulo p is given by Deuring’s classical
formula [1]
4.2) C = P A"B"  (mod p)
ke rmh antsiepi! B (P—h—i)! b
where P = (1/2) (p—1).

Let S = (x,y) be the singular point on the reduced curve with
x, y € Z/pZ. The tangents at S are given by a quadratic polynomial R (T')
as follows: Transform the curve by X —» (X+x), Y - (Y+y) so that the
singularity is now at (0, 0). The tangents are given by a homogeneous form
of degree 2 in X and Y which we can consider as a quadratic polynomial

R(T) with T = Y/X. Let D be the discriminant of R (T), and let <—-)
P

denote the Legendre symbol with respect to p. We have the following
results directly from the definitions.

ProPoOSITION 4.1. Assume E has bad reduction at p.
(1) E has additive reduction at p < f, = 0 < S is a cusp < R(T) has

, D
two identical roots over Z/pZ < D = 0 < <—) = 0.
p
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(2) E has split multiplicative reduction at p <> f, = 1 < § is a node with
rational tangents <> R(7T) has two distinct roots rational over

D
Z./pZ. < () = 1.
P

(3) E has non-split multiplicative reduction at p < f, = —1 < S'is a node
with irrational tangents <> R (7) has two distinct roots not rational

D
over Z/pZ, < <—> = —1.
p

D
COROLLARY 4.2. f,, = (—) .
D

In this case, H reduces to
(4.3) H=Y?>—-X3—AX — B

Then we have

(4.4) OH/0X = —3X? - 4
(4.5) OH|0Y = 2Y
From (4.5) we must have y = 0. From (4.4) we must have x* = —4/3

in Z/pZ, so that — A4/3 is either a quadratic residue modulo p or 0 modulo p.
Note that x = 0« 4 = 0 (mod p). Let X3 + AX + B= (X—a,)
(X—a,) (X—a3) be a factorization over Z/pZ. At least two of a,, oy, o5
must coincide with x, let us say x = a«, = «5. Then

(4.6) X° + AX + B = X* + (—o; —20,) X% + Qoyo, +02) X — a0

Thus comparing coefficients, we have

(4.7) 0 = —a; — 20,

(4.8) A = 20,0, + o3

(4.9) B = —a,02

Hence

(4.10) oy = —20a,

(4.11) A = 2005 + a5 = —3a% = —3x?

(4.12) B = —oj05 = 205 = 2x3
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From (4.12) we see that B/2 is either a cubic residue modulo p or 0 modulo p.
Note that x = 0 <« B = 0 (mod p) from (4.12).

Transform the curve by X — (X+a,), Y —» Y so that the singular
point S = (x,y) = (x,0) = («,, 0) goes to (0, 0). We obtain

The tangents to (0, 0) on the transformed curve are given by

(4.14) Y2 — 30,X% = 0

so that the polynomial R(7)is R(T) = T* — 3u,. D = 120, = 12x.
¢, = b; —24b, = (a}+4a,)* — 24(a a5 +2a,) = —484 .

Since

Xx =0<A4A=0(modp), D=0<A4=0

and so the invariant ¢, is enough to distinguish between additive and
multiplicative reduction. However, as we shall see below it does not separate
split and non-split multiplicative reduction.

THEOREM 4.3. Assume that £ has bad reduction at p.
(1) E has additive reduction at p< 4 = 0 (mod p) < B = 0 (mod p)

<—2AB>
< | - =0
4

—2AB
(2) E has split multiplicative reduction at p < < > = 1

P

—2AB
(3) E has non-split multiplicative reduction at p < < > = —1.
P

Proof: (1) We have seen that A =0(modp)<=x=0<8B
= 0 (mod p). E has additive reduction at p< D = 12x = 0<x =0

—2AB
©AEBEO(mOdp)©< >=O
P

(2) and (3). Assume £ has multiplicative reduction at p. Then 3a, # 0.
From (4.14) we see that E has split multiplicative reduction at p < 3o, is
a square in Z/pZ. From formulas (4.11) and (4.12) we have that 3«,
= (—9/2) B/A. Thus 3, is a square < (—9/2) B/A is a square modulo p

: —2AB
< —2AB is a square modulo p < (———) = 1,
p

—2AB
COROLLARY 4.4. f, = :
p
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