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and if f,R,f,..., R,f ¢ LY, for some p > u and w, satisfying A,
(=Apn/(n—1))> then N(F) & Lf,z and

HN(F)”p,wg < c[”f”p,wg + _;1 HijHp,wz]'

Finally, as a corollary of Theorem 1, we will show that if f, R; fe L 1
(w = 1) for all j, then the Fourier transforms satisfy the standard formula

R,f) =i 7 f(x)
x|

for x # 0, and, by continuity, (R;f) (0) = f(0) = 0. The simple proof
is given at the end of §3.

§2. PRELIMINARY RESULTS

In this section, we prove some facts, including Theorem 2, which will
be useful later.

First, we need several observations about condition 4. If g* denotes
the Hardy-Littlewood maximal function of a function g, it is not hard to
see that w e 4, if and only if there is a constant ¢ such that

(4) wH(x) <cw(x) a.e.

It 1s also easy to check that if we A; and I and J are cubes with I < J,
then

(5) S wdx g’c%Swdx.

J I

Since for any w that is not identically zero, there is a constant ¢ > 0
such that w* (x) > ¢ (1+]x|)™", we obtain that w(x) = c(1+|x|)™" ae.
if we A;. Actually, if w e A, there exists §,0 < & < 1, such that w!/? e 4,
(see [7]), so that w (x) > ¢ (1 +|x|)™" a.e. This shows thatif fe L}, we 4,
then Pf(x,t) and Q;f(x, t) are finite and tend to zero as t - + oo (for
fixed x). In fact, the estimate implies that

w(y)~*

6 M
© Pt )y

((x,7) fixed, ¢>0)

is finite and tends to zero as t— +oo. Thus, since P(x—y,¢) and
Q; (x—y, t) are bounded in absolute value by a multiple of (¢+ ]x— yl)"",
it follows that | Pf(x, t) | and | (Q; f) (x, t) | are bounded by
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| dy w(y) !
CS lf(y) l (t-{—lx—yl)” <C Hf”l,w{sgp (t-{—lx——yl)"}’

Rn
which is finite and tends to zero as ¢t — + 0.
In addition to the pointwise existence of R; f for f eLl we A, there
1s also a weak-type estimate: if m,, (F) denotes the w-measure of a set E

(.e., m,(E) = Q wd x) and if R fis defined by

[ A

(REf)(x) = sup [(R;.f)(x)],
then >0
my{x: (R7)(x) > A} <cA7 ||fllgp 4>0,

with ¢ independent of fand A. A similar estimate holds for f*. (See [2], [7].)

We need several facts about condition A4,, p > 1, all of which can be
found in [2], [6], and [7]. Here we note only that if we 4, p > 1, there is
a constant ¢ such that

(3,) \ o v ca \ wordy, >0,
J (E+[x—=yD"” _y
RM xX—y|<t

(Cf. lemma 1 of [6].) In particular, w(y)/(1+ | YD) is integrable over
R" if we A,. This shows that Pf and Q,f are finite if fe L, we 4,,p > 1.
In fact, by Holder’s inequality,

dv

) w(y)~ PP 1/p’
\/ w 'd )
\ O ey <l (S(t+1x—yl)”” y>

Rn

p' = p/(p—1). Since we 4,, we have w™?'/P e 4, so that

w )R+ D)

is integrable and the last expression is finite.
We need the following lemma about harmonic majorization.

LemMA 1. Let s (x, t) be subharmonic in R'*' and satisfy

sup S | s(x, ) |Pw(x)dx < 4+
t>0 o
Rn

for some p,1 < p < +oo, with we A,. Then for a > 0,
(7 s(x,14+a) < P(s (@) (x, ).

If s is harmonic, equality holds in (7).
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Proof. First note by the remarks above that P(s(., a))(x,t) is finite,
since s (., @) e L2, we A,. Inequality (7) is a corollary of Theorem 2 of [8],

provided that we show

(a) su g [5G, D] X < + o
| >0 ) (LFz+]x])™! ’
Rn
C Is(x, D]
b lim \
) e ) D
Rn
Ifp > 1,
g | s(x, 1) |
J(L+r+|x)r!
® i A\lr /s W(x)“p’/p 1/p’
<( S |s(x,t)l”w(x)dx> ( S (1+t+|x|)(n+1)p’ dx)
R™ R™
» w(x)-p'/p 1/p’
c \ - dx .
<L (14+t+|xprbr >
Rn

Since (1+¢+|x)™* 17" > (1+16)? (1+|x])"”" and w™?"/” satisfies B,., the
last expression is at most

-p'/p 1/p’ ft 1/p’
C g L(x_)__, dax \n__< \ W(x)—p’/pdx ,
T4\ ) (T+]x])? L4+\

R™ lx]<1

from which (a) and (b) follow. The argument for p = 1 is similar, using for
example the simple estimate w (x) 7! < ¢ (1 +|x|)". Finally, if s is harmonic
then s (x, t+a) = P (s (., a)) (x, 1), by applying (7) to both s and —s.

LeMMA 2. Let F be a Cauchy- Riemann system for which

sup \ |F(x,t)|Pw(x)dx < + o0,
0 «
R

n—1

n
to a limit F(x,0) as t— 0. Moreover, || F(x,t) — F(x,0) ”p,w -0 ;I
as t — 0, and there is a constant ¢ depending only on n such that

where <p<oo and weApm-1y Then F(x,t) converges a.e.

