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2. FOURIER SERIES RESULTS

Let the integrable function f (x), —n < x < m, have period 2z, so that
f(x+2n) = f(x), and in particular f(n) = f(—n), and assume that
0 < a <<1andp > 1. Denote by 4/ one of the three differences (it matters
not which for our purposes)

J&)=flx=h), f&x+h) —fx), f&x+h) —f&x-h).

If Af= 0O (| h|*) we say either that f(x) belongs to Lip « or that f (x)
satisfies a Lipschitz condition with exponent «. More generally, f (x) is said
to belong to the Lipschitz class Lip (a, p) if

g |4 f|Pdx = O(lhl“”).

In view of Holder’s inequality, a function of Lip («, p) belongs to
Lip (a, g) for all 1 < g < p. Moreover, a function of Lip « clearly belongs
to Lip («, p) for all p > 1. In fact, the class Lip « may be viewed roughly
as the limit of Lip («, p) for p = oo.

The classical complex Fourier series of /' (x) is defined by

X . | .
f(x) ~ > c¢,e" wherec, = e g f(x)e " dx.
T )

R=—00 < T

1
Equivalently, if ¢, = 5 (a, —ib,) for all n, then

1 o 0]
f(x) ~ 5 do + Y (a,cos nx +b, sin nx)

n=1
with
a, 1(" cos
= — f(x) . nxdx.

b, = )_, sin

For given integrable f, the series

[e o)
2 el

n=—o0

of moduli of the coefficients of these Fourier series may not converge for
any finite y > 0. If it does for certain y, however, the convergence exponent
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p of the Fourier coefficients is the infimum of these y. For square-integrable f,
we know that p <C 2. (The above series, of course, need not be convergent
fory = p.)

The earliest result of interest to us here is the well-known theorem of
Bernstein [2], [3], [4] (see also Bary [1], pp. 153-171, or Zygmund [37],
pp. 240-243, for example) which we state as follows:

1
THEOREM 2.1. If f(x) isin Lipa with o > 5 then p < 1.

This result has a sharpened form due to Szasz [26], namely:

THEOREM 2.2. If f(x) isin Lipa, then p = 1/(a+1/2),

and an even more general rendition due essentially to Szasz [26] (the case
p = 2), [27], Titchmarsh [28] (the corresponding theorem for transforms;
see also [29]), and Hardy and Littlewood [19] (under the assumption
oap > 1):

THEOREM 2.3. If f(x) belongs to Lip (a, p), then

( 1
5/\\/ 2
o+ 1 —1/p =P
p ]
! 2
o+ 12 P

For square-integrable f, this result only has relevance, of course, when
20p > 2 — p.

We note in passing that since the class Lip (1, p), where p > 1, is equi-
valent to the collection of integrals of functions of the Lebesgue class L?
(Hardy and Littlewood [18], p. 599), Theorem 2.3 has as a special case the
well-known result originally established by Tonelli [30]: |

COROLLARY. If f(x) is absolutely continuous and its derivative £(x)
belongs to LP,p > 1, then p < 1.

Other restrictions on f(x), —n <<x <=, are also of interest to us.
Finite-valued functions are said to be of bounded variation if for all N > 1
and arbitrary choice of partition —n <{x, < x; <.. <Xy <7,

Y | f(x) — f(x,—1) | <B(const.) < oo.




— 145 —
Since f(x) is in Lip (1, 1) if and only if (iff) it is of bounded variation, no
new results arise without at least some modest additional assumptions
beyond mere bounded variation. One such set of combined restrictions

leads to the following classical result first established by Zygmund [35]
(see also Bary [1], Zygmund [37]):

THEOREM 2.4. If f(x) is of bounded variation and also in Lip f for
some B >0, then p < 1.

Here also there is a sharpened form, this time due to Waraszkiewicz [31]
(see also Zygmund [36]):

THEOREM 2.5. If f(x) is of bounded variation and also in Lip B for
some B > 0, then p = 1/(1+p/2).

