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A SIMPLE FORMULA
CONCERNING MULTIPLICATIVE REDUCTION
OF ELLIPTIC CURVES

by Loren D. OLSON

The purpose of this note is to show how the coefficients of the canonical
invariant differential on an elliptic curve £ defined over the field Q of
rational numbers may be used to determine the type of reduction at a
prime p where E has bad reduction. Simple and explicit formulas for the
coefficients at these primes are obtained. This yields an easy method for
calculating the local L-functions at the bad primes. To do this we use a
theorem of Honda [2, 3] which says that the formal group F of the curve E
is strongly isomorphic over Z to the formal group G associated to the global
L-series of E. We then proceed to analyse the singularity of the reduced
curve and obtain the desired formulas. In particular, let £ be given by an
affine equation Y? = X° + 4X + B with 4, Be Z, which is minimal at a
prime p > 5 where E has bad reduction. If L, (s) = (1—f,p~°)"" is the

—2AB
local L-function at p, then f, = < ) where <—> denotes the Legendre
p p

symbol at p. Formulas are given for p = 2 and p = 3 as well.

§1. INTRODUCTION

Let K be a field and let E be an elliptic curve defined over X, i.e. a non-
singular projective curve of genus one defined over K together with a
K-rational point e on E which acts as the identity element for the group
law on E. Any such elliptic curve is isomorphic over K to an elliptic curve
in the projective plane P? defined by the equation

(1.1) Y’ Z + a,XYZ + a3 YZ* = X° +a,X*Z + a,XZ? + a, Z>
with a; € K. The corresponding affine equation is
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(1.2) Y P+ a XY 4 ayY =X 4 a, X2 +a X +oag

The K-rational point e = (0, 1, 0) is the identity element on this curve.
From now on we shall assume that £ is given by an equation of this form.
Such an equation is called a Weierstrass equation for E. Given such an
equation, it is usual to define the following invariants:

b, = a? + 4a,, by = a;a;y + 2a,, be = a; + 4ag,
bg = byas — ajasa, + a,as — ai, c, = b — 24b,,
¢s6 = — by + 36b,b, — 216 b, ,
and
A = —b5bg — 8b; —27b% + 9b,b, b .

We note that b, and b, correspond to Neron’s @ and B [4, p. 450]. 4 is the
discriminant. In general if we are given a curve defined by an equation of
the form (1.1) or (1.2), it will have a singular point if and only if 4 = 0.

Suppose now that v is a discrete valuation on K normalized so that
v(K*) =Z. Let R = {yeK|v(y) >0} be its valuation ring,
M = {y e K|v(y) >0} its maximal ideal, and k = R/M the residue
class field. Under the circumstances we may always assume that the co-
efficients a; are actually in R. Among all Weierstrass equations with g; € R,
one for which v (4) is minimal is called a minimal Weierstrass equation for
E. By taking the residue classes of the a; in k, we obtain from a minimal
Weierstrass equation a curve defined over k, the reduction of E at v. If the
reduction does not have singularities (i.e. v (4) = 0), then the reduced
curve is an elliptic curve and E is said to have good reduction. If the reduction
has a singularity (it can have at most one such), then E is said to have bad
reduction. The singularity may be either a cusp or a node. If the singularity
is a cusp, E is said to have additive reduction. If the singularity is a node and
the two tangents are rational over k, then E has split multiplicative reduction.
If the singularity is a node and the two tangents are not rational over k,
then E has non-split multiplicative reduction.

Suppose now that K = Q. Each prime p induces a discrete valuation.
Since Z is a principal ideal domain, it is possible to find a Weierstrass
equation which is simultaneously minimal at all primes p, a global minimal
Weierstrass equation. The primes where £ has bad reduction are precisely
those which divide 4. For each prime p we define an integer f, as follows:
f, = 0 if E has additive reduction at p, f, = 1 if E has split multiplicative
reduction at p, and f, = —1 if E has non-split multiplicative reduction
at p. If E has good reduction at p, let N, denote the number of Z/pZ-rational
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points of the reduced curve and let f, =1+ p — N, f, is the trace
of Frobenius at p. The local L-function L,(s) of E at p is defined as
L,(s) = (1—f,p~5+p'~?)7" if E has good reduction at p, and
L,(s) = (1=f,p~) " if E has bad reduction at p. The global L-function
of Eis L(s) = [[ L, (5). o