) NF) () <c(F 0] ") "1, '

where * denotes the Hardy-Littlewood maximal function.
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Proof. Except for the last estimate, this lemma is proved in [4]. The

n—1

method 1s standard. Let ¢ = pn/(n—1) and s(y,t) = IF(y, 1) [T

p

= |F (y, 1) l 4. Then s is non-negative, continuous and (by [9]) sub-
harmonic in R"."*. Also,

R s(y,t)w(y)dy = g [ F(y, ) [Pw(y)dy <cy, t > 0.

[ 2 [ 2

R™ R"

Since g > 1, there exist {f,} -0 and heL} such that ||2]|%, <¢
and s (., t,) converges weakly in L} to hi—i.e.,

Q sV, t)g ) w(y)dy — R h(y)g (y) w(y)dy

L 2 [ %

R™ R™
ifgeLl, q' = g/(g—1). For fixed (x, t), choose g (y) = P(x—y, t) w(y) .
Since we 4, we have w7/ (= w'"?)e B, and therefore ge L%. For
this g, the integral on the left above equals P (s (., t,)) (x, ), which majorizes

s (x,t+1¢,) by Lemma 1, and the integral on the right equals (Ph) (x, t).
Hence,

s(x,t) = lim s(x,t+1) <<(Ph)(x,t).

t,—0
q

Therefore, | F (x, £) | < (Ph) (x, 1)?, so that

q q

©) N(F)(x) <N @B @)° <ch* ()7 .
We have
g h*tw dx < c Q | h |Tw dx
R™ RP

by [7]. Hence, #*, and so N (F), is finite a.c., and it follows from [1] that
F has non-tangential boundary values F (x, 0) a.e. Moreover,

gIF(X,t)—F(X,O)IpW(x)dxéO as t—0

Rn

by dominated convergence:

| F(x,1) | <NF)(x) < ch*(x)"?e L2,
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n—1 n—1

Since s(x,1) = | F(x,1)| " we have s(x,t)— | F(x,0)] T ae.

This convergence is also in L norm since
p

|s(x,1)| < N(F)(x)? e L§.

Since s(.,t,) also converges weakly in LI to A, it follows that
n—1

h(x) = | F(x,0) | " ae. Inequality (8) now follows immediately from (9).

Proof of Theorem 2. Let F be a Cauchy-Riemann system satisfying

sup S | F(x,1) |Pw; (x)dx < + 00,
>0

t ba

where

n—1

- <p< o0, we€A,ium1)-

Then F has boundary value F (x, 0) a.e. and in L} by Lemma 2; moreover,
n-1 n

N(F)(x) <c(|F(x,0)] " )*""',

If we now assume that

. n—1
IF(x:O)IEL:vga_-;l— <r<o, WZGArn/(n—l)a

then
g N(F) () 'w, (x) dx < ¢

nr

n—1
(F Ce, 0) ] 7o y#=1 3y (1) dix

n

|F(x,0)|"w, (x)dx

< ¢

0 Wy

= e
S

by [7]. This gives (3) immediately.

Remark. We note in passing that if

n—1
sup J‘ | F(x,t)|Pw(x)dx < + o0, <p< O, Wed,mu-1) s
! n
t An
then
(10) sup \ [F (e, ) [Pw () dx ~ || F (-, 0) ]2, .
t>0 o
Rn

L’Enseignement mathém., t. XXII, fasc. 1-2, 9
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This follows from Theorem 2: the right-hand side is at most a multiple of
the left since F (x,t) — F(x,0) in LL; the converse inequality is just (3)
with w, and r chosen to be w and p, resp.

§3. PROOF OF THEOREMS 1 AND 3

We will prove Theorem 1 first, beginning with part (i). Let Fe H.,
F= (uvy,..,v,), we A;. By Theorem 2, F has boundary values F (x, 0)
= (f(%), g1 (X), -.s &y (x)) pointwise a.e. and in Ll. In particular,
f, 81,y gueL,. We will show that u = P(f) and v; = P(g;). Since
u (x,s) converges to f(x) in L., P (u(., 5)) (x,t) = (Pf) (x,t) as s — O:

[P(u(,s)(x, 1) — (P, 1) = | \ [u(y,s) =f(W]P(x—y,t)dy|
Rn
<|luC,s) =flliw{supw® ' P(x—y,0)},

where the expression in curly brackets is finite for each (x, t) (see (6)). By
Lemma 1, u(x,s+¢)=P(u(., 5)) (x, t) since u is harmonic. Hence,
letting s — 0, we obtain u(x,t) = (Pf) (x, t), as desired. The argument
proving that v; = P (g;) is similar.

Now let G = (Pf, Q4 f, ..., O, f). Then G is a Cauchy-Riemann system
with the same first component as F. This implies that the first component
of F-G is zero, and so that the others are independent of #; thatis,v;— Q;f
is independent of ¢. Thus, v; = Q;f if both v; (x, ¢) and (Q;f) (x, t) tend
to zero as t — + oo (x fixed). We have already observed this for Q;f. For
v;, the mean-value property of harmonic functions gives

lo;(x, t) | <et™ 7 SS [0; (&, n) [dédn

[ YR %
|g—x|2 + [e—n]2 <e2

<ct™ sup g |v; (&, m) [dE

n>0
[§—x|<t

<Lct™ (sup S |v; (&, m) [ w(d) df) (sup w(&)™7)

n>0 & |E—x|<t
Rn

Lct™ sup w(&)t.
gilg—x] <t
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