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A BOUNDARY VALUE CHARACTERIZATION
OF WEIGHTED H'!

by Richard L. WHEEDEN 1)

ABSTRACT

We give a proof of the elementary result that for certain weight functions
w, the Hardy space H can be identified with the class of functions f such
that f and all its Riesz transforms R; f belong to L!. An important in-
gredient of the proof is that there exist positive constants cand y,0 < u < 1,
depending only on the dimension z such that if f belongs to L., then

N()(x) <c[M,(f)(x) + Zl M, (R;f)(x)],

where N (f) denotes the non-tangential maximal function of the Poisson
(or any conjugate Poisson) integral of f; and M, denotes the Hardy-Little-
wood maximal operator of order u:

1/u
M, (g) (x) = <Sup h™" R lg(x+y)l”dy) :

h>0 .
[yl<h

§1. INTRODUCTION

Let F (x, 1) = (u(x, 1), vy (x, 1), ..., U, (x, 1)), X = (X1, ..., X,) € R", 1 > 0,
satisfy the Cauchy-Riemann equations in the sense of Stein and Weiss [9]:

1.e., U, vy, ..., v, are harmonic in
ou " 0v,
R!™ ={(x,): xeR", t>0}, -+ Y -2 =0
ot j—1 0x;
and

du;  0v; dv;  Ou

ox;  ox;  at ox,

1 Supported in part by NSF-MPS75-07596.
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there. F is said to belong to H), where w is a non-negative measurable
function on R”, if

I F]Il =sup \ [F(x,0)[w(x)dx <+ 0.
t>0

x;i&/a

Letting
L, = {f: e = \ [ w(x)dx < +OO},

[ 3

R
it is immediate that a Cauchy-Riemann system belongs to H.. if and only
if the L. norms of its components are uniformly bounded for z > 0. See
also [4], p. 118.

We consider primarily weight functions w satisfying

| b
-~

(4,) w(x)dx <c essinf w,

I '

~e

where I is a “cube” in R", and c is a constant independent of 1. (See [7],
[3]) If we A, and fe L}, the Riesz transforms of f, defined as the point-
wise limits

(R;f)(x) = lim (R; . f)(x), j=1,..,n, where

(1) e—>0
» - 1 n+1
(Rj,sf)(x) = Cy \ f(x_y)!y.)i,],+1dyacn:[1<n_; )/7[ g ’

ly|>e

exist a.e. (See [2].) Moreover, as we shall see, the Poisson and conjugate
Poisson integrals of f exist and are finite if fe L., we A,. These will be
denoted respectively by

BN =\ FG=) PO dy.,

Rn

(Q;f)(x,1) = gf(x-—J/) Q;(y,ndy,

Rn
where
B+l
P(y,1) = c,t/*+1y1*) ?

and
n41

Q,(y, 1) = eyl +1y1») 2

]
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are the Poisson and conjugate Poisson kernels. The vector (Pf, Q1 f; .., Ouf)
is of course a Cauchy-Riemann system, and the formulas

lim (Pf)(x,1) = f(x), lim (Q;/)(x,0) = (R;f)(x)

t—0 t=0

hold a.e. if fe L} we A;.

THEOREM 1. Let we A;.

) If F= (u,vy,..,v,) belongs to H.. there exists fe LY such that
R;fe L., u= Pf and v; = P(R;f) = Q;f foreach j. Moreover, there
are positive constants ¢, and c,, independent of F, such that

(2) e MFUE< U iw + 2 R f i < c2 [T
1
(i) Let feLyl. If each ijeL}v, then the vector

= (Pfa Qlf: aan)
belongs to H,. Moreover, Q;f=P(R;f) and (2) holds.

Thus, if we A4, H}V can be identified with

{F A= U N + ; IR f 1w <400},

with equivalence of norms. This result, which is very natural, seems to be
generally taken for granted, although there appear to be no proofs (at
least of (ii)) in the literature, even when w = 1. In the one-dimensional
periodic case with w = 1, two proofs of (ii) are given in [11], vol. 1: see
(4.4), p. 263, and the remark at the bottom of p. 285. Our proof 1s modelled
after the second of these. It is largely technical and contains little that is
new; a simpler proof would be interesting. The proof of (i) is fairly standard
and included only for completeness.

