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Theorem 4.5. If K{s)(x,y) belongs both to Lip (a,p) and to Lip ß,

then X (1/aO7 convergesfor all y > p where p is as given in Theorem 2.10.

Naturally, these theorems also contain the analogues of the Zygmund and

Waraszkiewicz results, Theorems 2.4, 2.5.

In closing it is worth remarking that all of the above kernel function
results are equally as sharp as the corresponding Fourier series results

since, as we have seen earlier, for periodic difference kernels the singular
values and the related Fourier coefficients are essentially reciprocals. In
view of the Weyl-Chang inequalities (4.2), moreover, these theorems amplify
and extend our knowledge concerning the growth behavior of the characteristic

values of "smooth" kernels (see [22], [11], for example).
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