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expansion. Let œ be the canonical invariant differential on E and write
GO

œjdZ Yj Q It is an immediate consequence of Honda's theorem
i 0

that fp Cp_t (mod /?).

Corollary 1.2. Let E be an elliptic curve, and assume that E has bad
reduction at a prime p. Then

(1) Cp^1 0, 1, -1 (mod/?).

(2) F has additive reduction at p < > Cp_1 0 (mod /?).

(3) For p > 2, E has split multiplicative reduction at p < > Cp_x
1 (mod p).

(4) For p > 2, E has non-split multiplicative reduction at p < > Cp_x
— 1 (mod p).

Proof : Since Cp^1 fp (mod /?) and fp 0, 1, or —1, the congruence
class of Cp_ i modulo /? determines the reduction type uniquely as indicated
except for p 2.

From now on we shall assume that all curves and points are defined over
Q, and that all Weierstrass equations are minimal. We wish to derive some

simple arithmetical criteria for determining which of the three types of
reduction occurs at a given prime p where E has bad reduction. From now
on we shall assume that E has bad reduction at the prime p under discussion.

§2. The case p 2

For a curve given in the form (1.2), we have

(2.1) m dX l(2Y + afX + a3)

Expressing X and Y in terms of Z and computing (cf. Tate [5] for the

details), one obtains

(2.2) C± ax

Theorem 2.1. Assume E has bad reduction at 2.

(1) E has additive reduction at 2 < > a± 0 (mod 2) < > c4

0 (mod 2).

(2) E has split multiplicative reduction at 2 < > a1 1 (mod 2)

and a2 + a2 '= 0 (mod 2).



(3) E has non-split multiplicative reduction at2< — >«i l (mod 2)

and a2 + a3 1 (mod 2).

Proof : (1). c4 b\ — 2Ab4 bl b2 af + 4a2 5 ûi E ßi
Cx (mod 2). Now apply Corollary 1.2, part (2).

(2) and (3). By Corollary 1.2, part (2), we have multiplicative reduction

< > a1 1 (mod 2). Assume that this is so. Let S (x, y) be the

singular point. Let

(2.3) H Y2 + axXY + a3Y - X3 - a2X2 - a4X - a6

Compute in Z/2Z for the remainder of the proof.

dH
(2.4) — a±Y - 3X2 - 2a2X - a4 Y + X2 + a4K J dX

1

dH
(2.5) -— 27 + a±X + a3 X + a3v ' ÔY 13
x a3 from (2.5) and y x2 + a4 x + a4 — a3 + a4 from (2.4).

Transform S to (0, 0) via X -+ X + a3 and Y -> Y + a3 + a4. We obtain

H (Y+a3+a4)2 + aL (X + a3) (Y+a3 +a4) + a3 (Y+a3 +a4)

- (X + a3)3 - a2 (X + a3)2 - a4(X + a3) - a6

Y2 + X7+ X3 + (a2+a3)X2

The tangents at (0, 0) are given by Y2 + XY + (a2 + a3) X2 0. E has

split multiplicative reduction at 2 < > this form is reducible over

Z/2Z < > a2 + a3 0 (mod 2).

§3. The case p 3

As in §2, a short computation (again see Tate [5] for the details) yields

(3.1) C2 a2 + u2

Theorem 3.1. Assume E has bad reduction at 3.

(1) E has additive reduction at 3 <=> a\ + a2 0 (mod 3). <=> c4

~ 0 (mod 3).

(2) E has multiplicative reduction at 3 <=> al + a2 ^ 0 (mod 3) <^> c4

^ 0 (mod 3).
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