A weight w is said to belong to 4,, 1 < p < o0, if there is a constant ¢
such that '

(4)) (—-1——§ w(x)dx>< R w (x) p_de>P—1 <c
1’ III? }

for all cubes I. (See [7]). For 0 < p < o0, let

L{j:{ WA 1o =(\|f|”wdx> < + oo}.
R

n
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In the course of proving (ii), we will derive the following result, analogous
to Theorem D of [9], about boundary values of Cauchy-Riemann systems.

THEOREM 2. Let F be a Cauchy-Riemann system for which

sup \ [ F(x,0) 7w, (x)dx < + o0,
>0
Rn
n—1
where

<p< o and wy€ A, u-1y Then F(x,t) has a limit
n

F(x,0) ae. (and in L3) as t—-0. If | F(x,0)|eLy, for
n—1
n
only on n and wy, such that

<r< o and wy,€A, u-1) there is a constant c, depending

3) sup \ | F (5, 1) ' () dx < || F (5, 0) [, -

t>0
R

The case w;, = w, = 1 is proved in [9].

It follows (see (10) below) that for Fe H,, ||| F||| and || F (x, 0) || ;..
are equivalent if w € 4,(,-1). This is an interesting contrast to Theorem 1,
which gives more boundary information, but requires the stronger con-
dition w € 4.

The method used to prove Theorems 1 and 2 leads to the following
result, in which we use the notation

N(F)(x) = sup {|F(y,0)|: (y,f) satisfies |x —y| <t},

1/u
(M, f)(x) = (sup h™ % |f(x +y)l”dy) u>0.

h>0
ly|<h

THEOREM 3. Let f belong to L,, and let w satisfy A,. Let
F = (Pf, Q.f, ..., O,f). There exist positive constants ¢ and u depending
only on n suchthat 0 < u<1 and

NF)®) <c[M,(H® + _; M, (R;f)(x)].

The constant u above can be taken to be (n—1)/n. It follows easily
from this and the results of [7] that if f ¢ le for any w, satisfying 4,
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and if f,R,f,..., R,f ¢ LY, for some p > u and w, satisfying A,
(=Apn/(n—1))> then N(F) & Lf,z and

HN(F)”p,wg < c[”f”p,wg + _;1 HijHp,wz]'

Finally, as a corollary of Theorem 1, we will show that if f, R; fe L 1
(w = 1) for all j, then the Fourier transforms satisfy the standard formula

R,f) =i 7 f(x)
x|

for x # 0, and, by continuity, (R;f) (0) = f(0) = 0. The simple proof
is given at the end of §3.

§2. PRELIMINARY RESULTS

In this section, we prove some facts, including Theorem 2, which will
be useful later.

First, we need several observations about condition 4. If g* denotes
the Hardy-Littlewood maximal function of a function g, it is not hard to
see that w e 4, if and only if there is a constant ¢ such that

(4) wH(x) <cw(x) a.e.

It 1s also easy to check that if we A; and I and J are cubes with I < J,
then

(5) S wdx g’c%Swdx.

J I

Since for any w that is not identically zero, there is a constant ¢ > 0
such that w* (x) > ¢ (1+]x|)™", we obtain that w(x) = c(1+|x|)™" ae.
if we A;. Actually, if w e A, there exists §,0 < & < 1, such that w!/? e 4,
(see [7]), so that w (x) > ¢ (1 +|x|)™" a.e. This shows thatif fe L}, we 4,
then Pf(x,t) and Q;f(x, t) are finite and tend to zero as t - + oo (for
fixed x). In fact, the estimate implies that

w(y)~*

6 M
© Pt )y

((x,7) fixed, ¢>0)

is finite and tends to zero as t— +oo. Thus, since P(x—y,¢) and
Q; (x—y, t) are bounded in absolute value by a multiple of (¢+ ]x— yl)"",
it follows that | Pf(x, t) | and | (Q; f) (x, t) | are bounded by
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| dy w(y) !
CS lf(y) l (t-{—lx—yl)” <C Hf”l,w{sgp (t-{—lx——yl)"}’