p

If R is a commutative ring, then a (one-dimensional) formal group
over R is a formal power series F (X, ¥Y) e R[[X, Y]] in two variables such
that F(X,0) =X, F(0,Y) =Y, and F(F(X, Y), Z) = F(X, F(Y, 2)).
Given the global L-function L (s) of an elliptic curve defined over Q, write
L(s)= )Y a,m 5 If we set g(X) = ) (a,/m)X™and let G(X,Y)

m=1

m=1

=g ' (9 (X) + g (Y)), then it can be shown that G is a formal group
over Z, the formal group associated to L (s). On the other hand, there is
another formal group with coefficients in Z which can be attached to an
elliptic curve E defined over Q. If we let Z = — X/Y, then Z is a uniform-
izing parameter in the local ring of E at e. The group law on E is given by a
morphism E X E — E in which (e, ) — e. We thus have induced a natural
homomorphism from the local ring of £ at e to E X E at (e, e). If we
complete each of these rings with respect to the topology induced by their
respective maximal ideals, we obtain power series rings Q [[Z]], Q[[Z,, Z,]]
in one and two variables over Q. The morphism E X E — FE induces a
local Q-algebra homomorphism Q[[Z]]— Q[[Z,, Z,]]. The image
F(Zy, Z,) of Z is then a formal group due to the properties of the group
law on E. F has its coefficients in Z. Given two formal groups F and G
defined over a commutative ring R, a homomorphism f: F - G over R
consists of a formal power series /(7)€ R[[T 1] such that £(0) = 0 and
fF(X,Y) = G(f(X),f(Y)). fis a strong isomorphism over R if in
addition f(X) = X (mod degree 2) and there exists a homomorphism
g:G— F over R such that fog =T and gof = T. A fundamental
result which we wish to use here is the following:

THEOREM 1.1 (Honda [2, 3]). Let E be an elliptic curve defined over Q.
The formal group F of E is strongly isomorphic over Z to the formal group
G associated to the global L-function of E.

Among all the differentials on E, those which are translation-invariant
form a one-dimensional vector space over Q. Given such a differential o
we may expand w/dZ as a power series in Z. The canonical invariant
differential on E is the unique one which has 1 as the constant term in this.
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expansion. Let w be the canonical invariant differential on E and write

0
w/dZ = Y, C;Z' 1t is an immediate consequence of Honda’s theorem
i=0

that f, = C,_; (mod p).
CoRrOLLARY 1.2. Let E be an elliptic curve, and assume that E has bad
reduction at a prime p. Then
(1) C,-y = 0,1, —1 (mod p).
(2) E has additive reduction at p < = > C,_; = 0 (mod p).

(3) For p > 2, F has split multiplicative reduction at p < = > C,_,
= 1 (mod p).

(4) For p > 2, E has non-split multiplicative reduction at p < = > C,_;
= —1 (mod p).

Proof : Since C,_; = f, (mod p) and f, = 0, 1, or —1, the congruence
class of C,_; modulo p determines the reduction type uniquely as indicated
except for p = 2.

From now on we shall assume that all curves and points are defined over
Q, and that all Weierstrass equations are minimal. We wish to derive some
simple arithmetical criteria for determining which of the three types of
reduction occurs at a given prime p where £ has bad reduction. From now
on we shall assume that £ has bad reduction at the prime p under discussion.

§2. THE CASE p = 2

For a curve given in the form (1.2), we have
(2.1) o =dX/2Y + a; X + a;)

Expressing X and Y in terms of Z and computing (cf. Tate [5] for the
details), one obtains

2.2) C, = a

THEOREM 2.1. Assume E has bad reduction at 2.

(1) E has additive reduction at 2 < = >g; =0(mod2) < = > ¢,
= 0 (mod 2).

(2) E has split multiplicative reduction at 2 < = > g; = 1 (mod 2)
and a, + a; = 0 (mod 2).




