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(3) E has split multiplicative reduction at 3 «> + a2 1 (mod 3).

(4) E has non-split multiplicative reduction at 3 o a? + a2 — 1 (mod 3).

Proof:

c4 =bl —24b4 =b\=(a\ + 4af)2 (a\ + a2)2 (mod 3).

The theorem then follows immediately from formula (3.1) and Corollary 1.2.

Remark. C\ c4 (mod 3). Note that C2 a\ + a2 is a more sensitive
invariant than c4 in that the residue class of C2 modulo 3 allows us to
distinguish between split and non-split multiplicative reduction, while c4 does

not allow us to separate these two possibilities.

Assume p > 5. Then there exists a minimal Weierstrass equation for E
at p of the form

with A, B eZ. The coefficient C^_ 1 modulo p is given by Deuring's classical

formula [1]

where P (1/2) (p~l).
Let S (x, y) be the singular point on the reduced curve with

x,ye ZjpZ. The tangents at S are given by a quadratic polynomial R (T)
as follows: Transform the curve by X -» (X+x), Y -» Y+y) so that the

singularity is now at (0, 0). The tangents are given by a homogeneous form
of degree 2 in X and Y which we can consider as a quadratic polynomial

R (T) with T F/X. Let D be the discriminant of R (T), and let

denote the Legendre symbol with respect to p. We have the following
results directly from the definitions.

Proposition 4.1. Assume E has bad reduction at p.

(1) E has additive reduction at p ofp 0 o S is a cusp <=> R (T) has

§4. The case p > 5

(4.1) Y2 X3 + AX + B

AhBl (mod p)

two identical roots over Z/pZ o D 0 o 0.



(2) E has split multiplicative reduction at p <>fp 1 o S is a node with
rational tangents <=> R (T) has two distinct roots rational over

Z/pZo^j1.

(3) E has non-split multiplicative reduction at p o fp — 1 o S is a node

with irrational tangents o R (T) has two distinct roots not rational

over Z/pZ <=> ^ — 1.

Corollary 4.2. f„ (—)
KP/

In this case, H reduces to

(4.3) H Y2 - X3 - ÂX - B

Then we have

(4.4) ÔH/dX -3X2 - A

(4.5) ÔH/ÔY 2 Y

From (4.5) we must have y 0. From (4.4) we must have x2 -A/3
in Z/pZ, so that — A/3 is either a quadratic residue modulo p or 0 modulo p.
Note that x 0 A 0 (mod p). Let X3 + AX + B (X-oq)
(X-a2) (X-a3) be a factorization over Z//?Z. At least two of al9 a2, a3
must coincide with x, let us say x a2 a3. Then

(4.6) X3 + y4X + 5 X3 + — oq — 2a2) X2 + (2oqcq + a2)X — oqa2

Thus comparing coefficients, we have

(4.7) 0 — oq — 2a2

(4.8) qL 2oqa2 + a2

(4.9) 5 -oqa2

Hence

(4.10) oq — 2a2

(4.11) A 2 oqa2 + a2 — 3a2 — 3x2

(4.12) B — oqa2 2a2 2x3
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From (4.12) we see that B/2 is either a cubic residue modulo p or 0 modulo p.
Note that x 0 <=> B m 0 (mod p) from (4.12).

Transform the curve by X-»(X+a2), Y -» Y so that the singular
point S (x, y) (x, 0) (a2, 0) goes to (0, 0). We obtain

(4.13) 72 - (X + a2)3 - A(X + a2) - B Y2 - X3 - 3a2X2

The tangents to (0, 0) on the transformed curve are given by

(4.14) Y2 - 3ol2X2 0

so that the polynomial R (T) is R (T) T2 - 3a2. D 12a2 12x.

c4 ^2 —24ö4 (a2+4a2)2 — 24 (a1a3 + 2a4) —48A.
Since

x 0 o A 0 (mod p), D 0 o A 0

and so the invariant c4 is enough to distinguish between additive and

multiplicative reduction. However, as we shall see below it does not separate
split and non-split multiplicative reduction.

Theorem 4.3. Assume that E has bad reduction at p.
(1) F has additive reduction at p o A 0 (mod p) o B 0 (mod p)

-2AB\
0.

P
(—2AB\

(2) E has split multiplicative reduction at p o[ 1.
P 'J
I-2AB\

(3) E has non-split multiplicative reduction at p o\ — 1.

\ P J

Proof: (1) We have seen that A 0 (mod p) o x 0 o B
0 (mod p). E has additive reduction at p <^> D 12x 0 o x 0

(-2AB\o A B 0 (mod p) o J 0.

(2) and (3). Assume E has multiplicative reduction at p. Then 3a2 ^ 0.

From (4.14) we see that E has split multiplicative reduction at p <=> 3a2 is

a square in Z/pZ. From formulas (4.11) and (4.12) we have that 3a2

(-9/2) B/A. Thus 3a2 is a square o (-9/2) B/A is a square modulo p
f-2AB\o - 2AB is a square modulo p o 1=1.
V P J

!-2AB
Corollary 4.4. f
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