Rn
which is finite and tends to zero as ¢t — + 0.
In addition to the pointwise existence of R; f for f eLl we A, there
1s also a weak-type estimate: if m,, (F) denotes the w-measure of a set E

(.e., m,(E) = Q wd x) and if R fis defined by

[ A

(REf)(x) = sup [(R;.f)(x)],
then >0
my{x: (R7)(x) > A} <cA7 ||fllgp 4>0,

with ¢ independent of fand A. A similar estimate holds for f*. (See [2], [7].)

We need several facts about condition A4,, p > 1, all of which can be
found in [2], [6], and [7]. Here we note only that if we 4, p > 1, there is
a constant ¢ such that

(3,) \ o v ca \ wordy, >0,
J (E+[x—=yD"” _y
RM xX—y|<t

(Cf. lemma 1 of [6].) In particular, w(y)/(1+ | YD) is integrable over
R" if we A,. This shows that Pf and Q,f are finite if fe L, we 4,,p > 1.
In fact, by Holder’s inequality,

dv

) w(y)~ PP 1/p’
\/ w 'd )
\ O ey <l (S(t+1x—yl)”” y>

Rn

p' = p/(p—1). Since we 4,, we have w™?'/P e 4, so that

w )R+ D)

is integrable and the last expression is finite.
We need the following lemma about harmonic majorization.

LemMA 1. Let s (x, t) be subharmonic in R'*' and satisfy

sup S | s(x, ) |Pw(x)dx < 4+
t>0 o
Rn

for some p,1 < p < +oo, with we A,. Then for a > 0,
(7 s(x,14+a) < P(s (@) (x, ).

If s is harmonic, equality holds in (7).
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Proof. First note by the remarks above that P(s(., a))(x,t) is finite,
since s (., @) e L2, we A,. Inequality (7) is a corollary of Theorem 2 of [8],

provided that we show

(a) su g [5G, D] X < + o
| >0 ) (LFz+]x])™! ’
Rn
C Is(x, D]
b lim \
) e ) D
Rn
Ifp > 1,
g | s(x, 1) |
J(L+r+|x)r!
® i A\lr /s W(x)“p’/p 1/p’
<( S |s(x,t)l”w(x)dx> ( S (1+t+|x|)(n+1)p’ dx)
R™ R™
» w(x)-p'/p 1/p’
c \ - dx .
<L (14+t+|xprbr >
Rn

Since (1+¢+|x)™* 17" > (1+16)? (1+|x])"”" and w™?"/” satisfies B,., the
last expression is at most

-p'/p 1/p’ ft 1/p’
C g L(x_)__, dax \n__< \ W(x)—p’/pdx ,
T4\ ) (T+]x])? L4+\

R™ lx]<1

from which (a) and (b) follow. The argument for p = 1 is similar, using for
example the simple estimate w (x) 7! < ¢ (1 +|x|)". Finally, if s is harmonic
then s (x, t+a) = P (s (., a)) (x, 1), by applying (7) to both s and —s.

LeMMA 2. Let F be a Cauchy- Riemann system for which

sup \ |F(x,t)|Pw(x)dx < + o0,
0 «
R

n—1

n
to a limit F(x,0) as t— 0. Moreover, || F(x,t) — F(x,0) ”p,w -0 ;I
as t — 0, and there is a constant ¢ depending only on n such that

where <p<oo and weApm-1y Then F(x,t) converges a.e.

) NF) () <c(F 0] ") "1, '

where * denotes the Hardy-Littlewood maximal function.
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Proof. Except for the last estimate, this lemma is proved in [4]. The

n—1

method 1s standard. Let ¢ = pn/(n—1) and s(y,t) = IF(y, 1) [T

p

= |F (y, 1) l 4. Then s is non-negative, continuous and (by [9]) sub-
harmonic in R"."*. Also,

R s(y,t)w(y)dy = g [ F(y, ) [Pw(y)dy <cy, t > 0.