(3) E has non-split multiplicative reduction at 2 < = > a; = 1 (mod 2)
and a, + a; = 1 (mod 2).
Proof:  (1). cy = b2 —24b, = b; = b, = & + 4a, = ai = a,
= C, (mod 2). Now apply Corollary 1.2, part (2). '
(2) and (3). By Corollary 1.2, part (2), we have multiplicative reduction

< = > g, = 1 (mod 2). Assume that this is so. Let S = (x, ) be the
singular point. Let

(2.3) H=Y+aXY+aY—X>—a,X*—aX —ag
Compute in Z/2Z for the remainder of the proof.
0H

(24) g)‘(‘ =611Y—3X2—-2a2X—a4 = Y+X2+a4
0H

x = a; from (2.5) and y = x* + a, = x + a, = a3 + a, from (2.4).
Transform S to (0,0) via X - X + a5 and Y —» Y + a5 + a,. We obtain
H = (Y+as+ay)* + a (X +a3) (Y+az +ay) + as (Y+as+ay)
— (X +a3)° —a, (X +a3)* —as(X +as) —ag
= Y?> + XY + X3+ (a,+a3) X?
The tangents at (0, 0) are given by Y2 + XY + (a,+a3) X* = 0. E has

split multiplicative reduction at 2 < = > this form is reducible over
722 < = > a, + a; = 0 (mod 2).

§3. THE CASE p = 3

As in §2, a short computation (again see Tate [5] for the details) yields
(3'1) Cz = a% + az

THEOREM 3.1. Assume E has bad reduction at 3.

(1) E has additive reduction at 3 < a? + a, = 0(mod 3). < ¢,
= 0 (mod 3).

(2) E has multiplicative reduction at 3 < a; + a, % 0 (mod 3) < ¢,
= 0 (mod 3).
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(3) E has split multiplicative reduction at 3 < ai + a, = 1 (mod 3).
(4) E has non-split multiplicative reduction at 3 < a7 + a, = —1 (mod 3).

Proof:
¢, =h3 — 24b, =b3 =(ai +4a,)*=(a] +a,)* (mod 3).
The theorem then follows immediately from formula (3.1) and Corollary 1.2.

Remark. C3 = ¢, (mod 3). Note that C, = a7 + a, is a more sensitive
invariant than ¢, in that the residue class of C, modulo 3 allows us to dis-
tinguish between split and non-split multiplicative reduction, while ¢, does
not allow us to separate these two possibilities.

§4. THE CASE p > 5

Assume p > 5. Then there exists a minimal Weierstrass equation for E
at p of the form

(4.1) Y? = X® 4+ AX +B

with 4, B € Z. The coefficient C,_; modulo p is given by Deuring’s classical
formula [1]
4.2) C = P A"B"  (mod p)
ke rmh antsiepi! B (P—h—i)! b
where P = (1/2) (p—1).

Let S = (x,y) be the singular point on the reduced curve with
x, y € Z/pZ. The tangents at S are given by a quadratic polynomial R (T')
as follows: Transform the curve by X —» (X+x), Y - (Y+y) so that the
singularity is now at (0, 0). The tangents are given by a homogeneous form
of degree 2 in X and Y which we can consider as a quadratic polynomial

R(T) with T = Y/X. Let D be the discriminant of R (T), and let <—-)
P

denote the Legendre symbol with respect to p. We have the following
results directly from the definitions.

ProPoOSITION 4.1. Assume E has bad reduction at p.
(1) E has additive reduction at p < f, = 0 < S is a cusp < R(T) has

, D
two identical roots over Z/pZ < D = 0 < <—) = 0.
p
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(2) E has split multiplicative reduction at p <> f, = 1 < § is a node with
rational tangents <> R(7T) has two distinct roots rational over

D
Z./pZ. < () = 1.
P

(3) E has non-split multiplicative reduction at p < f, = —1 < S'is a node
with irrational tangents <> R (7) has two distinct roots not rational

D
over Z/pZ, < <—> = —1.
p

D
COROLLARY 4.2. f,, = (—) .
D

In this case, H reduces to
(4.3) H=Y?>—-X3—AX — B

Then we have

(4.4) OH/0X = —3X? - 4
(4.5) OH|0Y = 2Y
From (4.5) we must have y = 0. From (4.4) we must have x* = —4/3

in Z/pZ, so that — A4/3 is either a quadratic residue modulo p or 0 modulo p.
Note that x = 0« 4 = 0 (mod p). Let X3 + AX + B= (X—a,)
(X—a,) (X—a3) be a factorization over Z/pZ. At least two of a,, oy, o5
must coincide with x, let us say x = a«, = «5. Then

(4.6) X° + AX + B = X* + (—o; —20,) X% + Qoyo, +02) X — a0

Thus comparing coefficients, we have

(4.7) 0 = —a; — 20,

(4.8) A = 20,0, + o3

(4.9) B = —a,02

Hence

(4.10) oy = —20a,

(4.11) A = 2005 + a5 = —3a% = —3x?

