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This follows from Theorem 2: the right-hand side is at most a multiple of
the left since F (x,t) — F(x,0) in LL; the converse inequality is just (3)
with w, and r chosen to be w and p, resp.

§3. PROOF OF THEOREMS 1 AND 3

We will prove Theorem 1 first, beginning with part (i). Let Fe H.,
F= (uvy,..,v,), we A;. By Theorem 2, F has boundary values F (x, 0)
= (f(%), g1 (X), -.s &y (x)) pointwise a.e. and in Ll. In particular,
f, 81,y gueL,. We will show that u = P(f) and v; = P(g;). Since
u (x,s) converges to f(x) in L., P (u(., 5)) (x,t) = (Pf) (x,t) as s — O:

[P(u(,s)(x, 1) — (P, 1) = | \ [u(y,s) =f(W]P(x—y,t)dy|
Rn
<|luC,s) =flliw{supw® ' P(x—y,0)},

where the expression in curly brackets is finite for each (x, t) (see (6)). By
Lemma 1, u(x,s+¢)=P(u(., 5)) (x, t) since u is harmonic. Hence,
letting s — 0, we obtain u(x,t) = (Pf) (x, t), as desired. The argument
proving that v; = P (g;) is similar.

Now let G = (Pf, Q4 f, ..., O, f). Then G is a Cauchy-Riemann system
with the same first component as F. This implies that the first component
of F-G is zero, and so that the others are independent of #; thatis,v;— Q;f
is independent of ¢. Thus, v; = Q;f if both v; (x, ¢) and (Q;f) (x, t) tend
to zero as t — + oo (x fixed). We have already observed this for Q;f. For
v;, the mean-value property of harmonic functions gives

lo;(x, t) | <et™ 7 SS [0; (&, n) [dédn

[ YR %
|g—x|2 + [e—n]2 <e2

<ct™ sup g |v; (&, m) [dE

n>0
[§—x|<t

<Lct™ (sup S |v; (&, m) [ w(d) df) (sup w(&)™7)

n>0 & |E—x|<t
Rn

Lct™ sup w(&)t.
gilg—x] <t
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Since w (&)™ < ¢ (1+]¢])" for some 6,0 < & < 1, we have
[9; (s, 1) | et ™" (L+ x| +)".

Hence, v; (x, t) — 0 as t — oo for each x. y

We now know u = Pf,v; = P(g;) = Q,f. Letting # — 0 in the equation
P(g) (x, 1) = (Q;f) (x, 1) gives g () = (R;f) (x) ae. Thus, R;feL,
and v; = P(R;f) = Q,f, as desired. All that remains to prove in (i) 1s

that ||| F]|| and || f|lsw + X || R f||1,w are equivalent. This, however,
=1
follows immediately from (10) with p = 1, since
F(x,0) = (f(x), R{ f(x), ... R, f(x)) -

To prove (ii), let f be a function in L), for which each R;fe L. (The
existence of R;f as a pointwise limit is guaranteed by the hypothesis
we A,.) We will show that the vector defined by

F = (Pfa Q1f> veey an)

is in H}. Once this is done, the rest of (ii) clearly follows from (i). We know
F is a Cauchy-Riemann system, and only need to show ||| F||| < +oo.
As t - 0, F(x,t) converges a.e. to (f,R,f,.... R, f) = F(x,0), say, so
that | F(x, 0) | e L,. Hence, ||| F||| < + oo by Theorem 2 if there exist p

n—1
and wy, < p < 0, Wy € Apyjn-1y, such that
(11) sup R | F(x,t)|Pw; (x)dx < + o0 .
t>0 t
Rn

We first claim that if we 4, there exists o > 0 such that the function

also belongs to 4;. Note that (1+]|x|)"# e 4, if 0 < B < n, and that there
exists s > 1 such that w®e 4,. Hence, for any cube 7, Hélder’s inequality
gives

1 1 Vs 1 L L
A\ m (x)dx<<m \ w(x)de> (|T| \ (14 dx)

T I I
s’ = 5/(s—1). Choose a > 0 so small that as’ < n. Then both w® and
(1+|x|)~ are in 4, and
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1 ¥ 14
T R wy (x) dx < c(ess inf w®)/5 (ess inf (1 + |x|) ™)1/
I I

e
I

c (esinnf w) (ess inf (1 +|x])™%)
I

< c ess infw, .
g
This proves the claim.

With this choice of w;, we will complete the proof of (ﬁ) by showing
that (11) holds for any p < 1 which is sufficiently close to 1. Let

(R*f)(x) = max (R5f)(x).

J=1,...,n
Then, as is well-known, there is a constant ¢ depending only on 7 such that

| F(x,0) | <c[f*(x) + R*f)(x)].
It follows from the weak-type estimates referred to in §2 that the radial
maximal function N, (F) (x) (= sup | F(x, 1) |) satisfies
t>0
m, {x: No(F)(x) > A} <cA7" || flyws 4 >0.
We will show that any non-negative function ¢ with

my,{x: ¢(x) >} <cA™ ', 1>0,

o
belongsto Ly, 1 — — < p < 1. Letg, (1), A > 0, denote the non-increasing
n

rearrangement of a function g with respect to the measure w (x) dx. Then,
by [5], p. 257,

\ #rmax = \ 6 @ra i v

PY)

R R®
< S 67 (D) {(1+1xD™*}, (D di.

We have ¢, (1) < ¢ A™' and must estimate {(1 +|x|)™*},. However,
m,{x: (1+[xD™* >4} =m,{x: 1+ [x] <A7*},

which for A > 1is zero and for 0 < A < 1 is less than

wdx <A™ wdx = cA™"*
|x|</1—1/“ Ix]<1

(see (5)). Therefore,
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{A+xD7*L D) <c@+H7*", 2>0.

Combining estimates, we obtain

[ee]

AP+ )AL < 4 o0

\ PPwidx < c
. 0

Rn

0"

if 1 — * < p < 1, as desired. This completes the proof of (i).
n

To prove Theorem 3, let fe Ll and we 4,. Then (11) holds for F, p
and w, as in the proof of Theorem 1 (ii). (The proof of (11) does not require
R;fe L,.) Hence, by Lemma 2 (see (8)),

n—1 n

N(F)(x) < c(|F(x,0)] ") 1.

Since F (x, 0) = (f(x), (Ryf) (x), ..., (R, f) (x)), the conclusion of Theorem 3
follows immediately with u = (n—1)/n.
To prove the fact stated at the end of the introduction, let

f.R.f,..,R,feL'.
Clearly,

PRS) (6, 0) = P, ) (R,f) (x) = e 25 (R,f) (x),

©,1) (1) = 0, (e, Nf(x) =i ‘—xﬂ 2 F () ae.

where the Fourier transform is taken in the x variable with ¢ fixed. (Note
that for fixed ¢, P (x,t) belongs to L* and Q; (x, ¢) belongs to L*.) How-
ever, these expressions are all equal everywhere since P (R;f) = Q,f by

A

Theorem 1 and P (R,f)eL'. Therefore, (R;f) (x) = ix;|x|™'f(x),
as claimed.
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