[ 2 [ 2

R™ R"

Since g > 1, there exist {f,} -0 and heL} such that ||2]|%, <¢
and s (., t,) converges weakly in L} to hi—i.e.,

Q sV, t)g ) w(y)dy — R h(y)g (y) w(y)dy

L 2 [ %

R™ R™
ifgeLl, q' = g/(g—1). For fixed (x, t), choose g (y) = P(x—y, t) w(y) .
Since we 4, we have w7/ (= w'"?)e B, and therefore ge L%. For
this g, the integral on the left above equals P (s (., t,)) (x, ), which majorizes

s (x,t+1¢,) by Lemma 1, and the integral on the right equals (Ph) (x, t).
Hence,

s(x,t) = lim s(x,t+1) <<(Ph)(x,t).

t,—0
q

Therefore, | F (x, £) | < (Ph) (x, 1)?, so that

q q

©) N(F)(x) <N @B @)° <ch* ()7 .
We have
g h*tw dx < c Q | h |Tw dx
R™ RP

by [7]. Hence, #*, and so N (F), is finite a.c., and it follows from [1] that
F has non-tangential boundary values F (x, 0) a.e. Moreover,

gIF(X,t)—F(X,O)IpW(x)dxéO as t—0

Rn

by dominated convergence:

| F(x,1) | <NF)(x) < ch*(x)"?e L2,
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n—1 n—1

Since s(x,1) = | F(x,1)| " we have s(x,t)— | F(x,0)] T ae.

This convergence is also in L norm since
p

|s(x,1)| < N(F)(x)? e L§.

Since s(.,t,) also converges weakly in LI to A, it follows that
n—1

h(x) = | F(x,0) | " ae. Inequality (8) now follows immediately from (9).

Proof of Theorem 2. Let F be a Cauchy-Riemann system satisfying

sup S | F(x,1) |Pw; (x)dx < + 00,
>0

t ba

where

n—1

- <p< o0, we€A,ium1)-

Then F has boundary value F (x, 0) a.e. and in L} by Lemma 2; moreover,
n-1 n

N(F)(x) <c(|F(x,0)] " )*""',

If we now assume that

. n—1
IF(x:O)IEL:vga_-;l— <r<o, WZGArn/(n—l)a

then
g N(F) () 'w, (x) dx < ¢

nr

n—1
(F Ce, 0) ] 7o y#=1 3y (1) dix

n

|F(x,0)|"w, (x)dx

< ¢

0 Wy

= e
S

by [7]. This gives (3) immediately.

Remark. We note in passing that if

n—1
sup J‘ | F(x,t)|Pw(x)dx < + o0, <p< O, Wed,mu-1) s
! n
t An
then
(10) sup \ [F (e, ) [Pw () dx ~ || F (-, 0) ]2, .
t>0 o
Rn

L’Enseignement mathém., t. XXII, fasc. 1-2, 9
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This follows from Theorem 2: the right-hand side is at most a multiple of
the left since F (x,t) — F(x,0) in LL; the converse inequality is just (3)
with w, and r chosen to be w and p, resp.

§3. PROOF OF THEOREMS 1 AND 3

We will prove Theorem 1 first, beginning with part (i). Let Fe H.,
F= (uvy,..,v,), we A;. By Theorem 2, F has boundary values F (x, 0)
= (f(%), g1 (X), -.s &y (x)) pointwise a.e. and in Ll. In particular,
f, 81,y gueL,. We will show that u = P(f) and v; = P(g;). Since
u (x,s) converges to f(x) in L., P (u(., 5)) (x,t) = (Pf) (x,t) as s — O:

[P(u(,s)(x, 1) — (P, 1) = | \ [u(y,s) =f(W]P(x—y,t)dy|
Rn
<|luC,s) =flliw{supw® ' P(x—y,0)},

where the expression in curly brackets is finite for each (x, t) (see (6)). By
Lemma 1, u(x,s+¢)=P(u(., 5)) (x, t) since u is harmonic. Hence,
letting s — 0, we obtain u(x,t) = (Pf) (x, t), as desired. The argument
proving that v; = P (g;) is similar.