(4.12) B = —oj05 = 205 = 2x3
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From (4.12) we see that B/2 is either a cubic residue modulo p or 0 modulo p.
Note that x = 0 <« B = 0 (mod p) from (4.12).

Transform the curve by X — (X+a,), Y —» Y so that the singular
point S = (x,y) = (x,0) = («,, 0) goes to (0, 0). We obtain

The tangents to (0, 0) on the transformed curve are given by

(4.14) Y2 — 30,X% = 0

so that the polynomial R(7)is R(T) = T* — 3u,. D = 120, = 12x.
¢, = b; —24b, = (a}+4a,)* — 24(a a5 +2a,) = —484 .

Since

Xx =0<A4A=0(modp), D=0<A4=0

and so the invariant ¢, is enough to distinguish between additive and
multiplicative reduction. However, as we shall see below it does not separate
split and non-split multiplicative reduction.

THEOREM 4.3. Assume that £ has bad reduction at p.
(1) E has additive reduction at p< 4 = 0 (mod p) < B = 0 (mod p)

<—2AB>
< | - =0
4

—2AB
(2) E has split multiplicative reduction at p < < > = 1

P

—2AB
(3) E has non-split multiplicative reduction at p < < > = —1.
P

Proof: (1) We have seen that A =0(modp)<=x=0<8B
= 0 (mod p). E has additive reduction at p< D = 12x = 0<x =0

—2AB
©AEBEO(mOdp)©< >=O
P

(2) and (3). Assume £ has multiplicative reduction at p. Then 3a, # 0.
From (4.14) we see that E has split multiplicative reduction at p < 3o, is
a square in Z/pZ. From formulas (4.11) and (4.12) we have that 3«,
= (—9/2) B/A. Thus 3, is a square < (—9/2) B/A is a square modulo p

: —2AB
< —2AB is a square modulo p < (———) = 1,
p

—2AB
COROLLARY 4.4. f, = :
p
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§5. EXAMPLES

Given an elliptic curve E in the form of a minimal model (1.1) or (1.2),
one computes the bad primes by finding the prime divisors of the dis-
criminant 4. We can then apply the methods of the preceding sections to
determine f, and hence the type of reduction.

Example 5.1. Let E be given by Y2 = X? + X + 1. This equation is
minimal. The discriminant is 4 = —16 (31), so E has bad reduction at
p=2andp =31.Forp =2, C,_,=C;=a;=0s0we have additive
reduction at p = 2. For p = 31, we can apply Theorem 4.3 and Cor-

—2AB -2 . ,
ollary 44.f, = ( ) = <—31—> = —1, so that E has non-split multi-
p

plicative reduction at p = 31. Alternatively, one may use Deuring’s formula
to compute C,_;. A third possibility, of course, is to factor X° + X + 1
over Z/31Z and then analyse (4.14). ¢, = —48.

Example 5.2. Let E be given by Y? = X? + X — 1. The equation is

minimal and 4 = —16 (31). We have additive reduction at p = 2 since
—2AB 2
Cpo1 =Cy =a; =0, Forp =311, = =\37 = 1, so that
p
E has split multiplicative reduction at p = 31. ¢, = —48.

Remark. Comparing examples 5.1 and 5.2, one sees that ¢, is the same
in both cases. However, 5.1. exhibits non-split multiplicative reduction at
p = 31, while 5.2 exhibits split multiplicative reduction at the same prime.

Example 5.3. Let E be given by Y? = X® + 7X + 5. The equation is
minimal and 4 = —16 (23) (89). E has bad reduction at p = 2, 23, and 89.
For p =2, C,_y = Cy = a; =0, so we have additive reduction at

—2AB —70 —1
= 2. For p = 23, we have f, = ={—)=|—]=—1,
p p I ( 2 > < 23 ) <23) SO

that E has non-split multiplicative reduction at p = 23. For p = 89, we

—2AB 19
have f, = ( 5 ) = (@> = —1, so that E has non-split multiplicative

reduction at p = 89 as well.

P am—
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Remark. The computation of the Legendre symbol is much easier to
carry out in practice than either the computation of C,_; via Deuring’s
formula or by searching for roots of the polynomial X3 + 4X + B.
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