Other results, employing different sets of combined assumptions, can
be established using the convexity property of the class Lip («, p) (Hardy
and Littlewood [20]), namely:

ProperTY 1. If f(x) belongs both to Lip («, p) and to Lip (B, ¢), where
P < g, then it belongs to Lip (y, r) for all p < r < g, where
p(q—r) N q(r—p)
r(q —p) (4 —~p)

In the limiting case ¢ = oo, where f (x) is in Lip 8, then
p
=B+ =P

Interplaying this property with the earlier Theorem 2.3, we obtain the
general

THEOREM 2.6. If* f(x) belongs both to Lip («, p) and to Lip (B, q),
where p < q, then
i) for ¢ <2,
f 1
o+ 1—1/p

1
B+ 1 1g pq(e—p)<q -p,

pq(e—p)>qg —p
p:J
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1) for p <2 < g,

( 1
— —_ J— > e
1= 1p pg(a—p) >q —p
2(q —p)
o= 4 O< o — <C""
P gB+ap+1) — pRa+phq+1) pax=F)<q—p
1 oy
OC\\ °
L B+ 1/2
1) and for p > 2,
( 1
REESE o> f
p = { iy
- O < .
Lﬁ+1/2

Theorem 2.5 is the special case of this result when o = p = 1, ¢ = 0.
Other special cases are:

CorOLLARY 1. If f(x) is of bounded variation and also in Lip (B, q)
for some B > 0,q >1, then

1 pg <1
c fg>1,9 <2
p=1 Bg+q-1 o
2(q—1
=y Bg>1,q >2;
| fg + 29 — 3

COROLLARY 2. If f(x) belongs to Lip (o, p) and also satisfies an
ordinary Lipschitz condition with exponent f > 0, then

p |
2
0 <p(x—p) <1, p<2
2—=p)+ap +1
p__:Jﬁ( p)1 p
t 12 *>p p>2
1 o< p
| B+ 1/2 -
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We note that p <1 for Bg > 1 in the first case, while for p <2,
o > B > (1—ap)/(2—p) gives the same conclusion in the latter situation.
Comparable results were observed by Hardy and Littlewood [20] and
Waraszkiewicz [31].

Perhaps not surprisingly, the Corollary to Theorem 2.3 may be viewed
as a special case of Corollary 2 above since when ap > 1, functions in
Lip («, p) likewise belong to Lip («—1/p+1/q, q) for all ¢ > p and hence
are equivalent to functions in Lip («—1/p) (Hardy and Littlewood [19]).
Alternatively, the earlier result can also be established using the following
variant of one-half of the Hausdorff-Young Theorem (Hausdorft [21],
Young [33], [34]; see also Hardy and Littlewood [17], Bary [1], Zygmund
[37]) and the familiar relation between the Fourier coefficients of f (x) and
its derivatives f® (x),s = 1,2, ... :

THEOREM 2.7. If f(x) isin L?, p > 1, then

" .
p=yp-1

2 p > 2.

PROPERTY 2. If f©~ 1 (x) is absolutely continuous for some positive
integer s, then the Fourier coefficients ¢, of f® (x) are given by

Cns = (in)s CII *

(Here, of course, we have made the tacit assumption that the periodic
f(x), 0 <r<s— 1, are all continuous in the wide-sense, i.e. for all x,
so that in particular f® (n) = f© (—=n), 0 <r <s— 1.) Property 2
easily leads to

ProPERTY 3. If f©~1 (x) is absolutely continuous for some positive

integer s, and the convergence exponent of the Fourier coefficients of
9 (x) is p,, then

_ Ps
1+ sp,

p

Taken together, the above results finally yield the general
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THEOREM 2.8. If f©~V (x) is absolutely continuous for some positive
integer s, and [ (x) belongs to L?, p > 1, then

p
rern -1 P=?
P 2
T+ 2 p=2
In particular, for s = 1
(
2pp——1 P2
p = )
3 p>2

Any number of other deductions can be obtained by combining
Theorem 2.8 with earlier results. We content ourselves with

THEOREM 2.9. If fC¢~Y (x) is absolutely continuous for some positive s,
and if f© (x) is of bounded variation and also in Lip (B, q) for some B > 0,

qg>1, then
] 1
1+ s Pa <1
p = 1 fg>1, q <2
qg(B+1+s) —1
2g -1 Bg>1, q>2;
| q(B+2+2s) —3 —2s - ’

THEOREM 2.10. If £~V (x) is absolutely continuous for some positive s,
and if f® (x) belongs to Lip (o, p) and also satisfies an ordinary Lipschitz
condition with exponent f > 0, then

( p ‘
x—p)>1,p<<2
platlits) — 1 pla—f>Lp<
2
O<pla—-pP)<l,pK?2
p2—p) +ap + 1 + 2s p(@=F) P
1
«>p,p>2
o+ s+ 1/2 h.p
1
o < B.
| B+s+1/2
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