Now let G = (Pf, Q4 f, ..., O, f). Then G is a Cauchy-Riemann system
with the same first component as F. This implies that the first component
of F-G is zero, and so that the others are independent of #; thatis,v;— Q;f
is independent of ¢. Thus, v; = Q;f if both v; (x, ¢) and (Q;f) (x, t) tend
to zero as t — + oo (x fixed). We have already observed this for Q;f. For
v;, the mean-value property of harmonic functions gives

lo;(x, t) | <et™ 7 SS [0; (&, n) [dédn

[ YR %
|g—x|2 + [e—n]2 <e2

<ct™ sup g |v; (&, m) [dE

n>0
[§—x|<t

<Lct™ (sup S |v; (&, m) [ w(d) df) (sup w(&)™7)

n>0 & |E—x|<t
Rn

Lct™ sup w(&)t.
gilg—x] <t
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Since w (&)™ < ¢ (1+]¢])" for some 6,0 < & < 1, we have
[9; (s, 1) | et ™" (L+ x| +)".

Hence, v; (x, t) — 0 as t — oo for each x. y

We now know u = Pf,v; = P(g;) = Q,f. Letting # — 0 in the equation
P(g) (x, 1) = (Q;f) (x, 1) gives g () = (R;f) (x) ae. Thus, R;feL,
and v; = P(R;f) = Q,f, as desired. All that remains to prove in (i) 1s

that ||| F]|| and || f|lsw + X || R f||1,w are equivalent. This, however,
=1
follows immediately from (10) with p = 1, since
F(x,0) = (f(x), R{ f(x), ... R, f(x)) -

To prove (ii), let f be a function in L), for which each R;fe L. (The
existence of R;f as a pointwise limit is guaranteed by the hypothesis
we A,.) We will show that the vector defined by

F = (Pfa Q1f> veey an)

is in H}. Once this is done, the rest of (ii) clearly follows from (i). We know
F is a Cauchy-Riemann system, and only need to show ||| F||| < +oo.
As t - 0, F(x,t) converges a.e. to (f,R,f,.... R, f) = F(x,0), say, so
that | F(x, 0) | e L,. Hence, ||| F||| < + oo by Theorem 2 if there exist p

n—1
and wy, < p < 0, Wy € Apyjn-1y, such that
(11) sup R | F(x,t)|Pw; (x)dx < + o0 .
t>0 t
Rn

We first claim that if we 4, there exists o > 0 such that the function

also belongs to 4;. Note that (1+]|x|)"# e 4, if 0 < B < n, and that there
exists s > 1 such that w®e 4,. Hence, for any cube 7, Hélder’s inequality
gives

1 1 Vs 1 L L
A\ m (x)dx<<m \ w(x)de> (|T| \ (14 dx)

T I I
s’ = 5/(s—1). Choose a > 0 so small that as’ < n. Then both w® and
(1+|x|)~ are in 4, and
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1 ¥ 14
T R wy (x) dx < c(ess inf w®)/5 (ess inf (1 + |x|) ™)1/
I I

e
I

c (esinnf w) (ess inf (1 +|x])™%)
I

< c ess infw, .
g
This proves the claim.

With this choice of w;, we will complete the proof of (ﬁ) by showing
that (11) holds for any p < 1 which is sufficiently close to 1. Let

(R*f)(x) = max (R5f)(x).

J=1,...,n
Then, as is well-known, there is a constant ¢ depending only on 7 such that

| F(x,0) | <c[f*(x) + R*f)(x)].
It follows from the weak-type estimates referred to in §2 that the radial
maximal function N, (F) (x) (= sup | F(x, 1) |) satisfies
t>0
m, {x: No(F)(x) > A} <cA7" || flyws 4 >0.
We will show that any non-negative function ¢ with

my,{x: ¢(x) >} <cA™ ', 1>0,

o
belongsto Ly, 1 — — < p < 1. Letg, (1), A > 0, denote the non-increasing
n

rearrangement of a function g with respect to the measure w (x) dx. Then,
by [5], p. 257,

\ #rmax = \ 6 @ra i v

PY)

R R®
< S 67 (D) {(1+1xD™*}, (D di.

We have ¢, (1) < ¢ A™' and must estimate {(1 +|x|)™*},. However,
m,{x: (1+[xD™* >4} =m,{x: 1+ [x] <A7*},

which for A > 1is zero and for 0 < A < 1 is less than

wdx <A™ wdx = cA™"*
|x|</1—1/“ Ix]<1

(see (5)). Therefore,
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{A+xD7*L D) <c@+H7*", 2>0.

Combining estimates, we obtain

[ee]

AP+ )AL < 4 o0

\ PPwidx < c
. 0

Rn

0"

if 1 — * < p < 1, as desired. This completes the proof of (i).
n

To prove Theorem 3, let fe Ll and we 4,. Then (11) holds for F, p
and w, as in the proof of Theorem 1 (ii). (The proof of (11) does not require
R;fe L,.) Hence, by Lemma 2 (see (8)),

n—1 n

N(F)(x) < c(|F(x,0)] ") 1.

Since F (x, 0) = (f(x), (Ryf) (x), ..., (R, f) (x)), the conclusion of Theorem 3
follows immediately with u = (n—1)/n.
To prove the fact stated at the end of the introduction, let

f.R.f,..,R,feL'.
Clearly,

PRS) (6, 0) = P, ) (R,f) (x) = e 25 (R,f) (x),

©,1) (1) = 0, (e, Nf(x) =i ‘—xﬂ 2 F () ae.

where the Fourier transform is taken in the x variable with ¢ fixed. (Note
that for fixed ¢, P (x,t) belongs to L* and Q; (x, ¢) belongs to L*.) How-
ever, these expressions are all equal everywhere since P (R;f) = Q,f by

A

Theorem 1 and P (R,f)eL'. Therefore, (R;f) (x) = ix;|x|™'f(x),
as claimed.

REFERENCES

[1] CALDERON, A.P. On the behavior of harmonic functions at the boundary. Trans.
Amer. Math. Soc. 68 (1950), pp. 47-54.

2] CorrmaN, R.R. and C.L. FerrerMAN. Weighted norm inequalities for maximal
functions and singular integrals. Studia Math. 51 (1974), pp. 241-250.

[3] FerrerMAN, C.L. and E.M. SteiN. Some maximal inequalities. Amer. J. Math. 93
(1971), pp. 107-115.

[4] Gunpy R.F. and R.L. WHEEDEN. Weighted integral inequalities for the nontangential
maximal function, Lusin area integral, and Walsh-Paley series. Studia Math. 49
(1973), pp. 101-118.

[5] Hunt, R.A. On L (p, q) spaces. L’Ens. Math. 12 (1966), pp. 249-275.




134 —

@ [6] — B. Muckenhoupt and R.L. WHEEDEN. Weighted norm inequalities for the
i conjugate function and Hilbert transform. Trans. Amer. Math. Soc. 176 (1973),
pp. 227-251.

[7] MuckeNHOUPT, B. Weighted norm inequalities for the Hardy maximal function.
Trans. Amer. Math. Soc. 165, (1972), pp. 207-226.
[8] NUALTARANEE, S. On least harmonic majorants in half-spaces. Proc. London Math.
Soc. 27 (1973), pp. 243-260.
[9] StEIN, E.M. and G. WEIss, On the theory of harmonic functions of several variables,
I. The theory of H P spaces. Acta Math. 103 (1960), pp. 25-62.
[10] WHEEDEN, R. On the dual of weighted H(|z| < 1). To appear in Studia Math.
[11] ZyaMuUND, A. Trigonometric Series. Vol. 1, 2nd edition. Cambridge Univ. Press,
New York, 1959.

( Regu le 28 aoiit 1975)

Richard L. Wheeden

Rutgers University
New Brunswick, N.J. 08903
USA




	BOUNDARY VALUE CHARACTERIZATION OF WEIGHTED $H^1$
	Abstract
	§1. Introduction
	§2. Preliminary results
	§3. Proof of Theorems 1 and 3
	...


